Pub Date : 2023-08-01eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00237-8
Lei Wu, Shuli Guo, Lina Han, Xiaowei Song, Zhilei Zhao, Anil Baris Cekderi
Myocarditis is cardiac damage caused by a viral infection. Its result often leads to a variety of arrhythmias. However, rapid and reliable identification of myocarditis has a great impact on early diagnosis, expedited treatment, and improved patient survival rates. Therefore, a novel strategy for the autonomous detection of myocarditis is suggested in this work. First, the improved quantum genetic algorithm (IQGA) is proposed to extract the optimal features of ECG beat and heart rate variability (HRV) from raw ECG signals. Second, the backpropagation neural network (BPNN) is optimized using the adaptive differential evolution (ADE) algorithm to classify various ECG signal types with high accuracy. This study examines analogies among five different ECG signal types: normal, abnormal, myocarditis, myocardial infarction (MI), and prior myocardial infarction (PMI). Additionally, the study uses binary and multiclass classification to group myocarditis with other cardiovascular disorders in order to assess how well the algorithm performs in categorization. The experimental results demonstrate that the combination of IQGA and ADE-BPNN can effectively increase the precision and accuracy of myocarditis autonomous diagnosis. In addition, HRV assesses the method's robustness, and the classification tool can detect viruses in myocarditis patients one week before symptoms worsen. The model can be utilized in intensive care units or wearable monitoring devices and has strong performance in the detection of myocarditis.
{"title":"Autonomous detection of myocarditis based on the fusion of improved quantum genetic algorithm and adaptive differential evolution optimization back propagation neural network.","authors":"Lei Wu, Shuli Guo, Lina Han, Xiaowei Song, Zhilei Zhao, Anil Baris Cekderi","doi":"10.1007/s13755-023-00237-8","DOIUrl":"10.1007/s13755-023-00237-8","url":null,"abstract":"<p><p>Myocarditis is cardiac damage caused by a viral infection. Its result often leads to a variety of arrhythmias. However, rapid and reliable identification of myocarditis has a great impact on early diagnosis, expedited treatment, and improved patient survival rates. Therefore, a novel strategy for the autonomous detection of myocarditis is suggested in this work. First, the improved quantum genetic algorithm (IQGA) is proposed to extract the optimal features of ECG beat and heart rate variability (HRV) from raw ECG signals. Second, the backpropagation neural network (BPNN) is optimized using the adaptive differential evolution (ADE) algorithm to classify various ECG signal types with high accuracy. This study examines analogies among five different ECG signal types: normal, abnormal, myocarditis, myocardial infarction (MI), and prior myocardial infarction (PMI). Additionally, the study uses binary and multiclass classification to group myocarditis with other cardiovascular disorders in order to assess how well the algorithm performs in categorization. The experimental results demonstrate that the combination of IQGA and ADE-BPNN can effectively increase the precision and accuracy of myocarditis autonomous diagnosis. In addition, HRV assesses the method's robustness, and the classification tool can detect viruses in myocarditis patients one week before symptoms worsen. The model can be utilized in intensive care units or wearable monitoring devices and has strong performance in the detection of myocarditis.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"33"},"PeriodicalIF":4.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9939192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-22eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00231-0
Guan Huang, Renjie Li, Quan Bai, Jane Alty
With ageing populations around the world, there is a rapid rise in the number of people with Alzheimer's disease (AD) and Parkinson's disease (PD), the two most common types of neurodegenerative disorders. There is an urgent need to find new ways of aiding early diagnosis of these conditions. Multimodal learning of clinically accessible data is a relatively new approach that holds great potential to support early precise diagnosis. This scoping review follows the PRSIMA guidelines and we analysed 46 papers, comprising 11,750 participants, 3569 with AD, 978 with PD, and 2482 healthy controls; the recency of this topic was highlighted by nearly all papers being published in the last 5 years. It highlights the effectiveness of combining different types of data, such as brain scans, cognitive scores, speech and language, gait, hand and eye movements, and genetic assessments for the early detection of AD and PD. The review also outlines the AI methods and the model used in each study, which includes feature extraction, feature selection, feature fusion, and using multi-source discriminative features for classification. The review identifies knowledge gaps around the need to validate findings and address limitations such as small sample sizes. Applying multimodal learning of clinically accessible tests holds strong potential to aid the development of low-cost, reliable, and non-invasive methods for early detection of AD and PD.
