首页 > 最新文献

Multidiscipline Modeling in Materials and Structures最新文献

英文 中文
Thermal management of square light emitting diode arrays: modeling and parametric analysis 方形发光二极管阵列的热管理:建模和参数分析
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-02-21 DOI: 10.1108/mmms-09-2023-0311
M. B. Ben Hamida
PurposeThis study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration selected according to a lower temperature. This study provides valuable insights into how to design LED arrays with lower junction temperatures.Design/methodology/approachTo determine the best configuration of a heat sink, a numerical study was conducted in Comsol Multiphysics on 10 different configurations. The configuration with the lowest junction temperature was selected for further analysis. The number of LED chips, pitch and LED power were then varied to determine the optimal configuration for this heat sink. A general equation for the average LED temperature as a function of these three factors was derived using Minitab software.FindingsAmong 10 configurations of the rectangular heat sink, we deduce that the best configuration corresponds to the first design having 1 mm of width, 0.5 mm of height and 45 mm of length. The average temperature for this design is 50.5 C. For the power of LED equal to 50 W–200 W, the average temperature of this LED drops when the number of LED chips reduces and the pitch size decreases. Indeed, the best array-LED corresponds to 64 LED chips and a pitch size of 0.5 mm. In addition, a generalization equation for average temperature is determined as a function of the number of LED chips, pitch and power of LED which are key factors for reducing the Junction temperature.Originality/valueThe study is original in its focus on three factors that have not been studied together in previous research. A numerical simulation method is used to investigate the impact of the three factors, which is more accurate and reliable than experimental methods. The study considers a wide range of values for the three factors, which allows for a more comprehensive understanding of their impact. It derives a general equation for the average temperature of the LED, which can be used to design LED arrays with desired junction temperatures.
目的本研究调查了三个参数(如 LED 芯片数量、间距和 LED 功率)对使用根据较低温度选择的最佳散热器配置的 LED 结温的影响。为确定散热器的最佳配置,在 Comsol Multiphysics 中对 10 种不同配置进行了数值研究。选择结温最低的配置进行进一步分析。然后改变 LED 芯片数量、间距和 LED 功率,以确定该散热器的最佳配置。在矩形散热器的 10 种配置中,我们推断出最佳配置对应于第一种设计,其宽度为 1 毫米,高度为 0.5 毫米,长度为 45 毫米。对于功率为 50 W-200 W 的 LED,当 LED 芯片数量减少、间距减小时,平均温度会下降。事实上,最佳的阵列 LED 是 64 个 LED 芯片和 0.5 毫米的间距。此外,还确定了平均温度与 LED 芯片数量、LED 间距和功率(降低结点温度的关键因素)的泛函关系式。采用数值模拟方法研究这三个因素的影响,比实验方法更准确、更可靠。该研究考虑了这三个因素的各种数值,从而更全面地了解了它们的影响。它推导出了 LED 平均温度的一般公式,可用于设计具有理想结温的 LED 阵列。
{"title":"Thermal management of square light emitting diode arrays: modeling and parametric analysis","authors":"M. B. Ben Hamida","doi":"10.1108/mmms-09-2023-0311","DOIUrl":"https://doi.org/10.1108/mmms-09-2023-0311","url":null,"abstract":"PurposeThis study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration selected according to a lower temperature. This study provides valuable insights into how to design LED arrays with lower junction temperatures.Design/methodology/approachTo determine the best configuration of a heat sink, a numerical study was conducted in Comsol Multiphysics on 10 different configurations. The configuration with the lowest junction temperature was selected for further analysis. The number of LED chips, pitch and LED power were then varied to determine the optimal configuration for this heat sink. A general equation for the average LED temperature as a function of these three factors was derived using Minitab software.FindingsAmong 10 configurations of the rectangular heat sink, we deduce that the best configuration corresponds to the first design having 1 mm of width, 0.5 mm of height and 45 mm of length. The average temperature for this design is 50.5 C. For the power of LED equal to 50 W–200 W, the average temperature of this LED drops when the number of LED chips reduces and the pitch size decreases. Indeed, the best array-LED corresponds to 64 LED chips and a pitch size of 0.5 mm. In addition, a generalization equation for average temperature is determined as a function of the number of LED chips, pitch and power of LED which are key factors for reducing the Junction temperature.Originality/valueThe study is original in its focus on three factors that have not been studied together in previous research. A numerical simulation method is used to investigate the impact of the three factors, which is more accurate and reliable than experimental methods. The study considers a wide range of values for the three factors, which allows for a more comprehensive understanding of their impact. It derives a general equation for the average temperature of the LED, which can be used to design LED arrays with desired junction temperatures.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140443789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of variable thermal conductivity and diffusion coefficient on non-Newtonian Prandtl model with modified heat and mass fluxes 在具有修正热通量和质量通量的非牛顿普朗特模型上利用可变导热系数和扩散系数
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-02-19 DOI: 10.1108/mmms-10-2023-0328
Muhammad Sohail, Syed Tehseen Abbas
PurposeThis study aims to analyze the Prandtl fluid flow in the presence of better mass diffusion and heat conduction models. By taking into account a linearly bidirectional stretchable sheet, flow is produced. Heat generation effect, thermal radiation, variable thermal conductivity, variable diffusion coefficient and Cattaneo–Christov double diffusion models are used to evaluate thermal and concentration diffusions.Design/methodology/approachThe governing partial differential equations (PDEs) have been made simpler using a boundary layer method. Strong nonlinear ordinary differential equations (ODEs) relate to appropriate non-dimensional similarity variables. The optimal homotopy analysis technique is used to develop solution.FindingsGraphs analyze the impact of many relevant factors on temperature and concentration. The physical parameters, such as mass and heat transfer rates at the wall and surface drag coefficients, are also displayed and explained.Originality/valueThe reported work discusses the contribution of generalized flux models to note their impact on heat and mass transport.
