Pub Date : 2023-06-30DOI: 10.1108/mmms-01-2023-0023
A. K. Abdul Jawwad, M. Mahdi
PurposeThis article aims to investigate and model the effects of welding-generated thermal cycle on the resulting residual stress distribution and its role in the initiation and propagation of fatigue failure in thick shaft sections.Design/methodology/approachExperimental and numerical techniques were applied in the present study to explore the relationship(s) between welding residual-stress distribution and fatigue failure characteristics in a hydropower generator shaft. Experimental techniques included stereomicroscopy, optical and scanning electron microscopy (SEM), chemical analysis and mechanical testing. Finite element modelling (FEM) was used to model the shaft welding cycle in terms of thermal (temperature) history and the associated development of residual stresses within the weld joint.FindingsExperimental analyses have confirmed the suitability of the used material for the intended application and confirmed the failure mode to be low cycle fatigue. The observed failure characteristics, however, did not match with the applied loading in terms of design stress levels, directionality and expected crack imitation site(s). FEM results have revealed the presence of a sharp stress peak in excess of 630 MPa (about 74% of material's yield strength) around weld start point and a non-uniform residual stress distribution in both the circumferential and through-thickness directions. The present results have shown very close matching between FEM results and observed failure characteristics.Practical implicationsThe present article considers an actual industrial case of a hydropower generator shaft failure. Present results are valuable in providing insight information regarding such failures as well as some preventive design and fabrication measures for the hydropower and other power generation and transmission sector.Originality/valueThe presence of the aforementioned stress peak around welding start/end location and the non-uniform distribution of residual-stress field are in contrast to almost all published results based on some uniformity assumptions. The present FEM results were, however, the only stress distribution scenario capable of explaining the failure considered in the present research.
{"title":"Effects of non-symmetric non-uniformly distributed welding residual stress on fatigue failure initiation and propagation in a hydropower generator shaft","authors":"A. K. Abdul Jawwad, M. Mahdi","doi":"10.1108/mmms-01-2023-0023","DOIUrl":"https://doi.org/10.1108/mmms-01-2023-0023","url":null,"abstract":"PurposeThis article aims to investigate and model the effects of welding-generated thermal cycle on the resulting residual stress distribution and its role in the initiation and propagation of fatigue failure in thick shaft sections.Design/methodology/approachExperimental and numerical techniques were applied in the present study to explore the relationship(s) between welding residual-stress distribution and fatigue failure characteristics in a hydropower generator shaft. Experimental techniques included stereomicroscopy, optical and scanning electron microscopy (SEM), chemical analysis and mechanical testing. Finite element modelling (FEM) was used to model the shaft welding cycle in terms of thermal (temperature) history and the associated development of residual stresses within the weld joint.FindingsExperimental analyses have confirmed the suitability of the used material for the intended application and confirmed the failure mode to be low cycle fatigue. The observed failure characteristics, however, did not match with the applied loading in terms of design stress levels, directionality and expected crack imitation site(s). FEM results have revealed the presence of a sharp stress peak in excess of 630 MPa (about 74% of material's yield strength) around weld start point and a non-uniform residual stress distribution in both the circumferential and through-thickness directions. The present results have shown very close matching between FEM results and observed failure characteristics.Practical implicationsThe present article considers an actual industrial case of a hydropower generator shaft failure. Present results are valuable in providing insight information regarding such failures as well as some preventive design and fabrication measures for the hydropower and other power generation and transmission sector.Originality/valueThe presence of the aforementioned stress peak around welding start/end location and the non-uniform distribution of residual-stress field are in contrast to almost all published results based on some uniformity assumptions. The present FEM results were, however, the only stress distribution scenario capable of explaining the failure considered in the present research.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42089952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-13DOI: 10.1108/mmms-12-2022-0277
M. F. Shaikh, Nallasivam K
PurposeIn this study, a finite element model of a box-girder bridge along with the railway sub-track system is developed to predict the static behavior due to different combinations of the Indian railway system and free vibration responses resulting in different natural frequencies and their corresponding mode shapes.Design/methodology/approachThe modeling and evaluation of the bridge and sub-track system were performed using non-closed form finite element method (FEM)-based ANSYS software.FindingsFrom the analysis, the worst possible cases of deformation and stress due to different static load combinations were determined in the static analysis, while different natural frequencies were determined in the free vibrational analysis that can be used for further analysis because of the dynamic effect of the train vehicle.Research limitations/implicationsThe scope of the current investigation is confined to the structure's static and free vibration analysis. However, this study will help the designers obtain relevant information for further analysis of the dynamic behavior of the bridge model.Originality/valueIn static analysis, the maximum deformation of the bridge deck was found to be 10.70E-03m due to load combination 5, whereas the maximum natural frequency for free vibration analysis is found to be 4.7626 Hz.
