Pub Date : 2023-03-01DOI: 10.32098/mltj.01.2023.06
R. Zini, M. Panascì, N. Santori, D. Potestio, F. Di Pietto, G. Milano, al. et
{"title":"The Italian Consensus Conference on FAI Syndrome in Athletes (Cotignola Agreement)","authors":"R. Zini, M. Panascì, N. Santori, D. Potestio, F. Di Pietto, G. Milano, al. et","doi":"10.32098/mltj.01.2023.06","DOIUrl":"https://doi.org/10.32098/mltj.01.2023.06","url":null,"abstract":"","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87165790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.32098/mltj.01.2023.20
H. Tamartash, F. Bahrpeyma
{"title":"Can Myofascial Release Techniques Have Remote Effects? A systematic Review","authors":"H. Tamartash, F. Bahrpeyma","doi":"10.32098/mltj.01.2023.20","DOIUrl":"https://doi.org/10.32098/mltj.01.2023.20","url":null,"abstract":"","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72883549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan A. Gordon, Emily L. Zumbro, Gena D. Guerin, Matthew L. Sokoloski, V. Ben-Ezra, C. S. Brower, Rhett B. Rigby, Anthony A. Duplanty
Skeletal muscle physiology is regulated by microRNA that are localized within skeletal muscle (myomiRs). This study investigated how the expression of myomiRs and genes regulating skeletal muscle mass and myogenesis are influenced in response to acute and consecutive days of exercise-related signaling using the exercise mimetic, formoterol, in vitro. Human skeletal muscle cells were proliferated and differentiated for 6 days. Experimental conditions included: (a) control, (b) acute formoterol stimulation (AFS), and (c) consecutive days of formoterol stimulation (CFS). For AFS, myotubes were treated with 30 nM of formoterol for three hours on day 6 of differentiation, and this was immediately followed by RNA extraction. For CFS, myotubes were treated with 30 nM of formoterol for three hours on two or three consecutive days, with RNA extracted immediately following the final three-hour formoterol treatment. We observed increased myomiR expression for both AFS and CFS. AFS appeared to promote myogenesis, but this effect was lost with CFS. Additionally, we observed increased expression of genes involved in metabolism, mitochondrial biogenesis, and muscle protein degradation in response to AFS. myomiR and gene expression appear to be sensitive to acute and long-term exercise-related stimuli, and this likely contributes to the regulation of skeletal muscle mass.
{"title":"Both Acute and Consecutive Days of Formoterol Stimulation Influence Myogenic, Mitochondrial, and myomiR Gene Expression in Human Skeletal Muscle Cells","authors":"Ryan A. Gordon, Emily L. Zumbro, Gena D. Guerin, Matthew L. Sokoloski, V. Ben-Ezra, C. S. Brower, Rhett B. Rigby, Anthony A. Duplanty","doi":"10.3390/muscles2010008","DOIUrl":"https://doi.org/10.3390/muscles2010008","url":null,"abstract":"Skeletal muscle physiology is regulated by microRNA that are localized within skeletal muscle (myomiRs). This study investigated how the expression of myomiRs and genes regulating skeletal muscle mass and myogenesis are influenced in response to acute and consecutive days of exercise-related signaling using the exercise mimetic, formoterol, in vitro. Human skeletal muscle cells were proliferated and differentiated for 6 days. Experimental conditions included: (a) control, (b) acute formoterol stimulation (AFS), and (c) consecutive days of formoterol stimulation (CFS). For AFS, myotubes were treated with 30 nM of formoterol for three hours on day 6 of differentiation, and this was immediately followed by RNA extraction. For CFS, myotubes were treated with 30 nM of formoterol for three hours on two or three consecutive days, with RNA extracted immediately following the final three-hour formoterol treatment. We observed increased myomiR expression for both AFS and CFS. AFS appeared to promote myogenesis, but this effect was lost with CFS. Additionally, we observed increased expression of genes involved in metabolism, mitochondrial biogenesis, and muscle protein degradation in response to AFS. myomiR and gene expression appear to be sensitive to acute and long-term exercise-related stimuli, and this likely contributes to the regulation of skeletal muscle mass.","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84605626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The diagnosis of primary mitochondrial myopathy is often delayed by years due to non-specific clinical symptoms as well as variable testing of mitochondrial disorders. The aim of this review is to summarize and discuss the collective findings and novel insights regarding the diagnosing, testing, and clinical presentation of primary mitochondrial myopathy (PMM). PMM results from a disruption of the oxidative phosphorylation (OXPHOS) chain in mitochondria due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). Although there are many named syndromes caused by mitochondrial mutations, this review will focus on PMM, which are mitochondrial disorders mainly affecting, but not limited to, the skeletal muscle. Clinical presentation may include muscle weakness, exercise intolerance, myalgia, and rhabdomyolysis. Although skeletal muscle and respiratory function are most frequently affected due to their high energy demand, multisystem dysfunction may also occur, which may lead to the inclusion of mitochondrial myopathies on the differential. Currently, there are no effective disease-modifying treatments, and treatment programs typically only focus on managing the symptomatic manifestations of the disease. Although the field has a large unmet need regarding treatment options, diagnostic pathways are better understood and can help shorten the diagnostic journey to aid in disease management and clinical trial enrollment.
