Alzheimer's disease (AD) remains a devastating neurodegenerative disease with few preventive or curative treatments available. Modern technology developments of high-throughput omics platforms and imaging equipment provide unprecedented opportunities to study the etiology and progression of this disease. Meanwhile, the vast amount of data from various modalities, such as genetics, proteomics, transcriptomics, and imaging, as well as clinical features impose great challenges in data integration and analysis. Machine learning (ML) methods offer novel techniques to address high dimensional data, integrate data from different sources, model the etiological and clinical heterogeneity, and discover new biomarkers. These directions have the potential to help us better manage the disease progression and develop novel treatment strategies. This mini-review paper summarizes different ML methods that have been applied to study AD using single-platform or multi-modal data. We review the current state of ML applications for five key directions of AD research: disease classification, drug repurposing, subtyping, progression prediction, and biomarker discovery. This summary provides insights about the current research status of ML-based AD research and highlights potential directions for future research.
The field of structural proteomics, which is focused on studying the structure-function relationship of proteins and protein complexes, is experiencing rapid growth. Since the early 2000s, structural databases such as the Protein Data Bank are storing increasing amounts of protein structural data, in addition to modeled structures becoming increasingly available. This, combined with the recent advances in graph-based machine-learning models, enables the use of protein structural data in predictive models, with the goal of creating tools that will advance our understanding of protein function. Similar to using graph learning tools to molecular graphs, which currently undergo rapid development, there is also an increasing trend in using graph learning approaches on protein structures. In this short review paper, we survey studies that use graph learning techniques on proteins, and examine their successes and shortcomings, while also discussing future directions.
Associations between the human gut microbiome and expression of host illness have been noted in a variety of conditions ranging from gastrointestinal dysfunctions to neurological deficits. Machine learning (ML) methods have generated promising results for disease prediction from gut metagenomic information for diseases including liver cirrhosis and irritable bowel disease, but have lacked efficacy when predicting other illnesses. Here, we review current ML methods designed for disease classification from microbiome data. We highlight the computational challenges these methods have effectively overcome and discuss the biological components that have been overlooked to offer perspectives on future work in this area.
The rapid growth and decreasing cost of Next-generation sequencing (NGS) technologies have made it possible to conduct routine large panel genomic sequencing in many disease settings, especially in the oncology domain. Furthermore, it is now known that optimal disease management of patients depends on individualized cancer treatment guided by comprehensive molecular testing. However, translating results from molecular sequencing reports into actionable clinical insights remains a challenge to most clinicians. In this review, we discuss about some representative systems that leverage artificial intelligence (AI) to facilitate some processes of clinicians' decision making based upon molecular data, focusing on their application in precision oncology. Some limitations and pitfalls of the current application of AI in clinical decision making are also discussed.
AI is a broad concept, grouping initiatives that use a computer to perform tasks that would usually require a human to complete. AI methods are well suited to predict clinical outcomes. In practice, AI methods can be thought of as functions that learn the outcomes accompanying standardized input data to produce accurate outcome predictions when trialed with new data. Current methods for cleaning, creating, accessing, extracting, augmenting, and representing data for training AI clinical prediction models are well defined. The use of AI to predict clinical outcomes is a dynamic and rapidly evolving arena, with new methods and applications emerging. Extraction or accession of electronic health care records and combining these with patient genetic data is an area of present attention, with tremendous potential for future growth. Machine learning approaches, including decision tree methods of Random Forest and XGBoost, and deep learning techniques including deep multi-layer and recurrent neural networks, afford unique capabilities to accurately create predictions from high dimensional, multimodal data. Furthermore, AI methods are increasing our ability to accurately predict clinical outcomes that previously were difficult to model, including time-dependent and multi-class outcomes. Barriers to robust AI-based clinical outcome model deployment include changing AI product development interfaces, the specificity of regulation requirements, and limitations in ensuring model interpretability, generalizability, and adaptability over time.
Spatially resolved transcriptomics encompasses a growing number of methods developed to enable gene expression profiling of individual cells within a tissue. Different technologies are available and they vary with respect to: the method used to define regions of interest, the method used to assess gene expression, and resolution. Since techniques based on next-generation sequencing are the most prevalent, and provide single-cell resolution, many bioinformatics tools for spatially resolved data are shared with single-cell RNA-seq. The analysis pipelines diverge at the level of quantification matrix, downstream of which spatial techniques require specific tools to answer key biological questions. Those questions include: (i) cell type classification; (ii) detection of genes with specific spatial distribution; (iii) identification of novel tissue regions based on gene expression patterns; (iv) cell-cell interactions. On the other hand, analysis of spatially resolved data is burdened by several specific challenges. Defining regions of interest, e.g. neoplastic tissue, often calls for manual annotation of images, which then poses a bottleneck in the pipeline. Another specific issue is the third spatial dimension and the need to expand the analysis beyond a single slice. Despite the problems, it can be predicted that the popularity of spatial techniques will keep growing until they replace single-cell assays (which will remain limited to specific cases, like blood). As soon as the computational protocol reach the maturity (e.g. bulk RNA-seq), one can foresee the expansion of spatial techniques beyond basic or translational research, even into routine medical diagnostics.
Advances in cancer research have led to the development of new therapeutics with significant and durable responses such as immune checkpoint inhibitors. More recent therapies aim to stimulate anti-tumor immune responses by targeting the tumor necrosis factor (TNF) receptors, however this approach has been shown to require clustering of receptors in order to achieve a significant response. Here we present a perspective on using transthyretin, a naturally occurring serum protein, as a drug delivery platform to enable cross-linking independent clustering of targets. TTR forms a stable homo-tetramer with exposed termini that make TTR a highly versatile platform for generating multimeric antibody fusions to enable enhanced target clustering. Fusions with antibodies or Fabs targeting TRAILR2 were shown to have robust cytotoxic activity in vitro and in vivo in colorectal xenograft models demonstrating that TTR is a highly versatile, stable, therapeutic fusion platform that can be used with antibodies, Fabs and other bioactive fusion partners and has broad applications in oncology and infectious disease research.