{"title":"Static and free vibration response of a box-girder bridge using the finite element technique","authors":"M. F. Shaikh, Nallasivam K","doi":"10.1108/mmms-12-2022-0277","DOIUrl":"https://doi.org/10.1108/mmms-12-2022-0277","url":null,"abstract":"PurposeIn this study, a finite element model of a box-girder bridge along with the railway sub-track system is developed to predict the static behavior due to different combinations of the Indian railway system and free vibration responses resulting in different natural frequencies and their corresponding mode shapes.Design/methodology/approachThe modeling and evaluation of the bridge and sub-track system were performed using non-closed form finite element method (FEM)-based ANSYS software.FindingsFrom the analysis, the worst possible cases of deformation and stress due to different static load combinations were determined in the static analysis, while different natural frequencies were determined in the free vibrational analysis that can be used for further analysis because of the dynamic effect of the train vehicle.Research limitations/implicationsThe scope of the current investigation is confined to the structure's static and free vibration analysis. However, this study will help the designers obtain relevant information for further analysis of the dynamic behavior of the bridge model.Originality/valueIn static analysis, the maximum deformation of the bridge deck was found to be 10.70E-03m due to load combination 5, whereas the maximum natural frequency for free vibration analysis is found to be 4.7626 Hz.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47878390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1108/mmms-01-2023-0025
Mehdi Ranjbar-Roeintan
PurposeThis article focuses on the low-velocity impact (LVI) output of carbon nanotubes (CNTs)’ reinforcement circular plates, considering agglomeration size effect and clumping of CNTs’ inner side of the agglomerations.Design/methodology/approachA representative volume element (RVE) is used to determine the nanocomposite properties reinforced with agglomerated CNTs with random orientation. First-order shear deformation theory (FSDT) is used to obtain the motion equations of LVI analysis. These equations are handled by developing a Ritz method and Lagrangian mechanics. To extract the mass and stiffness matrices, terms with second and higher degrees are ignored.FindingsFormulation validation is performed by providing various examples, including comparisons with other research and ABAQUS FE code. The effects of agglomeration size, clumping of CNTs’ inner side of the agglomerations, CNT volume fraction and impact location on the responses of impact load, projectile displacement and plate deflection are analytically studied. These achievements illuminate how the influence of agglomeration size is very small on the impact response. Also, the influence of clumping of CNTs’ inner side of the agglomerations is significant, and as it increases, the displacement values and impact time increase, and the impact force decreases.Originality/valueIn this article, to avoid additional calculations, the parameters of the mass matrix and the stiffness coefficients are linearized to obtain the equations of motion of the impact on the circular plate.