{"title":"Multimodal learning of clinically accessible tests to aid diagnosis of neurodegenerative disorders: a scoping review.","authors":"Guan Huang, Renjie Li, Quan Bai, Jane Alty","doi":"10.1007/s13755-023-00231-0","DOIUrl":"10.1007/s13755-023-00231-0","url":null,"abstract":"<p><p>With ageing populations around the world, there is a rapid rise in the number of people with Alzheimer's disease (AD) and Parkinson's disease (PD), the two most common types of neurodegenerative disorders. There is an urgent need to find new ways of aiding early diagnosis of these conditions. Multimodal learning of clinically accessible data is a relatively new approach that holds great potential to support early precise diagnosis. This scoping review follows the PRSIMA guidelines and we analysed 46 papers, comprising 11,750 participants, 3569 with AD, 978 with PD, and 2482 healthy controls; the recency of this topic was highlighted by nearly all papers being published in the last 5 years. It highlights the effectiveness of combining different types of data, such as brain scans, cognitive scores, speech and language, gait, hand and eye movements, and genetic assessments for the early detection of AD and PD. The review also outlines the AI methods and the model used in each study, which includes feature extraction, feature selection, feature fusion, and using multi-source discriminative features for classification. The review identifies knowledge gaps around the need to validate findings and address limitations such as small sample sizes. Applying multimodal learning of clinically accessible tests holds strong potential to aid the development of low-cost, reliable, and non-invasive methods for early detection of AD and PD.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"32"},"PeriodicalIF":4.7,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9870078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-22eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00232-z
Umme Marzia Haque, Enamul Kabir, Rasheda Khanam
Purpose: Mental health issues of young minds are at the threshold of all development and possibilities. Obsessive-compulsive disorder (OCD), separation anxiety disorder (SAD), and attention deficit hyperactivity disorder (ADHD) are three of the most common mental illness affecting children and adolescents. Several studies have been conducted on approaches for recognising OCD, SAD and ADHD, but their accuracy is inadequate due to limited features and participants. Therefore, the purpose of this study is to investigate the approach using machine learning (ML) algorithms with 1474 features from Australia's nationally representative mental health survey of children and adolescents.
Methods: Based on the internal cross-validation (CV) score of the Tree-based Pipeline Optimization Tool (TPOTClassifier), the dataset has been examined using three of the most optimal algorithms, including Random Forest (RF), Decision Tree (DT), and Gaussian Naïve Bayes (GaussianNB).
Results: GaussianNB performs well in classifying OCD with 91% accuracy, 76% precision, and 96% specificity as well as in detecting SAD with 79% accuracy, 62% precision, 91% specificity. RF outperformed all other methods in identifying ADHD with 91% accuracy, 94% precision, and 99% specificity.
Conclusion: Using Streamlit and Python a web application was developed based on the findings of the analysis. The application will assist parents/guardians and school officials in detecting mental illnesses early in their children and adolescents using signs and symptoms to start the treatment at the earliest convenience.