目的 本研究旨在分析存在更好的质量扩散和热传导模型时的普朗特流体流动。通过考虑线性双向拉伸薄片,产生流动。热生成效应、热辐射、可变热导率、可变扩散系数和 Cattaneo-Christov 双扩散模型被用来评估热扩散和浓度扩散。强非线性常微分方程(ODE)与适当的非维相似变量相关。研究结果图表分析了许多相关因素对温度和浓度的影响。报告的工作讨论了广义通量模型的贡献,注意到它们对热量和质量传输的影响。
{"title":"Utilization of variable thermal conductivity and diffusion coefficient on non-Newtonian Prandtl model with modified heat and mass fluxes","authors":"Muhammad Sohail, Syed Tehseen Abbas","doi":"10.1108/mmms-10-2023-0328","DOIUrl":"https://doi.org/10.1108/mmms-10-2023-0328","url":null,"abstract":"PurposeThis study aims to analyze the Prandtl fluid flow in the presence of better mass diffusion and heat conduction models. By taking into account a linearly bidirectional stretchable sheet, flow is produced. Heat generation effect, thermal radiation, variable thermal conductivity, variable diffusion coefficient and Cattaneo–Christov double diffusion models are used to evaluate thermal and concentration diffusions.Design/methodology/approachThe governing partial differential equations (PDEs) have been made simpler using a boundary layer method. Strong nonlinear ordinary differential equations (ODEs) relate to appropriate non-dimensional similarity variables. The optimal homotopy analysis technique is used to develop solution.FindingsGraphs analyze the impact of many relevant factors on temperature and concentration. The physical parameters, such as mass and heat transfer rates at the wall and surface drag coefficients, are also displayed and explained.Originality/valueThe reported work discusses the contribution of generalized flux models to note their impact on heat and mass transport.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139959110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface 双曲切线混合对流纳米材料在垂直倾斜表面作用下的动力学熵行为与活化能的关系
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-02-16 DOI: 10.1108/mmms-10-2023-0343
Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt
PurposeNonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.Design/methodology/approachSuitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.FindingsIt is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.
目的 考虑了垂直倾斜表面上双曲切线纳米流体(HTN)的非线性混合对流熵优化流动与磁流体动力学(MHD)过程。活化能的印象与非线性辐射、耗散函数、热量产生/消耗联系和焦耳加热的意义一起被纳入建模。该领域的研究可实际应用于高效热交换器、热管理系统或基于纳米材料的设备的设计。设计/方法/途径引入合适的变量集,将偏微分方程系统转换为所需的常微分方程系统。然后通过有限差分法对转换后的 ODEs 系统进行数值求解。通过图表预测适用的传输参数对表面熵、贝扬数、舍伍德数、表皮摩擦、努塞尔特数、温度、速度和浓度场的控制。研究结果从目前的数值研究中可以发现,贝扬数随着浓度差参数 a_2、埃克特数 E_c、热比参数 ?_w 和辐射参数 R_d 的估算值的增加而增加,而表面熵则随着流动性能指数 n、温差参数 a_1、热扩散参数 N_t 和混合对流参数 ?_d 的增加而增加。舍伍德数随着滞留运动参数 N_b 的扩大而增加,而热扩散参数的发展则与之相反。最后,研究结果与以前发表的数据进行了比对,以验证本数值研究的正确性。 原创性/价值 据作者所知,目前还没有任何研究报告可以解释双曲切线混合对流纳米材料在垂直倾斜表面流动时的熵行为与活化能。
{"title":"Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface","authors":"Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt","doi":"10.1108/mmms-10-2023-0343","DOIUrl":"https://doi.org/10.1108/mmms-10-2023-0343","url":null,"abstract":"PurposeNonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.Design/methodology/approachSuitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.FindingsIt is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface 双曲切线混合对流纳米材料在垂直倾斜表面作用下的动力学熵行为与活化能的关系
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-02-16 DOI: 10.1108/mmms-10-2023-0343
Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt
PurposeNonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.Design/methodology/approachSuitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.FindingsIt is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.