{"title":"A circular plate with a central hole reinforced with agglomerated CNTs under impact loading","authors":"Mehdi Ranjbar-Roeintan","doi":"10.1108/mmms-01-2023-0025","DOIUrl":"https://doi.org/10.1108/mmms-01-2023-0025","url":null,"abstract":"PurposeThis article focuses on the low-velocity impact (LVI) output of carbon nanotubes (CNTs)’ reinforcement circular plates, considering agglomeration size effect and clumping of CNTs’ inner side of the agglomerations.Design/methodology/approachA representative volume element (RVE) is used to determine the nanocomposite properties reinforced with agglomerated CNTs with random orientation. First-order shear deformation theory (FSDT) is used to obtain the motion equations of LVI analysis. These equations are handled by developing a Ritz method and Lagrangian mechanics. To extract the mass and stiffness matrices, terms with second and higher degrees are ignored.FindingsFormulation validation is performed by providing various examples, including comparisons with other research and ABAQUS FE code. The effects of agglomeration size, clumping of CNTs’ inner side of the agglomerations, CNT volume fraction and impact location on the responses of impact load, projectile displacement and plate deflection are analytically studied. These achievements illuminate how the influence of agglomeration size is very small on the impact response. Also, the influence of clumping of CNTs’ inner side of the agglomerations is significant, and as it increases, the displacement values and impact time increase, and the impact force decreases.Originality/valueIn this article, to avoid additional calculations, the parameters of the mass matrix and the stiffness coefficients are linearized to obtain the equations of motion of the impact on the circular plate.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48931460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1108/mmms-11-2022-0251
V. Kobelev
PurposeIn the current manuscript, the authors examine the Belleville spring with the variable thickness. The thickness is assumed to be variable along the meridional and parallel coordinates of conical coordinate system. The calculation of the Belleville springs includes the cases of the free gliding edges and the edges on cylindric curbs, which constrain the radial movement. The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations.Design/methodology/approachIn the current manuscript, the authors examine the Belleville spring with the variable thickness. The calculation of the Belleville springs investigates the free gliding edges and the edges on cylindric curbs with the constrained radial movement. The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations.FindingsThe developed equations demonstrate that the shift of the inversion point to the inside edge does not influence the bending of the cone. On the contrary, the character of the extensional deformation (circumferential strain) of the middle surface alternates significantly. The extension of the middle surface of free gliding spring occurs outside the inversion. The middle surface of the free gliding spring squeezes inside the inversion point. Contrarily, the complete middle surface of the disk spring on the cylindric curb extends. This behavior influences considerably the function of the spring.Research limitations/implicationsA slotted disk spring consists of two segments: a disk segment and a number of lever arm segments. Currently, the calculation of slotted disk spring is based on the SAE formula (SAE, 1996). This formula is limited to a straight slotted disk spring with freely gliding inner and outer edges.Practical implicationsThe equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations. The developed method is applicable for disk springs with radially constrained edges. The vertical displacements of a disk spring result from an axial load uniformly distributed on inner and outer edges. The method could be directly applied for calculation of slotted disk springs.Originality/valueThe nonlinear governing equations for the of Belleville spring centres were derived. The equations describe the deformation and stresses of thin and moderately thick washers. The variation method is applicable for the disc springs with free gliding and rigidly constrained edges. The developed method is applicable for Belleville spring with radially constrained edges. The vertical displacements of a disc spring result from an axial load uniformly distributed on inner and outer edges.
{"title":"Exact shell solutions for conical springs. III. Belleville springs with variable thickness","authors":"V. Kobelev","doi":"10.1108/mmms-11-2022-0251","DOIUrl":"https://doi.org/10.1108/mmms-11-2022-0251","url":null,"abstract":"PurposeIn the current manuscript, the authors examine the Belleville spring with the variable thickness. The thickness is assumed to be variable along the meridional and parallel coordinates of conical coordinate system. The calculation of the Belleville springs includes the cases of the free gliding edges and the edges on cylindric curbs, which constrain the radial movement. The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations.Design/methodology/approachIn the current manuscript, the authors examine the Belleville spring with the variable thickness. The calculation of the Belleville springs investigates the free gliding edges and the edges on cylindric curbs with the constrained radial movement. The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations.FindingsThe developed equations demonstrate that the shift of the inversion point to the inside edge does not influence the bending of the cone. On the contrary, the character of the extensional deformation (circumferential strain) of the middle surface alternates significantly. The