首页 > 最新文献

Frontiers in Astronomy and Space Sciences最新文献

英文 中文
Dispersive propagation of nuclear electromagnetic pulse in the ionosphere 核电磁脉冲在电离层中的色散传播
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-09 DOI: 10.3389/fspas.2023.1201921
Yongli Wei, Dinghan Zhu, Zongxiang Li, Lihua Wang, Yuan Wang, Tianchi Zhang, Bin Xing, Baofeng Cao, Peng Li
Introduction: On the propagation path to the satellite, the ionosphere will distort the nuclear electromagnetic pulse (NEMP) and change its physical properties. Methods: This paper proposes a method for calculating the propagation of NEMP to the satellite. The method decomposes NEMP into the superposition of simple harmonic waves, and each simple harmonic wave is calculated separately in the ionosphere. With the consideration of different time of arrival and critical frequency of the ionosphere, the NEMP after propagating in the ionosphere is obtained by superposition of simple harmonic waves in time domain rather than the inverse Fourier transform which will erase the time domain information. Results: The results show that NEMP is dispersive in ionosphere with the pulse broadened, the speeds changed and the bandwidth narrowed. The time-frequency spectrum can provide the frequency band where the signal energy is located. Discussion: Our proposed method provides a simple and effective way to calculate the NEMP propagation in the ionosphere, which should afford help to the design of NEMP receivers and the selection of satellite orbit altitude.
导读:在向卫星传播的路径上,电离层会使核电磁脉冲(NEMP)发生畸变,改变其物理性质。方法:提出了一种计算NEMP向卫星传播的方法。该方法将NEMP分解为简单谐波的叠加,并在电离层中单独计算每个简单谐波。考虑到电离层到达时间和临界频率的不同,在电离层中传播后的NEMP是通过简谐波在时域上的叠加来获得的,而不是通过傅里叶反变换来消除时域信息。结果:NEMP在电离层中具有色散特性,脉冲宽度变宽,速度改变,带宽变窄。时频谱可以提供信号能量所在的频带。讨论:本文提出的方法为NEMP在电离层的传播提供了一种简单有效的计算方法,可为NEMP接收机的设计和卫星轨道高度的选择提供参考。
{"title":"Dispersive propagation of nuclear electromagnetic pulse in the ionosphere","authors":"Yongli Wei, Dinghan Zhu, Zongxiang Li, Lihua Wang, Yuan Wang, Tianchi Zhang, Bin Xing, Baofeng Cao, Peng Li","doi":"10.3389/fspas.2023.1201921","DOIUrl":"https://doi.org/10.3389/fspas.2023.1201921","url":null,"abstract":"Introduction: On the propagation path to the satellite, the ionosphere will distort the nuclear electromagnetic pulse (NEMP) and change its physical properties. Methods: This paper proposes a method for calculating the propagation of NEMP to the satellite. The method decomposes NEMP into the superposition of simple harmonic waves, and each simple harmonic wave is calculated separately in the ionosphere. With the consideration of different time of arrival and critical frequency of the ionosphere, the NEMP after propagating in the ionosphere is obtained by superposition of simple harmonic waves in time domain rather than the inverse Fourier transform which will erase the time domain information. Results: The results show that NEMP is dispersive in ionosphere with the pulse broadened, the speeds changed and the bandwidth narrowed. The time-frequency spectrum can provide the frequency band where the signal energy is located. Discussion: Our proposed method provides a simple and effective way to calculate the NEMP propagation in the ionosphere, which should afford help to the design of NEMP receivers and the selection of satellite orbit altitude.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" 36","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135291808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2a Results: galaxy to cloud scales 2a结果:星系到云的尺度
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-09 DOI: 10.3389/fspas.2023.1272771
Clare Dobbs
Simulations from the scales of isolated galaxies to clouds have been instrumental in informing us about molecular cloud formation and evolution. Simulations are able to investigate the roles of gravity, feedback, turbulence, heating and cooling, and magnetic fields on the physics of the interstellar medium, and star formation. Compared to simulations of individual clouds, galactic and sub-galactic scale simulations can include larger galactic scale processes such as spiral arms, bars, and larger supernovae bubbles, which may influence star formation. Simulations show cloud properties and lifetimes in broad agreement with observations. Gravity and spiral arms are required to produce more massive GMCs, whilst stellar feedback, likely photoionisation, leads to relatively short cloud lifetimes. On larger scales, supernovae may be more dominant in driving the structure and dynamics, but photoionisation may still have a role. In terms of the dynamics, feedback is probably the main driver of velocity dispersions, but large scale processes such as gravity and spiral arms may also be significant. Magnetic fields are generally found to decrease star formation on galaxy or cloud scales, and simulations are ongoing to study whether clouds are sub or supercritical on different scales in galaxy scale simulations. Simulations on subgalactic scales, or zoom in simulations, allow better resolution of feedback processes, filamentary structure within clouds, and the study of stellar clusters.