{"title":"Diagnostic Testing in Suspected Primary Mitochondrial Myopathy","authors":"Jose C. Hinojosa, Salman F Bhai","doi":"10.3390/muscles2010007","DOIUrl":"https://doi.org/10.3390/muscles2010007","url":null,"abstract":"The diagnosis of primary mitochondrial myopathy is often delayed by years due to non-specific clinical symptoms as well as variable testing of mitochondrial disorders. The aim of this review is to summarize and discuss the collective findings and novel insights regarding the diagnosing, testing, and clinical presentation of primary mitochondrial myopathy (PMM). PMM results from a disruption of the oxidative phosphorylation (OXPHOS) chain in mitochondria due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). Although there are many named syndromes caused by mitochondrial mutations, this review will focus on PMM, which are mitochondrial disorders mainly affecting, but not limited to, the skeletal muscle. Clinical presentation may include muscle weakness, exercise intolerance, myalgia, and rhabdomyolysis. Although skeletal muscle and respiratory function are most frequently affected due to their high energy demand, multisystem dysfunction may also occur, which may lead to the inclusion of mitochondrial myopathies on the differential. Currently, there are no effective disease-modifying treatments, and treatment programs typically only focus on managing the symptomatic manifestations of the disease. Although the field has a large unmet need regarding treatment options, diagnostic pathways are better understood and can help shorten the diagnostic journey to aid in disease management and clinical trial enrollment.","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84445163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is well known that muscular dystrophy disease severity is controlled by genetic modifiers. The expectation is that by identifying these modifiers, we can illuminate additional therapeutic targets with which to combat the disease. To this end we have been investigating the MRL mouse strain, which is highly resistant to muscular dystrophy-mediated fibrosis. The MRL mouse strain contains two mitochondrial-encoded, naturally occurring heteroplasmies: T3900C in tRNA-Met, and variable adenine insertions at 9821 in tRNA-Arg. Heteroplasmies are mitochondrial mutations that are variably present in a cell’s mitochondria. Therefore, MRL cells can contain 0 to 100% of each mitochondrial mutation. We have chosen the severely affected ϒ-sarcoglycan (Sgcg–/–) deficient mice on the DBA2/J background as our muscular dystrophy model to demonstrate the effects of these mitochondrial heteroplasmies on disease severity. Mice from the (Sgcg–/–) DBA2/J (D) and wildtype MRL (M) strains were crossed for more than 10 generations to establish two separate, pure breeding mouse lines: Sgcg+/–NucDMito%M and Sgcg+/–NucMMito%M. The Sgcg–/– mice from these separate lines were analyzed at 8 weeks old for membrane permeability, hydroxyproline content, pAMPK content, fibronectin content, and percentage of each heteroplasmy. We have identified that the MRL mitochondrial mutation T3900C confers a portion of the fibrosis resistance identified in the MRL mouse strain. These results have been extended to significantly correlate increased MRL mitochondria with increased pAMPK and decreased muscular dystrophy fibrosis. The beneficial mechanisms controlled by the MRL mitochondria will be discussed. We are establishing metabolic aspects of muscular dystrophy pathogenesis. These metabolic pathways will now be investigated for therapeutic targets.