extension of the middle surface of free gliding spring occurs outside the inversion. The middle surface of the free gliding spring squeezes inside the inversion point. Contrarily, the complete middle surface of the disk spring on the cylindric curb extends. This behavior influences considerably the function of the spring.Research limitations/implicationsA slotted disk spring consists of two segments: a disk segment and a number of lever arm segments. Currently, the calculation of slotted disk spring is based on the SAE formula (SAE, 1996). This formula is limited to a straight slotted disk spring with freely gliding inner and outer edges.Practical implicationsThe equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations. The developed method is applicable for disk springs with radially constrained edges. The vertical displacements of a disk spring result from an axial load uniformly distributed on inner and outer edges. The method could be directly applied for calculation of slotted disk springs.Originality/valueThe nonlinear governing equations for the of Belleville spring centres were derived. The equations describe the deformation and stresses of thin and moderately thick washers. The variation method is applicable for the disc springs with free gliding and rigidly constrained edges. The developed method is applicable for Belleville spring with radially constrained edges. The vertical displacements of a disc spring result from an axial load uniformly distributed on inner and outer edges.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45820219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1108/mmms-01-2023-0010
Huan Huang, Yaqiong Fan, Huiyan Huang, R. Guo
PurposeAs an efficient self-healing intelligent material, the encapsulation-based self-healing resin mineral composite (SHC) has a broad application prospect.Design/methodology/approachAiming at the cracking performance of SHC, the dynamic load condition is employed to replace the traditional static load condition, the initial damage of the material is considered and the triggered cracking process and influencing factors of SHC are analyzed based on the extended finite element method (XFEM). In addition, the mechanism of matrix cracking and microcapsule triggered cracking process is explained from the microscopic point of view, and the cracking performance conditions of SHC are studied. On this basis, the response surface regression analysis method is used to obtain a second-order polynomial model of the microcapsule crack initiation stress, the interface bonding strength and the matching relationship between elastic modulus. Therefore, the model could be used to predict the cracking performance parameters of the microcapsule.FindingsThe interfacial bonding strength has an essential effect on the triggered cracking of the microcapsule. In order to ensure that the microcapsule can be triggered cracking normally, the design strength should meet the following relationship, that is crack initiation stress of microcapsule wall < crack initiation stress of matrix < interface bonding strength. Moreover, the matching relationship between elastic modulus has a significant influence on the triggered cracking of the microcapsule.Originality/valueThe results provide a theoretical basis for further oriented designing of the cracking performance of microcapsules.
{"title":"An micro-level study on the cracking performance of encapsulation-based self-healing resin mineral composites under dynamic load based on XFEM","authors":"Huan Huang, Yaqiong Fan, Huiyan Huang, R. Guo","doi":"10.1108/mmms-01-2023-0010","DOIUrl":"https://doi.org/10.1108/mmms-01-2023-0010","url":null,"abstract":"PurposeAs an efficient self-healing intelligent material, the encapsulation-based self-healing resin mineral composite (SHC) has a broad application prospect.Design/methodology/approachAiming at the cracking performance of SHC, the dynamic load condition is employed to replace the traditional static load condition, the initial damage of the material is considered and the triggered cracking process and influencing factors of SHC are analyzed based on the extended finite element method (XFEM). In addition, the mechanism of matrix cracking and microcapsule triggered cracking process is explained from the microscopic point of view, and the cracking performance conditions of SHC are studied. On this basis, the response surface regression analysis method is used to obtain a second-order polynomial model of the microcapsule crack initiation stress, the interface bonding strength and the matching relationship between elastic modulus. Therefore, the model could be used to predict the cracking performance parameters of the microcapsule.FindingsThe interfacial bonding strength has an essential effect on the triggered cracking of the microcapsule. In order to ensure that the microcapsule can be triggered cracking normally, the design strength should meet the following relationship, that is crack initiation stress of microcapsule wall < crack initiation stress of matrix < interface bonding strength. Moreover, the matching relationship between elastic modulus has a significant influence on the triggered cracking of the microcapsule.Originality/valueThe results provide a theoretical basis for further oriented designing of the cracking performance of microcapsules.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42883773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-05DOI: 10.1108/mmms-11-2022-0269
P. Choudhary
PurposeThe objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.Design/methodology/approachA novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.FindingsThe optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.Originality/valueThe proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.