目的 考虑了垂直倾斜表面上双曲切线纳米流体(HTN)的非线性混合对流熵优化流动与磁流体动力学(MHD)过程。活化能的印象与非线性辐射、耗散函数、热量产生/消耗联系和焦耳加热的意义一起被纳入建模。该领域的研究可实际应用于高效热交换器、热管理系统或基于纳米材料的设备的设计。设计/方法/途径引入合适的变量集,将偏微分方程系统转换为所需的常微分方程系统。然后通过有限差分法对转换后的 ODEs 系统进行数值求解。通过图表预测适用的传输参数对表面熵、贝扬数、舍伍德数、表皮摩擦、努塞尔特数、温度、速度和浓度场的控制。研究结果从目前的数值研究中可以发现,贝扬数随着浓度差参数 a_2、埃克特数 E_c、热比参数 ?_w 和辐射参数 R_d 的估算值的增加而增加,而表面熵则随着流动性能指数 n、温差参数 a_1、热扩散参数 N_t 和混合对流参数 ?_d 的增加而增加。舍伍德数随着滞留运动参数 N_b 的扩大而增加,而热扩散参数的发展则与之相反。最后,研究结果与以前发表的数据进行了比对,以验证本数值研究的正确性。 原创性/价值 据作者所知,目前还没有任何研究报告可以解释双曲切线混合对流纳米材料在垂直倾斜表面流动时的熵行为与活化能。
{"title":"Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface","authors":"Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt","doi":"10.1108/mmms-10-2023-0343","DOIUrl":"https://doi.org/10.1108/mmms-10-2023-0343","url":null,"abstract":"PurposeNonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.Design/methodology/approachSuitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.FindingsIt is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139833424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size-dependent vibration analysis of the simply supported functionally graded porous material Al-Al2O3 rectangle microplates based on the modified couple stress theory with innovative consideration of neutral plane and scale distribution 基于修正耦合应力理论并创新性地考虑了中性面和尺度分布的简支功能分级多孔材料 Al-Al2O3 矩形微板的尺寸相关振动分析
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-01-30 DOI: 10.1108/mmms-09-2023-0314
Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong, Sheng Liu
PurposeHoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and manufacturing process in factories like micro-electro-mechanical system (MEMS) and other industries.Design/methodology/approachThe authors design a method by establishing a reasonable mathematical model of the physical microplate composed of a porous FGM.FindingsThe authors discover that the porosity, the distributions of porosity, the power law of the FGM and the length-to-thickness ratio all affect the natural frequency of the vibration of the microplate, but in different ways.Originality/valueOriginally proposed a model of the micro FGM plate considering the different distributions of the porosity and scale effect and analyzed the vibration frequency of it.
目的希望揭示功能分级材料(FGM)微板振动的物理原理,从而为微电子机械系统(MEMS)等工厂及其他行业的设计和制造过程做出贡献。设计/方法/途径作者通过建立多孔 FGM 组成的物理微板的合理数学模型,设计了一种方法。研究结果作者发现,孔隙率、孔隙率的分布、FGM 的幂律和长厚比都会影响微板的振动固有频率,但影响的方式不同。原创性/价值最初提出了一个考虑了不同孔隙率分布和尺度效应的微型 FGM 板模型,并分析了其振动频率。
{"title":"Size-dependent vibration analysis of the simply supported functionally graded porous material Al-Al2O3 rectangle microplates based on the modified couple stress theory with innovative consideration of neutral plane and scale distribution","authors":"Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong, Sheng Liu","doi":"10.1108/mmms-09-2023-0314","DOIUrl":"https://doi.org/10.1108/mmms-09-2023-0314","url":null,"abstract":"PurposeHoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and manufacturing process in factories like micro-electro-mechanical system (MEMS) and other industries.Design/methodology/approachThe authors design a method by establishing a reasonable mathematical model of the physical microplate composed of a porous FGM.FindingsThe authors discover that the porosity, the distributions of porosity, the power law of the FGM and the length-to-thickness ratio all affect the natural frequency of the vibration of the microplate, but in different ways.Originality/valueOriginally proposed a model of the micro FGM plate considering the different distributions of the porosity and scale effect and analyzed the vibration frequency of it.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140484756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strength and microstructural analysis of geopolymer prepared with coal-based synthetic natural gas slag 用煤基合成天然气渣制备的土工聚合物的强度和微观结构分析
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-01-22 DOI: 10.1108/mmms-08-2023-0282
Peng Yin, Tao Liu, Baofeng Pan, Ningbo Liu
PurposeThe coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient and clean utilization of coal in recent years, the stockpiling of CSNGS would increase gradually, and it would have significant social and environmental benefits with reasonable utilization of CSNGS. This study prepared a new geopolymer by mixing CSNGS with PC42.5 cement in a certain mass ratio as the precursor, with sodium hydroxide and sodium silicate solution as the alkali activators.Design/methodology/approachThe formulation of coal-based synthetic natural gas slag geopolymer (CSNGSG) was determined by an orthogonal test, and then the strength mechanism and microstructure of CSNGSG were characterized by multi-scale tests.FindingsThe results show that the optimum ratio of CSNGSG was a sodium silicate modulus of 1.3, an alkali dosage of 21% and a water cement ratio of 0.36 and the maximum unconfined compressive strength of CSNGSG at 7 d was 26.88 MPa. The increase of curing temperature could significantly improve the compressive strength of CSNGSG, and the curing humidity had little effect on the compressive strength of CSNGSG. The development of the internal strength of CSNSG at high temperatures consumed SiO2, Al2O3 and CaO and the intensity of corresponding crystalline peaks decreased.Originality/valueMoreover, the vibration of chemical bonds in different wavenumbers also revealed the reaction mechanism of CSNSG from another perspective. Finally, the relevant test results indicated that CSNGS had practical application value as a raw material for the preparation of geopolymer cementing materials.