{"title":"Early detection of paediatric and adolescent obsessive-compulsive, separation anxiety and attention deficit hyperactivity disorder using machine learning algorithms.","authors":"Umme Marzia Haque, Enamul Kabir, Rasheda Khanam","doi":"10.1007/s13755-023-00232-z","DOIUrl":"10.1007/s13755-023-00232-z","url":null,"abstract":"<p><strong>Purpose: </strong>Mental health issues of young minds are at the threshold of all development and possibilities. Obsessive-compulsive disorder (OCD), separation anxiety disorder (SAD), and attention deficit hyperactivity disorder (ADHD) are three of the most common mental illness affecting children and adolescents. Several studies have been conducted on approaches for recognising OCD, SAD and ADHD, but their accuracy is inadequate due to limited features and participants. Therefore, the purpose of this study is to investigate the approach using machine learning (ML) algorithms with 1474 features from Australia's nationally representative mental health survey of children and adolescents.</p><p><strong>Methods: </strong>Based on the internal cross-validation (CV) score of the Tree-based Pipeline Optimization Tool (TPOTClassifier), the dataset has been examined using three of the most optimal algorithms, including Random Forest (RF), Decision Tree (DT), and Gaussian Naïve Bayes (GaussianNB).</p><p><strong>Results: </strong>GaussianNB performs well in classifying OCD with 91% accuracy, 76% precision, and 96% specificity as well as in detecting SAD with 79% accuracy, 62% precision, 91% specificity. RF outperformed all other methods in identifying ADHD with 91% accuracy, 94% precision, and 99% specificity.</p><p><strong>Conclusion: </strong>Using Streamlit and Python a web application was developed based on the findings of the analysis. The application will assist parents/guardians and school officials in detecting mental illnesses early in their children and adolescents using signs and symptoms to start the treatment at the earliest convenience.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"31"},"PeriodicalIF":6.0,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363094/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9861412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-29eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00230-1
Xinyu Pang, Yong-Feng Ge, Kate Wang, Agma J M Traina, Hua Wang
Integrating Internet technologies with traditional healthcare systems has enabled the emergence of cloud healthcare systems. These systems aim to optimize the balance between online diagnosis and offline treatment to effectively reduce patients' waiting times and improve the utilization of idle medical resources. In this paper, a distributed genetic algorithm (DGA) is proposed as a means to optimize the balance of patient assignment (PA) in cloud healthcare systems. The proposed DGA utilizes individuals as solutions for the PA optimization problem and generates better solutions through the execution of crossover, mutation, and selection operators. Besides, the distributed framework in the DGA is proposed to improve its population diversity and scalability. Experimental results demonstrate the effectiveness of the proposed DGA in optimizing the PA problem within the cloud healthcare systems.
{"title":"Patient assignment optimization in cloud healthcare systems: a distributed genetic algorithm.","authors":"Xinyu Pang, Yong-Feng Ge, Kate Wang, Agma J M Traina, Hua Wang","doi":"10.1007/s13755-023-00230-1","DOIUrl":"10.1007/s13755-023-00230-1","url":null,"abstract":"<p><p>Integrating Internet technologies with traditional healthcare systems has enabled the emergence of cloud healthcare systems. These systems aim to optimize the balance between online diagnosis and offline treatment to effectively reduce patients' waiting times and improve the utilization of idle medical resources. In this paper, a distributed genetic algorithm (DGA) is proposed as a means to optimize the balance of patient assignment (PA) in cloud healthcare systems. The proposed DGA utilizes individuals as solutions for the PA optimization problem and generates better solutions through the execution of crossover, mutation, and selection operators. Besides, the distributed framework in the DGA is proposed to improve its population diversity and scalability. Experimental results demonstrate the effectiveness of the proposed DGA in optimizing the PA problem within the cloud healthcare systems.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"30"},"PeriodicalIF":6.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9746058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00229-8
Antonio Cobo, Ángel Rodríguez-Laso, Elena Villalba-Mora, Rodrigo Pérez-Rodríguez, Leocadio Rodríguez-Mañas
Purpose: Frailty is a reversible multidimensional syndrome that puts older people at a high risk of adverse health outcomes. It has been proposed to emerge from the dysregulation of the complex system dynamics of physiologic control systems. We propose the analysis of the fractal complexity of hand movements as a new method to detect frailty in older adults.