从孤立星系到云的尺度的模拟在告诉我们分子云的形成和演化方面发挥了重要作用。模拟能够研究重力、反馈、湍流、加热和冷却以及磁场对星际介质和恒星形成的物理作用。与单个云的模拟相比,星系和亚星系尺度的模拟可以包括更大的星系尺度过程,如螺旋臂、棒状和更大的超新星气泡,这些过程可能会影响恒星的形成。模拟所显示的云的性质和寿命与观测结果基本一致。引力和旋臂需要产生更大质量的gmc,而恒星反馈,可能是光电离,导致云的寿命相对较短。在更大的尺度上,超新星在驱动结构和动力学方面可能更占主导地位,但光电离可能仍然有作用。在动力学方面,反馈可能是速度色散的主要驱动因素,但像重力和螺旋臂这样的大规模过程也可能是重要的。在星系或云尺度上,磁场通常会减少恒星的形成,在星系尺度模拟中,云在不同尺度上是亚临界还是超临界的模拟正在进行中。在亚星系尺度上的模拟,或放大模拟,可以更好地解决反馈过程、云中丝状结构和星团的研究。
{"title":"2a Results: galaxy to cloud scales","authors":"Clare Dobbs","doi":"10.3389/fspas.2023.1272771","DOIUrl":"https://doi.org/10.3389/fspas.2023.1272771","url":null,"abstract":"Simulations from the scales of isolated galaxies to clouds have been instrumental in informing us about molecular cloud formation and evolution. Simulations are able to investigate the roles of gravity, feedback, turbulence, heating and cooling, and magnetic fields on the physics of the interstellar medium, and star formation. Compared to simulations of individual clouds, galactic and sub-galactic scale simulations can include larger galactic scale processes such as spiral arms, bars, and larger supernovae bubbles, which may influence star formation. Simulations show cloud properties and lifetimes in broad agreement with observations. Gravity and spiral arms are required to produce more massive GMCs, whilst stellar feedback, likely photoionisation, leads to relatively short cloud lifetimes. On larger scales, supernovae may be more dominant in driving the structure and dynamics, but photoionisation may still have a role. In terms of the dynamics, feedback is probably the main driver of velocity dispersions, but large scale processes such as gravity and spiral arms may also be significant. Magnetic fields are generally found to decrease star formation on galaxy or cloud scales, and simulations are ongoing to study whether clouds are sub or supercritical on different scales in galaxy scale simulations. Simulations on subgalactic scales, or zoom in simulations, allow better resolution of feedback processes, filamentary structure within clouds, and the study of stellar clusters.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" 38","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135292445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the isomeric yield ratio in the photoneutron reaction of natural holmium induced by laser-accelerated electron beams 激光加速电子束诱导天然钬光-中子反应中异构体产率的研究
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-08 DOI: 10.3389/fspas.2023.1265919
Jingli Zhang, Wei Qi, Wenru Fan, Zongwei Cao, Kaijun Luo, Changxiang Tan, Xiaohui Zhang, Zhigang Deng, Zhimeng Zhang, Xinxiang Li, Yun Yuan, Wen Luo, Weimin Zhou
Introduction: An accurate knowledge of the isomeric yield ratio (IR) induced by the photonuclear reaction is crucial to study the nuclear structure and reaction mechanisms. 165 Ho is a good candidate for the investigation of the IR since the Ho target has a natural abundance of 100% and the residual nuclide has a good decay property. Methods: In this study, the photoneutron production of 164m, g Ho induced by laser-accelerated electron beams is investigated experimentally. The γ-ray spectra of activated Ho foils are off-line detected. Since the direct transitions from the 164m Ho are not successfully observed, we propose to extract the IRs of the 164m, g Ho using only the photopeak counts from the ground-state decay. Results: The production yields of 164m, g Ho are extracted to be (0.45 ± 0.10) × 10 6 and (1.48 ± 0.14) × 10 6 per laser shot, respectively. The resulting IR is obtained to be 0.30 ± 0.08 at the effective γ-ray energy of 12.65 MeV. Discussion: The present data, available experimental data, and TALYS calculations are then compared to examine the role of the excitation energy. It is found that besides the giant dipole resonance, the excitation energy effect also plays a key role in the determination of the IRs.