{"title":"Optimal design of composite cylindrical shells subject to compression buckling strength","authors":"P. Choudhary","doi":"10.1108/mmms-11-2022-0269","DOIUrl":"https://doi.org/10.1108/mmms-11-2022-0269","url":null,"abstract":"PurposeThe objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.Design/methodology/approachA novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.FindingsThe optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.Originality/valueThe proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41942195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1108/mmms-10-2022-0224
José Luis Díaz Palencia
Purpose The objective of this study is to model the propagating front in the interaction of gases in an aircraft fuel tank. To this end, we introduce a nonlinear parabolic operator, for which solutions are shown to be regular. Design/methodology/approach The authors provide an analytical expression for the propagating front, that shifts any combination of oxygen and nitrogen, in the tank airspace, into a safe condition to avoid potential explosions. The analytical exercise is validated with a real flight. Findings According to the flight test data, the safe condition, of maximum 7% of oxygen, is given for a time t = 45.2 min since the beginning of the flight, while according to our analysis, such a safe level is obtained for t = 41.42 min. For other safe levels of oxygen, the error between the analytical assessment and the flight data was observed to be below 10%. Originality/value The interaction of gases in a fuel tank has been little explored in the literature. Our value consists of introducing a set of nonlinear partial differential equations to increase the accuracy in modeling the interaction of gasses, which has been typically done via algebraic equations.
{"title":"Front propagation in the interaction of gases to model a fuel tank inerting process with a nonlinear parabolic operator","authors":"José Luis Díaz Palencia","doi":"10.1108/mmms-10-2022-0224","DOIUrl":"https://doi.org/10.1108/mmms-10-2022-0224","url":null,"abstract":"Purpose The objective of this study is to model the propagating front in the interaction of gases in an aircraft fuel tank. To this end, we introduce a nonlinear parabolic operator, for which solutions are shown to be regular. Design/methodology/approach The authors provide an analytical expression for the propagating front, that shifts any combination of oxygen and nitrogen, in the tank airspace, into a safe condition to avoid potential explosions. The analytical exercise is validated with a real flight. Findings According to the flight test data, the safe condition, of maximum 7% of oxygen, is given for a time t = 45.2 min since the beginning of the flight, while according to our analysis, such a safe level is obtained for t = 41.42 min. For other safe levels of oxygen, the error between the analytical assessment and the flight data was observed to be below 10%. Originality/value The interaction of gases in a fuel tank has been little explored in the literature. Our value consists of introducing a set of nonlinear partial differential equations to increase the accuracy in modeling the interaction of gasses, which has been typically done via algebraic equations.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136162014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-30DOI: 10.1108/mmms-11-2022-0247
S. Rahman, José Luis Díaz Palencia
PurposeThis article aims to study a model of flame propagation in a nonhomogeneous medium with a p-Laplacian operator. The intention with such operator is to model the effects of slow and fast diffusion, that can appear in a nonhomogeneous media, depending on the pressure driven conditions. In addition, the authors introduce a general form in the reaction term, that introduces the flame chemical kinetics.Design/methodology/approachTo introduce the governing equations, the authors depart from previously reported models in flame propagation, but the authors consider a new modeling approach based on a p-Laplacian operator.FindingsThe authors provide evidences of regularity and uniqueness of solutions. Afterward, the authors introduce profiles of stationary solutions based on the definition of a Hamiltonian for the newly discussed model. Eventually, the authors obtain exponential profiles solutions with the help of a scaling, that transforms the model into a nonlinear Hamilton–Jacobi equation.Originality/valueThe new model has not been previously reported in the literature. The authors consider that the mathematical properties of a p-laplacian (in particular the property known as finite propagation) is of inherent interest to model pressure drive flames with slow or fast diffusion. Indeed, the authors’ approach has the value of providing an operator that can fit better to model flame propagation. In addition, the authors introduce a general form of chemical kinetics, to make the authors’ model further general.