目的 煤基合成天然气渣(CSNGS)是原煤不完全燃烧产生天然气后剩余的固体废弃物。近年来,随着煤炭高效清洁利用的不断推进,煤基合成天然气渣的存量将逐渐增加,合理利用煤基合成天然气渣将产生显著的社会效益和环境效益。本研究以一定质量比的 CSNGS 与 PC42.5 水泥混合为前驱体,以氢氧化钠和硅酸钠溶液为碱活化剂,制备了一种新型土工聚合物。设计/方法/途径通过正交试验确定了煤基合成天然气矿渣土工聚合物(CSNGSG)的配方,然后通过多尺度试验表征了 CSNGSG 的强度机理和微观结构。结果表明,CSNGSG 的最佳配比为硅酸钠模量 1.3、碱用量 21%、水胶比 0.36,7 d 时的最大无压抗压强度为 26.88 MPa。固化温度的升高可显著提高 CSNGSG 的抗压强度,固化湿度对 CSNGSG 的抗压强度影响不大。此外,不同波数的化学键振动也从另一个角度揭示了 CSNSG 的反应机理。最后,相关测试结果表明,CSNSG 作为制备土工聚合物胶结材料的原料具有实际应用价值。
{"title":"Strength and microstructural analysis of geopolymer prepared with coal-based synthetic natural gas slag","authors":"Peng Yin, Tao Liu, Baofeng Pan, Ningbo Liu","doi":"10.1108/mmms-08-2023-0282","DOIUrl":"https://doi.org/10.1108/mmms-08-2023-0282","url":null,"abstract":"PurposeThe coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient and clean utilization of coal in recent years, the stockpiling of CSNGS would increase gradually, and it would have significant social and environmental benefits with reasonable utilization of CSNGS. This study prepared a new geopolymer by mixing CSNGS with PC42.5 cement in a certain mass ratio as the precursor, with sodium hydroxide and sodium silicate solution as the alkali activators.Design/methodology/approachThe formulation of coal-based synthetic natural gas slag geopolymer (CSNGSG) was determined by an orthogonal test, and then the strength mechanism and microstructure of CSNGSG were characterized by multi-scale tests.FindingsThe results show that the optimum ratio of CSNGSG was a sodium silicate modulus of 1.3, an alkali dosage of 21% and a water cement ratio of 0.36 and the maximum unconfined compressive strength of CSNGSG at 7 d was 26.88 MPa. The increase of curing temperature could significantly improve the compressive strength of CSNGSG, and the curing humidity had little effect on the compressive strength of CSNGSG. The development of the internal strength of CSNSG at high temperatures consumed SiO2, Al2O3 and CaO and the intensity of corresponding crystalline peaks decreased.Originality/valueMoreover, the vibration of chemical bonds in different wavenumbers also revealed the reaction mechanism of CSNSG from another perspective. Finally, the relevant test results indicated that CSNGS had practical application value as a raw material for the preparation of geopolymer cementing materials.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139607401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature-rich electronic properties of three-dimensional ternary compound: Li7P3S11 三维三元化合物的丰富电子特性:Li7P3S11
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-01-12 DOI: 10.1108/mmms-08-2023-0258
Hsin-Yi Liu, Jhao-Ying Wu
PurposeThe theoretical findings serve as a foundation for further research into understanding sulfide-based solid-state electrolytes, ultimately advancing the progress of all-solid-state batteries.Design/methodology/approachThe electronic properties of Li7P3S11 are thoroughly explored through first-principles calculations.FindingsThis investigation encompasses the intricate atom-dominated valence and conduction bands, spatial charge density distribution and the breakdown of atom and orbital contributions to van Hove singularities. Additionally, the compound’s wide and discrete energy spectra reflect the substantial variations in bond lengths and its highly anisotropic geometric structure. The complex and nonuniform chemical environment indicates the presence of intricate hopping integrals.Originality/valueThis study provides valuable insights into the critical multiorbital hybridizations occurring in the Li-S and P-S chemical bonds. To validate the theoretical predictions, experimental techniques can be employed. By combining theoretical predictions with experimental data, a comprehensive understanding of the geometric and electronic characteristics of Li7P3S11 can be achieved.