{"title":"The MRL Mitochondrial Genome Decreases Murine Muscular Dystrophy Severity","authors":"Jenan Holley-Cuthrell, Aqsa Iqbal, A. Heydemann","doi":"10.3390/muscles2010005","DOIUrl":"https://doi.org/10.3390/muscles2010005","url":null,"abstract":"It is well known that muscular dystrophy disease severity is controlled by genetic modifiers. The expectation is that by identifying these modifiers, we can illuminate additional therapeutic targets with which to combat the disease. To this end we have been investigating the MRL mouse strain, which is highly resistant to muscular dystrophy-mediated fibrosis. The MRL mouse strain contains two mitochondrial-encoded, naturally occurring heteroplasmies: T3900C in tRNA-Met, and variable adenine insertions at 9821 in tRNA-Arg. Heteroplasmies are mitochondrial mutations that are variably present in a cell’s mitochondria. Therefore, MRL cells can contain 0 to 100% of each mitochondrial mutation. We have chosen the severely affected ϒ-sarcoglycan (Sgcg–/–) deficient mice on the DBA2/J background as our muscular dystrophy model to demonstrate the effects of these mitochondrial heteroplasmies on disease severity. Mice from the (Sgcg–/–) DBA2/J (D) and wildtype MRL (M) strains were crossed for more than 10 generations to establish two separate, pure breeding mouse lines: Sgcg+/–NucDMito%M and Sgcg+/–NucMMito%M. The Sgcg–/– mice from these separate lines were analyzed at 8 weeks old for membrane permeability, hydroxyproline content, pAMPK content, fibronectin content, and percentage of each heteroplasmy. We have identified that the MRL mitochondrial mutation T3900C confers a portion of the fibrosis resistance identified in the MRL mouse strain. These results have been extended to significantly correlate increased MRL mitochondria with increased pAMPK and decreased muscular dystrophy fibrosis. The beneficial mechanisms controlled by the MRL mitochondria will be discussed. We are establishing metabolic aspects of muscular dystrophy pathogenesis. These metabolic pathways will now be investigated for therapeutic targets.","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"9 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72465202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-quality academic publishing is built on rigorous peer review [...]
高质量的学术出版建立在严格的同行评审的基础上[…]
{"title":"Acknowledgment to the Reviewers of Muscles in 2022","authors":"","doi":"10.3390/muscles2010004","DOIUrl":"https://doi.org/10.3390/muscles2010004","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"318 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77194032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. E. Khairullin, S. Grishin, Azat I. Gabdrahmanov, A. U. Ziganshin
We have previously shown that hypothermia leads to an increase in the synaptic modulating effects of ATP but not of adenosine in several different animal skeletal muscles. In this paper, we studied the effect of ATP on the amplitude–time parameters of single and tetanic contractions of rats’ isolated fast (1) and slow (2) muscles at different temperatures. We found that when muscles were stimulated by the electrical field (0.1 Hz, 0.5 ms, 10 V), with a decrease in the bath temperature from 37 °C to 14 °C (3), there was an increase in the half-relaxation time of the slow muscle (m. soleus), but not of the fast muscle (m. EDL). Similar effects were observed using a carbachol-induced contraction technique, which suggests the postsynaptic (4) nature of the expansion of the contractile response of the slow muscle induced by ATP (5). To confirm the postsynaptic nature of the observed phenomenon, experiments were performed at a high calcium level (7.2 mM), in which the presynaptic effects of ATP were shown to be offset. We found that the hypercalcium condition did not significantly change the effects of ATP on the measured parameters in both muscles. To record muscle tetanic contractions, we gradually increased the frequency of electrical impulses with the increment of 2.5 Hz to achieve the fusion frequencies of 12.5 Hz for m. soleus and 17.5 Hz for m. EDL at normal temperatures. ATP (100 μM) did not change the fusion frequency for both muscles at a normal temperature but decreased this parameter for the slow muscle to 5 Hz at 14 °C without affecting that for the fast muscle. We conclude that ATP potentiates a hypothermia-induced increase in the half-relaxation time of the contraction of rats’ slow, but not fast, skeletal muscles by acting on postsynaptic P2 receptors (6).