{"title":"Analysis and profiles of solution for a highly nonlinear model of pressure driven flame propagation in nonhomogeneous medium","authors":"S. Rahman, José Luis Díaz Palencia","doi":"10.1108/mmms-11-2022-0247","DOIUrl":"https://doi.org/10.1108/mmms-11-2022-0247","url":null,"abstract":"PurposeThis article aims to study a model of flame propagation in a nonhomogeneous medium with a p-Laplacian operator. The intention with such operator is to model the effects of slow and fast diffusion, that can appear in a nonhomogeneous media, depending on the pressure driven conditions. In addition, the authors introduce a general form in the reaction term, that introduces the flame chemical kinetics.Design/methodology/approachTo introduce the governing equations, the authors depart from previously reported models in flame propagation, but the authors consider a new modeling approach based on a p-Laplacian operator.FindingsThe authors provide evidences of regularity and uniqueness of solutions. Afterward, the authors introduce profiles of stationary solutions based on the definition of a Hamiltonian for the newly discussed model. Eventually, the authors obtain exponential profiles solutions with the help of a scaling, that transforms the model into a nonlinear Hamilton–Jacobi equation.Originality/valueThe new model has not been previously reported in the literature. The authors consider that the mathematical properties of a p-laplacian (in particular the property known as finite propagation) is of inherent interest to model pressure drive flames with slow or fast diffusion. Indeed, the authors’ approach has the value of providing an operator that can fit better to model flame propagation. In addition, the authors introduce a general form of chemical kinetics, to make the authors’ model further general.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44640244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29DOI: 10.1108/mmms-08-2022-0153
J. Raza, M. Raza, Tahir Mustaq, M. Qureshi
PurposeThe purpose of this paper is to study the thermal behavior of radial porous fin surrounded by water-base copper nanoparticles under the influence of radiation.Design/methodology/approachIn order to optimize the response variable, the authors perform sensitivity analysis with the aid of response surface methodology (RSM). Moreover, this study enlightens the applications of artificial neural networks (ANN) for predicting the temperature gradient. The governing modeled equations are firstly non-dimensionalized and then solved with the aid of Runge–Kutta fourth order together with the shooting method in order to guess the initial conditions.FindingsNumerical results are analyzed and presented in the form of tables and graphs. This study reveals that the temperature of the fin is decreasing as the wet porous parameter increases (m2) and the temperature for 10% concentration of nanoparticles are higher than 5 and 1%. Physical parameters involved in the study are analyzed and processed through RSM. It is come to know that sensitivity of temperature gradient to radiative parameter (Nr) and convective parameter (Nc) is positive and negative to dimensionless ambient temperature (θa). Furthermore, after ANN training it can be argued that the established model can efficiently be used to predict the temperature gradient over a radial porous fin for the copper-water nanofluid flow.Originality/valueTo the best of our knowledge, only a few attempts have been made to analyze the thermal behavior of radial porous fin surrounded by copper-based nanofluid under the influence of radiation and convection.
{"title":"Supervised machine learning techniques for optimization of heat transfer rate of Cu-H2O nanofluid flow over a radial porous fin","authors":"J. Raza, M. Raza, Tahir Mustaq, M. Qureshi","doi":"10.1108/mmms-08-2022-0153","DOIUrl":"https://doi.org/10.1108/mmms-08-2022-0153","url":null,"abstract":"PurposeThe purpose of this paper is to study the thermal behavior of radial porous fin surrounded by water-base copper nanoparticles under the influence of radiation.Design/methodology/approachIn order to optimize the response variable, the authors perform sensitivity analysis with the aid of response surface methodology (RSM). Moreover, this study enlightens the applications of artificial neural networks (ANN) for predicting the temperature gradient. The governing modeled equations are firstly non-dimensionalized and then solved with the aid of Runge–Kutta fourth order together with the shooting method in order to guess the initial conditions.FindingsNumerical results are analyzed and presented in the form of tables and graphs. This study reveals that the temperature of the fin is decreasing as the wet porous parameter increases (m2) and the temperature for 10% concentration of nanoparticles are higher than 5 and 1%. Physical parameters involved in the study are analyzed and processed through RSM. It is come to know that sensitivity of temperature gradient to radiative parameter (Nr) and convective parameter (Nc) is positive and negative to dimensionless ambient temperature (θa). Furthermore, after ANN training it can be argued that the established model can efficiently be used to predict the temperature gradient over a radial porous fin for the copper-water nanofluid flow.Originality/valueTo the best of our knowledge, only a few attempts have been made to analyze the thermal behavior of radial porous fin surrounded by copper-based nanofluid under the influence of radiation and convection.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48248775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1108/mmms-11-2022-0242