通过第一性原理计算,对 Li7P3S11 的电子特性进行了深入探讨。研究结果这项研究涵盖了以原子为主的错综复杂的价带和导带、空间电荷密度分布以及原子和轨道对范霍夫奇点贡献的细分。此外,该化合物宽而离散的能谱反映了键长的巨大变化及其高度各向异性的几何结构。复杂而不均匀的化学环境表明存在错综复杂的跳变积分。这项研究为了解锂-S 和 P-S 化学键中发生的关键多轨道杂化提供了宝贵的见解。为了验证理论预测,可以采用实验技术。通过将理论预测与实验数据相结合,可以全面了解 Li7P3S11 的几何和电子特性。
{"title":"Feature-rich electronic properties of three-dimensional ternary compound: Li7P3S11","authors":"Hsin-Yi Liu, Jhao-Ying Wu","doi":"10.1108/mmms-08-2023-0258","DOIUrl":"https://doi.org/10.1108/mmms-08-2023-0258","url":null,"abstract":"PurposeThe theoretical findings serve as a foundation for further research into understanding sulfide-based solid-state electrolytes, ultimately advancing the progress of all-solid-state batteries.Design/methodology/approachThe electronic properties of Li7P3S11 are thoroughly explored through first-principles calculations.FindingsThis investigation encompasses the intricate atom-dominated valence and conduction bands, spatial charge density distribution and the breakdown of atom and orbital contributions to van Hove singularities. Additionally, the compound’s wide and discrete energy spectra reflect the substantial variations in bond lengths and its highly anisotropic geometric structure. The complex and nonuniform chemical environment indicates the presence of intricate hopping integrals.Originality/valueThis study provides valuable insights into the critical multiorbital hybridizations occurring in the Li-S and P-S chemical bonds. To validate the theoretical predictions, experimental techniques can be employed. By combining theoretical predictions with experimental data, a comprehensive understanding of the geometric and electronic characteristics of Li7P3S11 can be achieved.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139437602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of width-to-depth and effective length-to-depth ratio on shear strength of reinforced concrete slender beams without shear reinforcement: comparative analysis 宽度深度比和有效长度深度比对无抗剪加固钢筋混凝土细长梁抗剪强度的影响:对比分析
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-01-05 DOI: 10.1108/mmms-07-2023-0236
Seyfe Nigussie Adamu, T. W. Aure, T. A. Mohammed
PurposeFrom the factors that affect shear strength of reinforced concrete (RC) beams, the study examines the effect of controversial parameters, width-to-depth (b/d) and effective length-to-depth (leff/d) ratio on shear strength of RC slender beams.Design/methodology/approachThe researchers utilized a database of 676 experimental test results from ACI-DAfStb database, Conducted regression analysis to examine relationship between b/d and leff/d ratios and shear strength, compare and analyze sensitivity to changes in b/d and leff/d ratios for the selected 12 shear models for RC beams.FindingsIncreasing b/d ratio enhanced shear strength until b/d ˜ 3, but further increases had limited impact and increasing leff/d ratio resulted in decreased shear strength. From comparative analysis, the models provided by various design standards were found to be safe, with EC-2 and JSCE models being conservative. From considered research models, Campione and Arslan models were conservative, while Kim and White model were observed to be unsafe. Sensitivity analysis indicated ACI318-19, JSCE, CEB-FIP-90 and Arslan models were sensitive to changes in b/d and leff/d ratios. National code models generally captured shear strength characteristics well. Certain models suggested a constant/decreasing b/d effect despite observed shear strength enhancement. Most models indicated improved shear strength with an increasing leff/d ratio, contrary to experimental findings while TS500 and Hwang models aligned with experimental results.Research limitations/implicationsThe study's limitations include the dependence on the available database, which may not encompass all possible experimental scenarios. Further research should aim to expand the database and investigate additional parameters that may influence shear strength in RC beams.Practical implicationsThe findings of this study have practical implications for the design and analysis of RC beams by suggesting that the width-to-depth and length-to-depth ratios should be carefully considered to optimize shear strength. The identified models can assist engineers in selecting appropriate shear strength prediction models based on specific design scenarios.Social implicationsThe study contributes to the advancement of knowledge in the field of reinforced concrete beam design, which has implications for the safety and reliability of structural systems. By understanding the factors influencing shear strength, engineers can design more efficient and robust structures, ensuring the safety of buildings and infrastructure.Originality/valueThis study provides valuable insights into the influence of the width-to-depth and effective length-to-depth ratios on shear strength in reinforced concrete beams. It contributes to the understanding of these factors and their impact on shear strength, addressing the lack of consensus among researchers. The comparative analysis of shear models and the sensitivity analyses add value by identifying the models