Methods: FRAIL scale and Fried's phenotype scores were calculated for 1209 subjects-72.4 (5.2) y.o. 569 women-and 1279 subjects-72.6 (5.3) y.o. 604 women-in the pubicly available NHANES 2011-2014 data set, respectively. The fractal complexity of their hand movements was assessed with a detrended fluctuation analysis (DFA) of their accelerometry records and a logistic regression model for frailty detection was fit.
Results: Goodness-of-fit to a power law was excellent (R). The association between complexity loss and frailty level was significant, Kruskal-Wallis test (df = 2, Chisq = 27.545, p-value ). The AUC of the logistic classifier was moderate (AUC with complexity = 0.69 vs. AUC without complexity = 0.67).
Conclusion: Frailty can be characterized in this data set with the Fried phenotype. Non-dominant hand movements in free-living conditions are fractal processes regardless of age or frailty level and its complexity can be quantified with the exponent of a power law. Higher levels of complexity loss are associated with higher levels of frailty. This association is not strong enough to justify the use of complexity loss after adjusting for sex, age, and multimorbidity.
{"title":"Frailty detection in older adults via fractal analysis of acceleration signals from wrist-worn sensors.","authors":"Antonio Cobo, Ángel Rodríguez-Laso, Elena Villalba-Mora, Rodrigo Pérez-Rodríguez, Leocadio Rodríguez-Mañas","doi":"10.1007/s13755-023-00229-8","DOIUrl":"10.1007/s13755-023-00229-8","url":null,"abstract":"<p><strong>Purpose: </strong>Frailty is a reversible multidimensional syndrome that puts older people at a high risk of adverse health outcomes. It has been proposed to emerge from the dysregulation of the complex system dynamics of physiologic control systems. We propose the analysis of the fractal complexity of hand movements as a new method to detect frailty in older adults.</p><p><strong>Methods: </strong>FRAIL scale and Fried's phenotype scores were calculated for 1209 subjects-72.4 (5.2) y.o. 569 women-and 1279 subjects-72.6 (5.3) y.o. 604 women-in the pubicly available NHANES 2011-2014 data set, respectively. The fractal complexity of their hand movements was assessed with a detrended fluctuation analysis (DFA) of their accelerometry records and a logistic regression model for frailty detection was fit.</p><p><strong>Results: </strong>Goodness-of-fit to a power law was excellent (R<math><mrow><msup><mrow></mrow><mn>2</mn></msup><mo>></mo><mn>0.98</mn></mrow></math>). The association between complexity loss and frailty level was significant, Kruskal-Wallis test (df = 2, Chisq = 27.545, p-value <math><mrow><mo><</mo><mn>0.001</mn></mrow></math>). The AUC of the logistic classifier was moderate (AUC with complexity = 0.69 vs. AUC without complexity = 0.67).</p><p><strong>Conclusion: </strong>Frailty can be characterized in this data set with the Fried phenotype. Non-dominant hand movements in free-living conditions are fractal processes regardless of age or frailty level and its complexity can be quantified with the exponent of a power law. Higher levels of complexity loss are associated with higher levels of frailty. This association is not strong enough to justify the use of complexity loss after adjusting for sex, age, and multimorbidity.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"29"},"PeriodicalIF":6.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10114964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-23eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00228-9
Jianlong Zhou, Suzanne Sheppard-Law, Chun Xiao, Judith Smith, Aimee Lamb, Carmen Axisa, Fang Chen
The nursing workforce is the largest discipline in healthcare and has been at the forefront of the COVID-19 pandemic response since the outbreak of COVID-19. However, the impact of COVID-19 on the nursing workforce is largely unknown as is the emotional burden experienced by nurses throughout the different waves of the pandemic. Conventional approaches often use survey question-based instruments to learn nurses' emotions, and may not reflect actual everyday emotions but the beliefs specific to survey questions. Social media has been increasingly used to express people's thoughts and feelings. This paper uses Twitter data to describe the emotional dynamics of registered nurse and student nurse groups residing in New South Wales in Australia during the COVID-19 pandemic. A novel analysis framework that considered emotions, talking topics, the unfolding development of COVID-19, as well as government public health actions and significant events was utilised to detect the emotion dynamics of nurses and student nurses. The results found that the emotional dynamics of registered and student nurses were significantly correlated with the development of COVID-19 at different waves. Both groups also showed various emotional changes parallel to the scale of pandemic waves and corresponding public health responses. The results have potential applications such as to adjust the psychological and/or physical support extended to the nursing workforce. However, this study has several limitations that will be considered in the future study such as not validated in a healthcare professional group, small sample size, and possible bias in tweets.