{"title":"Effects of ATP on Time Parameters of Contractility of Rats’ Slow and Fast Skeletal Muscles in Normal and Hypothermic Conditions","authors":"A. E. Khairullin, S. Grishin, Azat I. Gabdrahmanov, A. U. Ziganshin","doi":"10.3390/muscles2010003","DOIUrl":"https://doi.org/10.3390/muscles2010003","url":null,"abstract":"We have previously shown that hypothermia leads to an increase in the synaptic modulating effects of ATP but not of adenosine in several different animal skeletal muscles. In this paper, we studied the effect of ATP on the amplitude–time parameters of single and tetanic contractions of rats’ isolated fast (1) and slow (2) muscles at different temperatures. We found that when muscles were stimulated by the electrical field (0.1 Hz, 0.5 ms, 10 V), with a decrease in the bath temperature from 37 °C to 14 °C (3), there was an increase in the half-relaxation time of the slow muscle (m. soleus), but not of the fast muscle (m. EDL). Similar effects were observed using a carbachol-induced contraction technique, which suggests the postsynaptic (4) nature of the expansion of the contractile response of the slow muscle induced by ATP (5). To confirm the postsynaptic nature of the observed phenomenon, experiments were performed at a high calcium level (7.2 mM), in which the presynaptic effects of ATP were shown to be offset. We found that the hypercalcium condition did not significantly change the effects of ATP on the measured parameters in both muscles. To record muscle tetanic contractions, we gradually increased the frequency of electrical impulses with the increment of 2.5 Hz to achieve the fusion frequencies of 12.5 Hz for m. soleus and 17.5 Hz for m. EDL at normal temperatures. ATP (100 μM) did not change the fusion frequency for both muscles at a normal temperature but decreased this parameter for the slow muscle to 5 Hz at 14 °C without affecting that for the fast muscle. We conclude that ATP potentiates a hypothermia-induced increase in the half-relaxation time of the contraction of rats’ slow, but not fast, skeletal muscles by acting on postsynaptic P2 receptors (6).","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78768734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lissiane Almeida Cabral, L. Lima, C. E. Cabido, R. Fermino, S. Oliveira, A. Medeiros, L. F. Barbosa, Thiago M. F. Souza, Túlio Banja, C. Assumpção
Purpose: To analyze the muscle activation of the rectus femoris (RF), vastus lateralis (VL), gluteus maximus (GM), and biceps femoris (BF) in concentric and eccentric actions in the squat at 90° and 140° range of motion. Methods: Thirty-five women (32.9 ± 7.4 years; 64.5 ± 11.5 kg; 1.63 ± 0.1 m; BMI: 24.2 ± 2.9 kg/m2; %fat: 24.9 ± 6.5%) experienced exercise for at least eight weeks. Electrodes were positioned in standardized locations. The signals were acquired by an A/D SAS1000 V8 converter and the electromyographic activity normalized in the percentage of the highest produced value (%RMS). The data were analyzed using repeated measures two-way ANOVA, with effect size (η2) and differences calculated in percentage points (∆ p.p.). Results: The RF (p = 0.001; ∆ = 5.1 p.p.) and BF activation (p = 0.020; ∆ = 4.0 p.p.) was higher at 90° in the eccentric action. The RF showed an interaction between the range of motion and %RMS, with a large effect size (F = 37.9; p = 0.001; η2 = 0.485). The VL activation was higher at 140° (p = 0.005; ∆ = 3.9 p.p.) in the concentric action and higher at 90° (p = 0.006; ∆ = 3.7 p.p.) in the eccentric action, with a large effect size significant interaction (F = 21.3; p = 0.001; η2 = 0.485). The GM activation was higher at 90° in the concentric (p = 0.020; ∆ = 5.4 p.p.) and eccentric action (p = 0.022; ∆ = 41 p.p.). Conclusions: The biarticular muscles were influenced by the squat range only in the eccentric action of the movement, while the monoarticular muscles were influenced by the squat in both concentric and eccentric muscle action.