准确地了解光核反应引起的异构体产率(IR)对于研究核结构和反应机理至关重要。由于Ho靶的自然丰度为100%,并且其残余核素具有良好的衰变特性,因此Ho是红外研究的一个很好的候选者。方法:实验研究了激光加速电子束诱导164m, g Ho的光子中子产生。离线检测了活化Ho箔的γ射线能谱。由于164m Ho的直接跃迁没有被成功地观测到,我们建议仅使用基态衰变的光峰计数来提取164m, g Ho的IRs。结果:提取164m, g Ho的产率分别为(0.45±0.10)× 10.6和(1.48±0.14)× 10.6 /次激光。所得IR为0.30±0.08,有效γ射线能量为12.65 MeV。讨论:然后将现有数据、可用实验数据和TALYS计算结果进行比较,以检验激发能的作用。研究发现,除了巨偶极子共振外,激发能效应对红外光谱的测定也起着关键作用。
{"title":"Study of the isomeric yield ratio in the photoneutron reaction of natural holmium induced by laser-accelerated electron beams","authors":"Jingli Zhang, Wei Qi, Wenru Fan, Zongwei Cao, Kaijun Luo, Changxiang Tan, Xiaohui Zhang, Zhigang Deng, Zhimeng Zhang, Xinxiang Li, Yun Yuan, Wen Luo, Weimin Zhou","doi":"10.3389/fspas.2023.1265919","DOIUrl":"https://doi.org/10.3389/fspas.2023.1265919","url":null,"abstract":"Introduction: An accurate knowledge of the isomeric yield ratio (IR) induced by the photonuclear reaction is crucial to study the nuclear structure and reaction mechanisms. 165 Ho is a good candidate for the investigation of the IR since the Ho target has a natural abundance of 100% and the residual nuclide has a good decay property. Methods: In this study, the photoneutron production of 164m, g Ho induced by laser-accelerated electron beams is investigated experimentally. The γ-ray spectra of activated Ho foils are off-line detected. Since the direct transitions from the 164m Ho are not successfully observed, we propose to extract the IRs of the 164m, g Ho using only the photopeak counts from the ground-state decay. Results: The production yields of 164m, g Ho are extracted to be (0.45 ± 0.10) × 10 6 and (1.48 ± 0.14) × 10 6 per laser shot, respectively. The resulting IR is obtained to be 0.30 ± 0.08 at the effective γ-ray energy of 12.65 MeV. Discussion: The present data, available experimental data, and TALYS calculations are then compared to examine the role of the excitation energy. It is found that besides the giant dipole resonance, the excitation energy effect also plays a key role in the determination of the IRs.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"359 20","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135393246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical analysis of equatorial electrojet responses to the transient changes of solar wind conditions 赤道电喷流对太阳风瞬态变化响应的统计分析
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-07 DOI: 10.3389/fspas.2023.1306279
Jiawei Zhang, Qiaoling Li, Shuhan Li, Jing Liu
Introduction: Prior case studies have indicated that changes in solar wind conditions have a significant impact on equatorial ionospheric electrodynamics. However, there have been limited statistical studies on this topic, impairing our understanding of the coupling between solar wind, magnetosphere, and equatorial ionosphere electrodynamics. Methods: In this study, we conducted a superposed epoch analysis of long-term data from the South America equatorial electrojet (EEJ) spanning from 2001 to 2021 examining the responses of the equatorial ionospheric electric field to step-like changes in solar wind velocity, density, dynamic pressure, and interplanetary magnetic field (IMF) B z . Result: Our study shows that step-like changes in solar wind velocity, density, and dynamic pressure can trigger changes in EEJ within ∼20–40 min. EEJ exhibits the highest sensitivity to variations in solar wind velocity while being relatively less sensitive to changes in dynamic pressure. Furthermore, the response of EEJ shows greater responsiveness to northward IMF B z compared to southward IMF B z . Discussion: Our work provides statistical evidence of how changes in solar wind can lead to changes in low-latitude ionospheric EEJ. We inferred that the changes in solar wind conditions cause magnetospheric deformation and changes in magnetic reconnection rates, leading to the fluctuations of the ionospheric electric field and the resultant EEJ variations.