{"title":"Leveraging twitter data to understand nurses' emotion dynamics during the COVID-19 pandemic.","authors":"Jianlong Zhou, Suzanne Sheppard-Law, Chun Xiao, Judith Smith, Aimee Lamb, Carmen Axisa, Fang Chen","doi":"10.1007/s13755-023-00228-9","DOIUrl":"10.1007/s13755-023-00228-9","url":null,"abstract":"<p><p>The nursing workforce is the largest discipline in healthcare and has been at the forefront of the COVID-19 pandemic response since the outbreak of COVID-19. However, the impact of COVID-19 on the nursing workforce is largely unknown as is the emotional burden experienced by nurses throughout the different waves of the pandemic. Conventional approaches often use survey question-based instruments to learn nurses' emotions, and may not reflect actual everyday emotions but the beliefs specific to survey questions. Social media has been increasingly used to express people's thoughts and feelings. This paper uses Twitter data to describe the emotional dynamics of registered nurse and student nurse groups residing in New South Wales in Australia during the COVID-19 pandemic. A novel analysis framework that considered emotions, talking topics, the unfolding development of COVID-19, as well as government public health actions and significant events was utilised to detect the emotion dynamics of nurses and student nurses. The results found that the emotional dynamics of registered and student nurses were significantly correlated with the development of COVID-19 at different waves. Both groups also showed various emotional changes parallel to the scale of pandemic waves and corresponding public health responses. The results have potential applications such as to adjust the psychological and/or physical support extended to the nursing workforce. However, this study has several limitations that will be considered in the future study such as not validated in a healthcare professional group, small sample size, and possible bias in tweets.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"28"},"PeriodicalIF":6.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9711990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-17eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00227-w
Muhammad Tariq Sadiq, Siuly Siuly, Ahmad Almogren, Yan Li, Paul Wen
Background: Alcoholism is a catastrophic condition that causes brain damage as well as neurological, social, and behavioral difficulties.
Limitations: This illness is often assessed using the Cut down, Annoyed, Guilty, and Eye-opener examination technique, which assesses the intensity of an alcohol problem. This technique is protracted, arduous, error-prone, and errant.
Method: As a result, the intention of this paper is to design a cutting-edge system for automatically identifying alcoholism utilizing electroencephalography (EEG) signals, that can alleviate these problems and aid practitioners and investigators. First, we investigate the feasibility of using the Fast Walsh-Hadamard transform of EEG signals to explore the unpredictable essence and variability of EEG indicators in the suggested framework. Second, thirty-six linear and nonlinear features for deciphering the dynamic pattern of healthy and alcoholic EEG signals are discovered. Subsequently, we suggested a strategy for selecting powerful features. Finally, nineteen machine learning algorithms and five neural network classifiers are used to assess the overall performance of selected attributes.