{"title":"Muscle Activation during the Squat Performed in Different Ranges of Motion by Women","authors":"Lissiane Almeida Cabral, L. Lima, C. E. Cabido, R. Fermino, S. Oliveira, A. Medeiros, L. F. Barbosa, Thiago M. F. Souza, Túlio Banja, C. Assumpção","doi":"10.3390/muscles2010002","DOIUrl":"https://doi.org/10.3390/muscles2010002","url":null,"abstract":"Purpose: To analyze the muscle activation of the rectus femoris (RF), vastus lateralis (VL), gluteus maximus (GM), and biceps femoris (BF) in concentric and eccentric actions in the squat at 90° and 140° range of motion. Methods: Thirty-five women (32.9 ± 7.4 years; 64.5 ± 11.5 kg; 1.63 ± 0.1 m; BMI: 24.2 ± 2.9 kg/m2; %fat: 24.9 ± 6.5%) experienced exercise for at least eight weeks. Electrodes were positioned in standardized locations. The signals were acquired by an A/D SAS1000 V8 converter and the electromyographic activity normalized in the percentage of the highest produced value (%RMS). The data were analyzed using repeated measures two-way ANOVA, with effect size (η2) and differences calculated in percentage points (∆ p.p.). Results: The RF (p = 0.001; ∆ = 5.1 p.p.) and BF activation (p = 0.020; ∆ = 4.0 p.p.) was higher at 90° in the eccentric action. The RF showed an interaction between the range of motion and %RMS, with a large effect size (F = 37.9; p = 0.001; η2 = 0.485). The VL activation was higher at 140° (p = 0.005; ∆ = 3.9 p.p.) in the concentric action and higher at 90° (p = 0.006; ∆ = 3.7 p.p.) in the eccentric action, with a large effect size significant interaction (F = 21.3; p = 0.001; η2 = 0.485). The GM activation was higher at 90° in the concentric (p = 0.020; ∆ = 5.4 p.p.) and eccentric action (p = 0.022; ∆ = 41 p.p.). Conclusions: The biarticular muscles were influenced by the squat range only in the eccentric action of the movement, while the monoarticular muscles were influenced by the squat in both concentric and eccentric muscle action.","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"414 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75805322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thais Marques e Silva, Wilson Cesar Abreu, E. Pimenta, S. D. da Silva
(1) Introduction: Soccer players face high demand for training and games. To facilitate their performance, many studies have investigated ergogenic supplements that can assist in the recovery and performance of players. The aim of this research was to assess whether caffeine supplementation can help soccer players’ recovery and performance. (2) Methods: Professional players were given 210 mg of caffeine or placebo in seven games during the state championship, being offered placebo in three matches and caffeine in four matches, administered 30 min before the game, during the game, and after the game. Blood creatine kinase (CK) and heart rate variability (HRV) were measured. Participants rated their perceived recuperation (RPR) and exertion (RPE) on scales developed by Laurent and Borg, respectively. The time that the player spent on the field was also evaluated. t-tests and Levene’s test were used to analyze the results. In addition to mean differences, variations in the results were also analyzed. (3) Results: No significant differences were found in CK, HRV, RPR, RPE, or minutes on the field when comparing caffeine supplementation with the placebo. (4) Conclusion: Caffeine supplementation throughout the championship appears to have had no ergogenic effect on athlete performance and recovery.