先前的案例研究表明,太阳风条件的变化对赤道电离层电动力学有显著影响。然而,关于这一主题的统计研究有限,削弱了我们对太阳风、磁层和赤道电离层电动力学之间耦合的理解。方法:对2001 ~ 2021年南美赤道电喷流(EEJ)的长期数据进行年代叠加分析,研究赤道电离层电场对太阳风速度、密度、动压和行星际磁场(IMF) B z的阶跃变化的响应。结果:我们的研究表明,太阳风速度、密度和动压的阶梯变化可以在~ 20-40 min内触发EEJ的变化。EEJ对太阳风速度变化的敏感性最高,而对动压变化的敏感性相对较低。此外,EEJ对北向IMF B z的响应比南向IMF B z的响应更大。讨论:我们的工作提供了太阳风变化如何导致低纬度电离层EEJ变化的统计证据。我们推测太阳风条件的变化引起磁层变形和磁重联率的变化,从而导致电离层电场的波动和由此产生的EEJ变化。
{"title":"Statistical analysis of equatorial electrojet responses to the transient changes of solar wind conditions","authors":"Jiawei Zhang, Qiaoling Li, Shuhan Li, Jing Liu","doi":"10.3389/fspas.2023.1306279","DOIUrl":"https://doi.org/10.3389/fspas.2023.1306279","url":null,"abstract":"Introduction: Prior case studies have indicated that changes in solar wind conditions have a significant impact on equatorial ionospheric electrodynamics. However, there have been limited statistical studies on this topic, impairing our understanding of the coupling between solar wind, magnetosphere, and equatorial ionosphere electrodynamics. Methods: In this study, we conducted a superposed epoch analysis of long-term data from the South America equatorial electrojet (EEJ) spanning from 2001 to 2021 examining the responses of the equatorial ionospheric electric field to step-like changes in solar wind velocity, density, dynamic pressure, and interplanetary magnetic field (IMF) B z . Result: Our study shows that step-like changes in solar wind velocity, density, and dynamic pressure can trigger changes in EEJ within ∼20–40 min. EEJ exhibits the highest sensitivity to variations in solar wind velocity while being relatively less sensitive to changes in dynamic pressure. Furthermore, the response of EEJ shows greater responsiveness to northward IMF B z compared to southward IMF B z . Discussion: Our work provides statistical evidence of how changes in solar wind can lead to changes in low-latitude ionospheric EEJ. We inferred that the changes in solar wind conditions cause magnetospheric deformation and changes in magnetic reconnection rates, leading to the fluctuations of the ionospheric electric field and the resultant EEJ variations.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"69 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal fluctuations, QNMs, and emission energy of charged ADS black hole with nonlinear electrodynamics 非线性电动力学下带电ADS黑洞的热涨落、QNMs和发射能量
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-07 DOI: 10.3389/fspas.2023.1174029
Faisal Javed, Abdul Basit, Aylin Caliskan, Ertan Güdekli
This study examines the thermodynamics of charged anti-de Sitter (AdS) black holes (BHs) with nonlinear electrodynamics (NED) using quasinormal modes (QNMs) and thermal fluctuations. For this purpose, we calculate the Hawking temperature and discuss the stable configuration of the considered black hole using heat capacity. First, we study the interesting aspects of the emission of energy. Then, we explore the effects of thermal corrections on thermodynamic quantities and their corrected energies. We study the phase transitions of the system in the background of thermal fluctuations. It is concluded that the presence of a coupling constant enhances the thermodynamically stable configuration of uncharged and charged AdS BH geometries. We highlight that our results are in good agreement with the thermodynamics of the previous black hole solutions and assumptions presented in the literature.