Results: The extensive experiments show that the suggested method provides the best classification efficiency, with 97.5% accuracy, 96.7% sensitivity, and 98.3% specificity for the features chosen using the correlation-based FS approach with Recurrent Neural Networks. With recently introduced matrix determinant features, a classification accuracy of 93.3% is also attained. Moreover, we developed a novel index that uses clinically meaningful features to differentiate between healthy and alcoholic categories with a unique integer. This index can assist health care workers, commercial companies, and design engineers in developing a real-time system with 100% classification results for the computerized framework.
{"title":"Efficient novel network and index for alcoholism detection from EEGs.","authors":"Muhammad Tariq Sadiq, Siuly Siuly, Ahmad Almogren, Yan Li, Paul Wen","doi":"10.1007/s13755-023-00227-w","DOIUrl":"10.1007/s13755-023-00227-w","url":null,"abstract":"<p><strong>Background: </strong>Alcoholism is a catastrophic condition that causes brain damage as well as neurological, social, and behavioral difficulties.</p><p><strong>Limitations: </strong>This illness is often assessed using the Cut down, Annoyed, Guilty, and Eye-opener examination technique, which assesses the intensity of an alcohol problem. This technique is protracted, arduous, error-prone, and errant.</p><p><strong>Method: </strong>As a result, the intention of this paper is to design a cutting-edge system for automatically identifying alcoholism utilizing electroencephalography (EEG) signals, that can alleviate these problems and aid practitioners and investigators. First, we investigate the feasibility of using the Fast Walsh-Hadamard transform of EEG signals to explore the unpredictable essence and variability of EEG indicators in the suggested framework. Second, thirty-six linear and nonlinear features for deciphering the dynamic pattern of healthy and alcoholic EEG signals are discovered. Subsequently, we suggested a strategy for selecting powerful features. Finally, nineteen machine learning algorithms and five neural network classifiers are used to assess the overall performance of selected attributes.</p><p><strong>Results: </strong>The extensive experiments show that the suggested method provides the best classification efficiency, with 97.5% accuracy, 96.7% sensitivity, and 98.3% specificity for the features chosen using the correlation-based FS approach with Recurrent Neural Networks. With recently introduced matrix determinant features, a classification accuracy of 93.3% is also attained. Moreover, we developed a novel index that uses clinically meaningful features to differentiate between healthy and alcoholic categories with a unique integer. This index can assist health care workers, commercial companies, and design engineers in developing a real-time system with 100% classification results for the computerized framework.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"27"},"PeriodicalIF":4.7,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9668690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-14eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00222-1
Hai Xu, Hongtao Xie, Qingfeng Tan, Yongdong Zhang
Semi-supervised learning (SSL) has attracted increasing attention in medical image segmentation, where the mainstream usually explores perturbation-based consistency as a regularization to leverage unlabelled data. However, unlike directly optimizing segmentation task objectives, consistency regularization is a compromise by incorporating invariance towards perturbations, and inevitably suffers from noise in self-predicted targets. The above issues result in a knowledge gap between supervised guidance and unsupervised regularization. To bridge the knowledge gap, this work proposes a meta-based semi-supervised segmentation framework with the exploitation of label hierarchy. Two main prominent components named Divide and Generalize, and Label Hierarchy, are built in this work. Concretely, rather than merging all knowledge indiscriminately, we dynamically divide consistency regularization from supervised guidance as different domains. Then, a domain generalization technique is introduced with a meta-based optimization objective which ensures the update on supervised guidance should generalize to the consistency regularization, thereby bridging the knowledge gap. Furthermore, to alleviate the negative impact of noise in self-predicted targets, we propose to distill the noisy pixel-level consistency by exploiting label hierarchy and extracting hierarchical consistencies. Comprehensive experiments on two public medical segmentation benchmarks demonstrate the superiority of our framework to other semi-supervised segmentation methods, with new state-of-the-art results.