目的从影响钢筋混凝土(RC)梁抗剪强度的因素出发,本研究探讨了有争议的参数、宽度深度比(b/d)和有效长度深度比(leff/d)对 RC 细长梁抗剪强度的影响。研究人员利用 ACI-DAfStb 数据库中包含 676 项实验测试结果的数据库,进行回归分析以研究 b/d 和 leff/d 比与剪切强度之间的关系,并比较和分析所选 12 个 RC 梁剪切模型对 b/d 和 leff/d 比变化的敏感性。研究结果增加 b/d 比可提高剪切强度,直到 b/d ˜ 3,但进一步增加影响有限,增加 leff/d 比导致剪切强度下降。通过比较分析发现,各种设计标准提供的模型都是安全的,其中 EC-2 和 JSCE 模型较为保守。从考虑的研究模型来看,Campione 和 Arslan 模型比较保守,而 Kim 和 White 模型则不安全。敏感性分析表明 ACI318-19、JSCE、CEB-FIP-90 和 Arslan 模型对 b/d 和 leff/d 比率的变化比较敏感。国家规范模型一般都能很好地捕捉剪切强度特征。某些模型表明,尽管观察到剪切强度有所提高,但 b/d 的影响却在不断减小。大多数模型表明,随着 leff/d 比率的增加,剪切强度也会提高,这与实验结果相反,而 TS500 和 Hwang 模型则与实验结果一致。实际意义本研究的发现对 RC 梁的设计和分析具有实际意义,建议应仔细考虑宽度-深度比和长度-深度比,以优化剪切强度。所确定的模型可帮助工程师根据具体设计方案选择合适的剪切强度预测模型。 社会影响该研究有助于提高钢筋混凝土梁设计领域的知识水平,对结构系统的安全性和可靠性具有重要意义。通过了解剪切强度的影响因素,工程师可以设计出更高效、更坚固的结构,从而确保建筑物和基础设施的安全。原创性/价值这项研究为了解钢筋混凝土梁的宽度深度比和有效长度深度比对剪切强度的影响提供了宝贵的见解。它有助于理解这些因素及其对剪切强度的影响,解决了研究人员之间缺乏共识的问题。剪切模型的比较分析和敏感性分析通过确定更符合实验观察结果的模型而增加了价值。该研究强调了建立考虑到这些因素的精确模型的必要性,并强调了进一步研究以完善和开发改进型预测模型的重要性。
{"title":"Influence of width-to-depth and effective length-to-depth ratio on shear strength of reinforced concrete slender beams without shear reinforcement: comparative analysis","authors":"Seyfe Nigussie Adamu, T. W. Aure, T. A. Mohammed","doi":"10.1108/mmms-07-2023-0236","DOIUrl":"https://doi.org/10.1108/mmms-07-2023-0236","url":null,"abstract":"PurposeFrom the factors that affect shear strength of reinforced concrete (RC) beams, the study examines the effect of controversial parameters, width-to-depth (b/d) and effective length-to-depth (leff/d) ratio on shear strength of RC slender beams.Design/methodology/approachThe researchers utilized a database of 676 experimental test results from ACI-DAfStb database, Conducted regression analysis to examine relationship between b/d and leff/d ratios and shear strength, compare and analyze sensitivity to changes in b/d and leff/d ratios for the selected 12 shear models for RC beams.FindingsIncreasing b/d ratio enhanced shear strength until b/d ˜ 3, but further increases had limited impact and increasing leff/d ratio resulted in decreased shear strength. From comparative analysis, the models provided by various design standards were found to be safe, with EC-2 and JSCE models being conservative. From considered research models, Campione and Arslan models were conservative, while Kim and White model were observed to be unsafe. Sensitivity analysis indicated ACI318-19, JSCE, CEB-FIP-90 and Arslan models were sensitive to changes in b/d and leff/d ratios. National code models generally captured shear strength characteristics well. Certain models suggested a constant/decreasing b/d effect despite observed shear strength enhancement. Most models indicated improved shear strength with an increasing leff/d ratio, contrary to experimental findings while TS500 and Hwang models aligned with experimental results.Research limitations/implicationsThe study's limitations include the dependence on the available database, which may not encompass all possible experimental scenarios. Further research should aim to expand the database and investigate additional parameters that may influence shear strength in RC beams.Practical implicationsThe findings of this study have practical implications for the design and analysis of RC beams by suggesting that the width-to-depth and length-to-depth ratios should be carefully considered to optimize shear strength. The identified models can assist engineers in selecting appropriate shear strength prediction models based on specific design scenarios.Social implicationsThe study contributes to the advancement of knowledge in the field of reinforced concrete beam design, which has implications for the safety and reliability of structural systems. By understanding the factors influencing shear strength, engineers can design more efficient and robust structures, ensuring the safety of buildings and infrastructure.Originality/valueThis study provides valuable insights into the influence of the width-to-depth and effective length-to-depth ratios on shear strength in reinforced concrete beams. It contributes to the understanding of these factors and their impact on shear strength, addressing the lack of consensus among researchers. The comparative analysis of shear models and the sensitivity analyses add value by identifying the models","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139382196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing surface roughness in soft pneumatic gripper fabricated via FDM: experimental investigation using Taguchi method 优化通过 FDM 制造的软气动抓手的表面粗糙度:使用田口方法进行实验研究