S. Vignesh, A. Johnney Mertens
PurposeThis research work aims to determine the maximum load a thermoplastic gear can withstand without the occurrence of extended contact. The extended contact of polymer gears is usually overlooked in basic design calculations, although it considerably affects the gear's load-carrying ability. Although various researchers highlighted the phenomenon, an extensive investigation of the extended contact behaviour is limited. Hence the work aims to investigate the premature and extended contact behaviour of thermoplastic gears and its effect in the gear kinematics, bending stiffness, stresses induced and the roll angle subtended by the gear pair.Design/methodology/approachThe work uses finite element method to perform quasi-static two-dimensional analysis of the meshing gear teeth. The FE model was developed in AutoCAD and analysed using ANSYS 19.1 simulation package. A three-dimensional gear model with all the teeth is computationally intensive for solving a static analysis problem. Hence, planar analysis with a reduced number of teeth is considered to reduce the computational time and difficulty.FindingsThe roll angle subtended at the centre by the path of approach is higher than the path of recess because of the increased load sharing. The contact stress profile followed a unique R-F-R-F pattern in the premature and extended contact regions due to the driven tip-driver flank surface contact. A non-dimensional parameter was formulated correlating the young's modulus, the load applied and deflection induced that can be utilised to predict the occurrence of premature and extended contact in thermoplastic gears.Originality/valueThe gear rating standards for polymer gears are formulated from the conventional metal gears which does not include the effect of gear tooth deflection. The work attempts to explain the gear tooth deflection for various standard thermoplastics and its effect in kinematics. Likewise, a new dimensionless number was introduced to predict the extended contact that will help in appropriate selection of load reducing the possibility of wear.
{"title":"Numerical investigation on the premature and extended contact behaviour of engineering thermoplastic gears and its effect in gear kinematics","authors":"S. Vignesh, A. Johnney Mertens","doi":"10.1108/mmms-11-2022-0242","DOIUrl":"https://doi.org/10.1108/mmms-11-2022-0242","url":null,"abstract":"PurposeThis research work aims to determine the maximum load a thermoplastic gear can withstand without the occurrence of extended contact. The extended contact of polymer gears is usually overlooked in basic design calculations, although it considerably affects the gear's load-carrying ability. Although various researchers highlighted the phenomenon, an extensive investigation of the extended contact behaviour is limited. Hence the work aims to investigate the premature and extended contact behaviour of thermoplastic gears and its effect in the gear kinematics, bending stiffness, stresses induced and the roll angle subtended by the gear pair.Design/methodology/approachThe work uses finite element method to perform quasi-static two-dimensional analysis of the meshing gear teeth. The FE model was developed in AutoCAD and analysed using ANSYS 19.1 simulation package. A three-dimensional gear model with all the teeth is computationally intensive for solving a static analysis problem. Hence, planar analysis with a reduced number of teeth is considered to reduce the computational time and difficulty.FindingsThe roll angle subtended at the centre by the path of approach is higher than the path of recess because of the increased load sharing. The contact stress profile followed a unique R-F-R-F pattern in the premature and extended contact regions due to the driven tip-driver flank surface contact. A non-dimensional parameter was formulated correlating the young's modulus, the load applied and deflection induced that can be utilised to predict the occurrence of premature and extended contact in thermoplastic gears.Originality/valueThe gear rating standards for polymer gears are formulated from the conventional metal gears which does not include the effect of gear tooth deflection. The work attempts to explain the gear tooth deflection for various standard thermoplastics and its effect in kinematics. Likewise, a new dimensionless number was introduced to predict the extended contact that will help in appropriate selection of load reducing the possibility of wear.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45745138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}