{"title":"Meta semi-supervised medical image segmentation with label hierarchy.","authors":"Hai Xu, Hongtao Xie, Qingfeng Tan, Yongdong Zhang","doi":"10.1007/s13755-023-00222-1","DOIUrl":"10.1007/s13755-023-00222-1","url":null,"abstract":"<p><p>Semi-supervised learning (SSL) has attracted increasing attention in medical image segmentation, where the mainstream usually explores perturbation-based consistency as a regularization to leverage unlabelled data. However, unlike directly optimizing segmentation task objectives, consistency regularization is a compromise by incorporating invariance towards perturbations, and inevitably suffers from noise in self-predicted targets. The above issues result in a knowledge gap between supervised guidance and unsupervised regularization. To bridge the knowledge gap, this work proposes a meta-based semi-supervised segmentation framework with the exploitation of label hierarchy. Two main prominent components named <i>Divide and Generalize</i>, and <i>Label Hierarchy</i>, are built in this work. Concretely, rather than merging all knowledge indiscriminately, we dynamically divide consistency regularization from supervised guidance as different domains. Then, a domain generalization technique is introduced with a meta-based optimization objective which ensures the update on supervised guidance should generalize to the consistency regularization, thereby bridging the knowledge gap. Furthermore, to alleviate the negative impact of noise in self-predicted targets, we propose to distill the noisy pixel-level consistency by exploiting label hierarchy and extracting hierarchical consistencies. Comprehensive experiments on two public medical segmentation benchmarks demonstrate the superiority of our framework to other semi-supervised segmentation methods, with new state-of-the-art results.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"26"},"PeriodicalIF":4.7,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-30eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00226-x
Rui Li, Chao Ren, Sipo Zhang, Yikun Yang, Qiqi Zhao, Kechen Hou, Wenjie Yuan, Xiaowei Zhang, Bin Hu
How to use the characteristics of EEG signals to obtain more complementary and discriminative data representation is an issue in EEG-based emotion recognition. Many studies have tried spatio-temporal or spatio-spectral feature fusion to obtain higher-level representations of EEG data. However, these studies ignored the complementarity between spatial, temporal and spectral domains of EEG signals, thus limiting the classification ability of models. This study proposed an end-to-end network based on ManifoldNet and BiLSTM networks, named STSNet. The STSNet first constructed a 4-D spatio-temporal-spectral data representation and a spatio-temporal data representation based on EEG signals in manifold space. After that, they were fed into the ManifoldNet network and the BiLSTM network respectively to calculate higher-level features and achieve spatio-temporal-spectral feature fusion. Finally, extensive comparative experiments were performed on two public datasets, DEAP and DREAMER, using the subject-independent leave-one-subject-out cross-validation strategy. On the DEAP dataset, the average accuracy of the valence and arousal are 69.38% and 71.88%, respectively; on the DREAMER dataset, the average accuracy of the valence and arousal are 78.26% and 82.37%, respectively. Experimental results show that the STSNet model has good emotion recognition performance.