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-01-04 DOI: 10.1108/mmms-09-2023-0313
Muhammet Uludag, O. Ulkir
Purpose In this study, experimental studies were carried out using different process parameters of the soft pneumatic gripper (SPG) fabricated by the fused deposition modeling method. In the experimental studies, the surface quality of the gripper was examined by determining four different levels and factors. The experiment was designed to estimate the surface roughness of the SPG.Design/methodology/approach The methodology consists of an experimental phase in which the SPG is fabricated and the surface roughness is measured. Thermoplastic polyurethane (TPU) flex filament material was used in the fabrication of SPG. The control factors used in the Taguchi L16 vertical array experimental design and their level values were determined. Analysis of variance (ANOVA) was performed to observe the effect of printing parameters on the surface quality. Finally, regression analysis was applied to mathematically model the surface roughness values obtained from the experimental measurements.Findings Based on the Taguchi signal-to-noise ratio and ANOVA, layer height is the most influential parameter for surface roughness. The best surface quality value was obtained with a surface roughness value of 18.752 µm using the combination of 100 µm layer height, 2 mm wall thickness, 200 °C nozzle temperature and 120 mm/s printing speed. The developed model predicted the surface roughness of SPG with 95% confidence intervals.Originality/value It is essential to examine the surface quality of parts fabricated in additive manufacturing using different variables. In the literature, surface roughness has been examined using different factors and levels. However, the surface roughness of a soft gripper fabricated with TPU material has not been examined previously. The surface quality of parts fabricated using flexible materials is very important.
目的 本研究采用不同的工艺参数,对熔融沉积建模法制造的软气动机械手(SPG)进行了实验研究。在实验研究中,通过确定四个不同的水平和因素,对机械手的表面质量进行了检验。该实验旨在估算 SPG 的表面粗糙度。设计/方法/途径 该方法包括一个实验阶段,在该阶段制作 SPG 并测量其表面粗糙度。热塑性聚氨酯(TPU)柔性长丝材料用于制造 SPG。确定了田口 L16 垂直阵列实验设计中使用的控制因子及其水平值。为观察印刷参数对表面质量的影响,进行了方差分析(ANOVA)。根据田口信噪比和方差分析,层高是对表面粗糙度影响最大的参数。在 100 µm 层高、2 mm 壁厚、200 °C 喷嘴温度和 120 mm/s 印刷速度的组合下,获得了最佳的表面质量值,表面粗糙度值为 18.752 µm。所开发的模型以 95% 的置信区间预测了 SPG 的表面粗糙度。 原创性/价值 使用不同的变量来检测增材制造部件的表面质量至关重要。在文献中,使用不同的因素和水平对表面粗糙度进行了研究。然而,使用热塑性聚氨酯材料制造的软抓手的表面粗糙度此前尚未进行过研究。使用柔性材料制造的零件的表面质量非常重要。
{"title":"Optimizing surface roughness in soft pneumatic gripper fabricated via FDM: experimental investigation using Taguchi method","authors":"Muhammet Uludag, O. Ulkir","doi":"10.1108/mmms-09-2023-0313","DOIUrl":"https://doi.org/10.1108/mmms-09-2023-0313","url":null,"abstract":"Purpose In this study, experimental studies were carried out using different process parameters of the soft pneumatic gripper (SPG) fabricated by the fused deposition modeling method. In the experimental studies, the surface quality of the gripper was examined by determining four different levels and factors. The experiment was designed to estimate the surface roughness of the SPG.Design/methodology/approach The methodology consists of an experimental phase in which the SPG is fabricated and the surface roughness is measured. Thermoplastic polyurethane (TPU) flex filament material was used in the fabrication of SPG. The control factors used in the Taguchi L16 vertical array experimental design and their level values were determined. Analysis of variance (ANOVA) was performed to observe the effect of printing parameters on the surface quality. Finally, regression analysis was applied to mathematically model the surface roughness values obtained from the experimental measurements.Findings Based on the Taguchi signal-to-noise ratio and ANOVA, layer height is the most influential parameter for surface roughness. The best surface quality value was obtained with a surface roughness value of 18.752 µm using the combination of 100 µm layer height, 2 mm wall thickness, 200 °C nozzle temperature and 120 mm/s printing speed. The developed model predicted the surface roughness of SPG with 95% confidence intervals.Originality/value It is essential to examine the surface quality of parts fabricated in additive manufacturing using different variables. In the literature, surface roughness has been examined using different factors and levels. However, the surface roughness of a soft gripper fabricated with TPU material has not been examined previously. The surface quality of parts fabricated using flexible materials is very important.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A numerical study on thermal deformation of through silicon via with electroplating defect 带有电镀缺陷的硅通孔热变形数值研究