本研究利用准正态模式(QNMs)和热波动研究了具有非线性电动力学(NED)的带电反德西特(AdS)黑洞(BHs)的热力学。为此,我们计算了霍金温度,并利用热容讨论了所考虑的黑洞的稳定构型。首先,我们研究能量释放的有趣方面。然后,我们探讨了热修正对热力学量及其修正能量的影响。我们研究了系统在热波动背景下的相变。结果表明,耦合常数的存在增强了不带电和带电AdS BH几何形状的热力学稳定构型。我们强调,我们的结果与先前黑洞解的热力学和文献中提出的假设很好地一致。
{"title":"Thermal fluctuations, QNMs, and emission energy of charged ADS black hole with nonlinear electrodynamics","authors":"Faisal Javed, Abdul Basit, Aylin Caliskan, Ertan Güdekli","doi":"10.3389/fspas.2023.1174029","DOIUrl":"https://doi.org/10.3389/fspas.2023.1174029","url":null,"abstract":"This study examines the thermodynamics of charged anti-de Sitter (AdS) black holes (BHs) with nonlinear electrodynamics (NED) using quasinormal modes (QNMs) and thermal fluctuations. For this purpose, we calculate the Hawking temperature and discuss the stable configuration of the considered black hole using heat capacity. First, we study the interesting aspects of the emission of energy. Then, we explore the effects of thermal corrections on thermodynamic quantities and their corrected energies. We study the phase transitions of the system in the background of thermal fluctuations. It is concluded that the presence of a coupling constant enhances the thermodynamically stable configuration of uncharged and charged AdS BH geometries. We highlight that our results are in good agreement with the thermodynamics of the previous black hole solutions and assumptions presented in the literature.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"152 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron cyclotron harmonic waves in Jovian magnetosphere as seen by Juno 朱诺号观测到的木星磁层中的电子回旋谐波
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-07 DOI: 10.3389/fspas.2023.1274760
J. Joseph, A. N. Jaynes, W. S. Kurth, J. D. Menietti, J. E. P. Connerney, S. J. Bolton
Electron cyclotron harmonic (ECH) waves along with whistler mode waves are suggested to be responsible for causing the persistent diffuse aurora in Jupiter. In this work, for the first time we systematically analyze the ECH waves in the Jovian inner magnetosphere, which was surveyed by Juno during the later orbits (>25). We find that in the Jovian inner magnetosphere, ECH waves occur in two specific regions—one equatorial and the other off-equatorial, just outside the Io torus. Equatorial ECH waves have higher intensity compared to their off-equatorial counterpart. We also notice an overlap between the region of mid-latitude hot injections and the region of off-equatorial ECH wave occurrence. Finally, we show an event to describe the complex nature of ECH wave growth/damping varying with particle density structures of the injection region at mid-latitude.
电子回旋谐波(ECH)波和哨子波被认为是造成木星持续弥漫极光的原因。在这项工作中,我们首次系统地分析了木星内磁层的ECH波,这是朱诺号在后来的轨道上测量的(>25)。我们发现,在木星的内磁层,ECH波发生在两个特定的区域——一个赤道和另一个非赤道,就在木卫一环外。赤道的ECH波比赤道外的ECH波有更高的强度。我们还注意到在中纬度热注入区和赤道外的ECH波发生区之间存在重叠。最后,我们展示了一个事件来描述ECH波生长/阻尼随中纬度注入区域颗粒密度结构变化的复杂性。
{"title":"Electron cyclotron harmonic waves in Jovian magnetosphere as seen by Juno","authors":"J. Joseph, A. N. Jaynes, W. S. Kurth, J. D. Menietti, J. E. P. Connerney, S. J. Bolton","doi":"10.3389/fspas.2023.1274760","DOIUrl":"https://doi.org/10.3389/fspas.2023.1274760","url":null,"abstract":"Electron cyclotron harmonic (ECH) waves along with whistler mode waves are suggested to be responsible for causing the persistent diffuse aurora in Jupiter. In this work, for the first time we systematically analyze the ECH waves in the Jovian inner magnetosphere, which was surveyed by Juno during the later orbits (>25). We find that in the Jovian inner magnetosphere, ECH waves occur in two specific regions—one equatorial and the other off-equatorial, just outside the Io torus. Equatorial ECH waves have higher intensity compared to their off-equatorial counterpart. We also notice an overlap between the region of mid-latitude hot injections and the region of off-equatorial ECH wave occurrence. Finally, we show an event to describe the complex nature of ECH wave growth/damping varying with particle density structures of the injection region at mid-latitude.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"50 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Hydrogen atoms near the exobase are cold: independent observations do not support the hot exosphere concept 勘误:靠近外逸层的氢原子是冷的:独立观测不支持热的外逸层概念
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-07 DOI: 10.3389/fspas.2023.1320143
Dmytro Kotov, Oleksandr Bogomaz
• please read through all the templates before choosing • pick the most relevant text template(s) from the following page and delete all others.• edit the text as necessary, ensuring that the original incorrect text is included for the record, please see the below. • please do not use any extra formatting when editing the templates, and only modify the red text unless absolutely necessary • submit to Frontiers following the instructions on this page.When the original text contained incorrect information, to preserve the scientific record, please include that text when editing the below templates. For example:There was a mistake in the Funding statement, an incorrect number was used. The correct number is "2015C03Bd051.". The publisher apologizes for this mistake.The original version of this article has been updated. In the published article, there was an error. [In the published article, there was a typo in the Text. The word "hot" was used incorrectly instead of a proper word "cold" as shown below. Despite the rest of phrase after the word indicate for the readers that the "hot" is incorrect, this typo may certainly confuse the readers].