{"title":"Effects of Caffeine Supplementation on the Recovery of Professional Soccer Players","authors":"Thais Marques e Silva, Wilson Cesar Abreu, E. Pimenta, S. D. da Silva","doi":"10.3390/muscles2010001","DOIUrl":"https://doi.org/10.3390/muscles2010001","url":null,"abstract":"(1) Introduction: Soccer players face high demand for training and games. To facilitate their performance, many studies have investigated ergogenic supplements that can assist in the recovery and performance of players. The aim of this research was to assess whether caffeine supplementation can help soccer players’ recovery and performance. (2) Methods: Professional players were given 210 mg of caffeine or placebo in seven games during the state championship, being offered placebo in three matches and caffeine in four matches, administered 30 min before the game, during the game, and after the game. Blood creatine kinase (CK) and heart rate variability (HRV) were measured. Participants rated their perceived recuperation (RPR) and exertion (RPE) on scales developed by Laurent and Borg, respectively. The time that the player spent on the field was also evaluated. t-tests and Levene’s test were used to analyze the results. In addition to mean differences, variations in the results were also analyzed. (3) Results: No significant differences were found in CK, HRV, RPR, RPE, or minutes on the field when comparing caffeine supplementation with the placebo. (4) Conclusion: Caffeine supplementation throughout the championship appears to have had no ergogenic effect on athlete performance and recovery.","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81620997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bianca M. Marcella, Mia S. Geromella, Ahmad Mohammad, Jake Sweezey-Munroe, R. MacPherson, Val A. Fajardo
The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) actively transports Ca2+ into the sarcoplasmic reticulum to facilitate cardiac muscle relaxation. Phospholamban (PLN) allosterically inhibits SERCA, and an imbalance of SERCA2a, dominant cardiac isoform, and PLN content disrupts Ca2+ homeostasis and cardiac contractility. A previous study has shown that ovariectomized (OVX) rats have reduced SERCA activity due to lowered SERCA2a and increased PLN content. Furthermore, it was found that forced treadmill running in OVX rats restored SERCA activity and protein content levels. Here, we investigated whether voluntary wheel running (VWR) would produce similar effects on cardiac SERCA function in OVX mice. Female mice were divided into the following groups for 8 weeks: SHAM; OVX; SHAM + VWR; and OVX + VWR (n = 10/group). SERCA activity and Ca2+ uptake assays were performed in cardiac muscle homogenates. Protein levels of SERCA2, PLN, and pPLN were determined via Western blot analysis. We found statistical interactions for Ca2+ uptake, maximal SERCA activity, and SERCA2a content where VWR increased these parameters in SHAM mice but not in OVX mice. We detected a main effect of OVX on PLN content, and main effects of OVX and VWR on pPLN content. The OVX mice ran significantly less than the SHAM mice, suggesting that estrogen deprivation and lack of regular exercise may blunt the effects of voluntary aerobic exercise on cardiac SERCA function.
{"title":"Characterizing the Effects of Voluntary Wheel Running on Cardiac SERCA Function in Ovariectomized Mice","authors":"Bianca M. Marcella, Mia S. Geromella, Ahmad Mohammad, Jake Sweezey-Munroe, R. MacPherson, Val A. Fajardo","doi":"10.3390/muscles1030016","DOIUrl":"https://doi.org/10.3390/muscles1030016","url":null,"abstract":"The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) actively transports Ca2+ into the sarcoplasmic reticulum to facilitate cardiac muscle relaxation. Phospholamban (PLN) allosterically inhibits SERCA, and an imbalance of SERCA2a, dominant cardiac isoform, and PLN content disrupts Ca2+ homeostasis and cardiac contractility. A previous study has shown that ovariectomized (OVX) rats have reduced SERCA activity due to lowered SERCA2a and increased PLN content. Furthermore, it was found that forced treadmill running in OVX rats restored SERCA activity and protein content levels. Here, we investigated whether voluntary wheel running (VWR) would produce similar effects on cardiac SERCA function in OVX mice. Female mice were divided into the following groups for 8 weeks: SHAM; OVX; SHAM + VWR; and OVX + VWR (n = 10/group). SERCA activity and Ca2+ uptake assays were performed in cardiac muscle homogenates. Protein levels of SERCA2, PLN, and pPLN were determined via Western blot analysis. We found statistical interactions for Ca2+ uptake, maximal SERCA activity, and SERCA2a content where VWR increased these parameters in SHAM mice but not in OVX mice. We detected a main effect of OVX on PLN content, and main effects of OVX and VWR on pPLN content. The OVX mice ran significantly less than the SHAM mice, suggesting that estrogen deprivation and lack of regular exercise may blunt the effects of voluntary aerobic exercise on cardiac SERCA function.","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90697261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}