IF 2 4区 材料科学 Q1 Mathematics Pub Date : 2024-01-02 DOI: 10.1108/mmms-04-2023-0141
Chongbin Hou, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong, Ting Hu
PurposeBy investigating the thermal-mechanical interaction between the through silicon via (TSV) and the Cu pad, this study aimed to determine the effect of electroplating defects on the upper surface protrusion and internal stress distribution of the TSV at various temperatures and to provide guidelines for the positioning of TSVs and the optimization of the electroplating process.Design/methodology/approachA simplified model that consisted of a TSV (100 µm in diameter and 300 µm in height), a covering Cu pad (2 µm thick) and an internal drop-like electroplating defect (which had various dimensions and locations) was developed. The surface overall deformation and stress distribution of these models under various thermal conditions were analyzed and compared.FindingsThe Cu pad could barely suppress the upper surface protrusion of the TSV if the temperature was below 250 ?. Interfacial delamination started at the collar of the TSV at about 250 ? and became increasingly pronounced at higher temperatures. The electroplating defect constantly experienced the highest level of strain and stress during the temperature increase, despite its geometry or location. But as its radius expanded or its distance to the upper surface increased, the overall deformation of the upper surface and the stress concentration at the collar of the TSV showed a downward trend.Originality/valuePrevious studies have not examined the influence of the electroplating void on the thermal behavior of the TSV. However, with the proposed methodology, the strain and stress distribution of the TSV under different conditions in terms of temperature, dimension and location of the electroplating void were thoroughly investigated, which might be beneficial to the positioning of TSVs and the optimization of the electroplating process.
目的 通过研究硅通孔(TSV)和铜垫之间的热机械相互作用,本研究旨在确定电镀缺陷在不同温度下对 TSV 上表面突起和内应力分布的影响,并为 TSV 的定位和电镀工艺的优化提供指导。设计/方法/途径建立了一个由 TSV(直径 100 微米,高 300 微米)、覆盖铜垫(2 微米厚)和内部滴状电镀缺陷(具有不同的尺寸和位置)组成的简化模型。分析和比较了这些模型在各种热条件下的表面整体变形和应力分布。大约在 250°C 时,TSV 颈部开始出现界面分层,温度越高,分层越明显。尽管电镀缺陷的几何形状或位置不同,但它在温度升高过程中始终承受着最高水平的应变和应力。但随着其半径的扩大或与上表面距离的增加,上表面的整体变形和 TSV 套圈处的应力集中呈下降趋势。然而,本文提出的方法深入研究了 TSV 在温度、尺寸和电镀空隙位置等不同条件下的应变和应力分布,这可能有利于 TSV 的定位和电镀工艺的优化。
{"title":"A numerical study on thermal deformation of through silicon via with electroplating defect","authors":"Chongbin Hou, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong, Ting Hu","doi":"10.1108/mmms-04-2023-0141","DOIUrl":"https://doi.org/10.1108/mmms-04-2023-0141","url":null,"abstract":"PurposeBy investigating the thermal-mechanical interaction between the through silicon via (TSV) and the Cu pad, this study aimed to determine the effect of electroplating defects on the upper surface protrusion and internal stress distribution of the TSV at various temperatures and to provide guidelines for the positioning of TSVs and the optimization of the electroplating process.Design/methodology/approachA simplified model that consisted of a TSV (100 µm in diameter and 300 µm in height), a covering Cu pad (2 µm thick) and an internal drop-like electroplating defect (which had various dimensions and locations) was developed. The surface overall deformation and stress distribution of these models under various thermal conditions were analyzed and compared.FindingsThe Cu pad could barely suppress the upper surface protrusion of the TSV if the temperature was below 250 ?. Interfacial delamination started at the collar of the TSV at about 250 ? and became increasingly pronounced at higher temperatures. The electroplating defect constantly experienced the highest level of strain and stress during the temperature increase, despite its geometry or location. But as its radius expanded or its distance to the upper surface increased, the overall deformation of the upper surface and the stress concentration at the collar of the TSV showed a downward trend.Originality/valuePrevious studies have not examined the influence of the electroplating void on the thermal behavior of the TSV. However, with the proposed methodology, the strain and stress distribution of the TSV under different conditions in terms of temperature, dimension and location of the electroplating void were thoroughly investigated, which might be beneficial to the positioning of TSVs and the optimization of the electroplating process.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139124685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Multidiscipline Modeling in Materials and Structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1