Purpose: The purpose of this study was to determine if somatic mutations are associated with clinical and pathologic outcomes in patients with borderline resectable pancreatic cancer (BRPC) or locally advanced pancreatic cancer (LAPC) who were treated with neoadjuvant chemotherapy and stereotactic body radiotherapy (SBRT).
Materials and methods: Patients treated with neoadjuvant chemotherapy and SBRT followed by surgical resection from August 2016 to January 2019 and who underwent next generation sequencing of their primary tumor were included in the study. Next-generation sequencing was performed either in-house with a Solid Tumor Panel or with FoundationOne CDx. Univariate (UVA) and multivariable analyses (MVA) were performed to determine associations between somatic mutations and pathologic and clinical outcomes.
Results: Thirty-five patients were included in the study. Chemotherapy consisted of modified FOLFIRINOX, gemcitabine and nab-paclitaxel, or gemcitabine and capecitabine. Patients were treated with SBRT in 33 Gy in 5 fractions. On UVA and MVA, tumors with KRAS G12V mutation demonstrated better pathologic tumor regression grade (TRG) to neoadjuvant therapy when compared to tumors with other KRAS mutations (odds ratio = 0.087; 95% confidence interval [CI], 0.009-0.860; p = 0.036). On UVA and MVA, mutations in NOTCH1/2 were associated with worse overall survival (hazard ratio [HR] = 4.15; 95% CI, 1.57-10.95; p = 0.004) and progression-free survival (HR = 3.61; 95% CI, 1.41-9.28; p = 0.008). On UVA, only mutations in NOTCH1/2 were associated with inferior distant metastasis-free survival (HR = 3.38; 95% CI, 1.25-9.16; p = 0.017).
Conclusion: In BRPC and LAPC, the KRAS G12V mutation was associated with better TRG following chemotherapy and SBRT. Additionally, NOTCH1/2 mutations were associated with worse overall survival, distant metastasis-free survival, and progression-free survival.
Purpose: Radiotherapy is essential for the treatment of breast cancer (BC). However, adverse effects may occur in healthy tissue, during treatment and even after several months. Although it is known that this clinical radiosensitivity is multifactorial, the factors involved are unknown yet. In this study, we evaluated the effect of these factors on the development of radiodermatitis in patients undergoing radiotherapy.
Materials and methods: Demographic and lifestyle data collected during face-to-face interviews of 122 BC patients and data from clinical records were investigated. Most patients underwent conventional three-dimensional radiotherapy treatment. A total dose of 50 Gy was administered (2 Gy/day), followed by a boost in a tumor bed with a total dose of 18 Gy (2 Gy/day). Radiotoxicity was evaluated weekly using the Radiation Therapy Oncology Group classification system (range, 0 to 4, according to the severity).
Results: In the present study, 75.4% of patients presented acute skin toxic effects with different degrees of severity. In 25% of cases, these effects manifested at the end of the fourth week at a cumulative dose of 40 Gy. The association of grade ≥2 acute skin reactions with body mass index (BMI) and breast size and between grade 3-4 and age was positive compared with controls. However, the role of the other factors could not be confirmed.
Conclusion: Analysis of the factors related to individual radiosensitivity suggests that age, BMI and breast size play an important role in the development of acute skin toxicity during treatment. Particular attention to patients who present these characteristics would help to control treatment effectiveness and therefore optimize their quality of life.
Purpose: Although the conventional gamma ray brachytherapy has been successful in treating endometrioid endometrial adenocarcinoma (EC), the molecular and cellular mechanisms of this anti-tumorigenic response remain unclear. Therefore, we investigated whether gamma ray irradiation induces changes in the number of FoxP3+ T-regulatory lymphocytes (Tregs), CD56+ natural killer cells (NK), and the expression of progesterone receptor membrane component 1 (PGRMC1) in the tumor microenvironment (TME).
Materials and methods: According to the inclusion criteria, 127 cases were selected and grouped into irradiation-treated (Rad+) and control (underwent surgery) groups and analyzed using immunohistochemistry. Predictive prognostic values were analyzed using Mann-Whitney U test, ROC analysis, relative risk, log-rank, Spearman rank tests and multivariate Cox's regression.
Results: We observed significant differences (p < 0.001) between the radiation-treated patients and the control groups in FoxP3+ Tregs numbers, CD56+ NK cells and PGRMC1 expression. Gamma ray induced a 3.71- and 3.39-fold increase in the infiltration of FoxP3+ cells, CD56+ NK cells, respectively and 0.0034-fold change in PGRMC1 expression. Univariate and multivariate analyses revealed predictive role of the parameters. In the irradiated patients' group, inverted correlations between clinical unfavorable outcome, FoxP3+ Tregs and CD56+ NK cells were observed.
Conclusion: Our results suggest an immune-modulating role, specifically by increasing immune cell infiltration, of gamma radiation in the TME which may potentially be utilized as biomarkers in prognostic values.