{"title":"STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition.","authors":"Rui Li, Chao Ren, Sipo Zhang, Yikun Yang, Qiqi Zhao, Kechen Hou, Wenjie Yuan, Xiaowei Zhang, Bin Hu","doi":"10.1007/s13755-023-00226-x","DOIUrl":"10.1007/s13755-023-00226-x","url":null,"abstract":"<p><p>How to use the characteristics of EEG signals to obtain more complementary and discriminative data representation is an issue in EEG-based emotion recognition. Many studies have tried spatio-temporal or spatio-spectral feature fusion to obtain higher-level representations of EEG data. However, these studies ignored the complementarity between spatial, temporal and spectral domains of EEG signals, thus limiting the classification ability of models. This study proposed an end-to-end network based on ManifoldNet and BiLSTM networks, named STSNet. The STSNet first constructed a 4-D spatio-temporal-spectral data representation and a spatio-temporal data representation based on EEG signals in manifold space. After that, they were fed into the ManifoldNet network and the BiLSTM network respectively to calculate higher-level features and achieve spatio-temporal-spectral feature fusion. Finally, extensive comparative experiments were performed on two public datasets, DEAP and DREAMER, using the subject-independent leave-one-subject-out cross-validation strategy. On the DEAP dataset, the average accuracy of the valence and arousal are 69.38% and 71.88%, respectively; on the DREAMER dataset, the average accuracy of the valence and arousal are 78.26% and 82.37%, respectively. Experimental results show that the STSNet model has good emotion recognition performance.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"25"},"PeriodicalIF":4.7,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9559171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23eCollection Date: 2023-12-01DOI: 10.1007/s13755-023-00225-y
Zhipeng Liang, Kang Chen, Tianchun Luo, Wenchao Jiang, Jianxuan Wen, Ling Zhao, Wei Song
Convolutional neural network (CNN) is efficient in extracting and aggregating local features in the spatial dimension of the images. However, obtaining the inapparent texture information of the low-echo area in the ultrasound images is not easy, and it is especially challenging for the early lesion recognition in Hashimoto's thyroiditis (HT) ultrasound images. In this paper, a HT ultrasound image classification model HTC-Net based on residual network reinforced by channel attention mechanism is proposed. HTC-Net strengthens the features of the important channels by reinforced channel attention mechanism through which the high-level semantic information is enchanced and the low-level semantic information is suppressed. Residual network assists HTC-Net focus on the key local areas of the ultrasound images while pay attention to the global semantic information. Furthermore, in order to solve the problem of uneven distribution caused by large amount of difficult-to-classify samples in the data sets, a new feature loss function TanCELoss with weight factor dynamically adjusting is constructed. TanCELoss function can better assist HTC-Net to transform difficult-to-classify samples into easy-to-classify samples gradually, and improve the balancing distribution of the samples. The experiments are implemented based on data sets collected by the Endocrinology Department of four branches from Guangdong Provincial Hospital of Chinese Medicine. Both quantitative testing and visualization results show that HTC-Net obtains STOA performance for early lesions recognition in HT ultrasound images. HTC-Net has great application value especially under the condition of owning only small data samples.
{"title":"HTC-Net: Hashimoto's thyroiditis ultrasound image classification model based on residual network reinforced by channel attention mechanism.","authors":"Zhipeng Liang, Kang Chen, Tianchun Luo, Wenchao Jiang, Jianxuan Wen, Ling Zhao, Wei Song","doi":"10.1007/s13755-023-00225-y","DOIUrl":"10.1007/s13755-023-00225-y","url":null,"abstract":"<p><p>Convolutional neural network (CNN) is efficient in extracting and aggregating local features in the spatial dimension of the images. However, obtaining the inapparent texture information of the low-echo area in the ultrasound images is not easy, and it is especially challenging for the early lesion recognition in Hashimoto's thyroiditis (HT) ultrasound images. In this paper, a HT ultrasound image classification model HTC-Net based on residual network reinforced by channel attention mechanism is proposed. HTC-Net strengthens the features of the important channels by reinforced channel attention mechanism through which the high-level semantic information is enchanced and the low-level semantic information is suppressed. Residual network assists HTC-Net focus on the key local areas of the ultrasound images while pay attention to the global semantic information. Furthermore, in order to solve the problem of uneven distribution caused by large amount of difficult-to-classify samples in the data sets, a new feature loss function TanCELoss with weight factor dynamically adjusting is constructed. TanCELoss function can better assist HTC-Net to transform difficult-to-classify samples into easy-to-classify samples gradually, and improve the balancing distribution of the samples. The experiments are implemented based on data sets collected by the Endocrinology Department of four branches from Guangdong Provincial Hospital of Chinese Medicine. Both quantitative testing and visualization results show that HTC-Net obtains STOA performance for early lesions recognition in HT ultrasound images. HTC-Net has great application value especially under the condition of owning only small data samples.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"24"},"PeriodicalIF":4.7,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9519459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}