•请在选择之前通读所有模板•从以下页面中选择最相关的文本模板并删除所有其他文本模板。•根据需要编辑文本,确保原始的错误文本包括在记录中,请参见下文。•请勿在编辑模板时使用任何额外的格式,除非绝对必要,请仅修改红色文本•按照本页的说明提交到前沿。当原始文本包含不正确的信息时,为了保存科学记录,请在编辑以下模板时包含该文本。在资金报表中有一个错误,使用了一个不正确的数字。正确的号码是“2015C03Bd051.”出版商为这个错误道歉。本文的原始版本已更新。在发表的文章中,有一个错误。在发表的文章中,正文有一个错别字。“热”这个词用错了,而不是正确的“冷”,如下所示。尽管单词后面的其他短语为读者指出“hot”是不正确的,但这个错别字肯定会让读者感到困惑。
{"title":"Corrigendum: Hydrogen atoms near the exobase are cold: independent observations do not support the hot exosphere concept","authors":"Dmytro Kotov, Oleksandr Bogomaz","doi":"10.3389/fspas.2023.1320143","DOIUrl":"https://doi.org/10.3389/fspas.2023.1320143","url":null,"abstract":"• please read through all the templates before choosing • pick the most relevant text template(s) from the following page and delete all others.• edit the text as necessary, ensuring that the original incorrect text is included for the record, please see the below. • please do not use any extra formatting when editing the templates, and only modify the red text unless absolutely necessary • submit to Frontiers following the instructions on this page.When the original text contained incorrect information, to preserve the scientific record, please include that text when editing the below templates. For example:There was a mistake in the Funding statement, an incorrect number was used. The correct number is \"2015C03Bd051.\". The publisher apologizes for this mistake.The original version of this article has been updated. In the published article, there was an error. [In the published article, there was a typo in the Text. The word \"hot\" was used incorrectly instead of a proper word \"cold\" as shown below. Despite the rest of phrase after the word indicate for the readers that the \"hot\" is incorrect, this typo may certainly confuse the readers].","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"217 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion kinetic effects linked to magnetic field discontinuities in the slow Alfvénic wind observed by Solar Orbiter in the inner heliosphere 由太阳轨道器在内日球层观测到的与慢alfv<s:1>风中磁场不连续有关的离子动力学效应
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-06 DOI: 10.3389/fspas.2023.1250219
Denise Perrone, Adriana Settino, Rossana De Marco, Raffaella D’Amicis, Silvia Perri
Slow solar wind, sharing magnetic and plasma properties typical of fast wind, the so-called slow Alfvénic wind, has been widely observed in the heliosphere. Here, we report an analysis of the turbulent properties of a slow Alfvénic stream observed by Solar Orbiter at 0.64 AU. This solar wind stream is characterized by well distinguishable regions, namely, a main portion, an intermediate region, and a rarefaction region. Each of those intervals have been studied separately, in order to enhance similarities and differences in their turbulence properties. Coherent structures naturally emerge over different time/spatial scales and their characteristics at ion scales have been investigated. The presence of these intermittent events have been found to be closely related to kinetic features in the ion (both proton and alpha particles) velocity distribution functions, suggesting a fundamental role in the kinetic physical processes that mediate the sub-ion turbulence cascade.
缓慢的太阳风,具有快速风的磁性和等离子体特性,即所谓的慢阿尔夫萨奇风,在日球层被广泛观察到。在这里,我们报告了太阳轨道器在0.64 AU观测到的一个缓慢的alfv晶格流的湍流特性的分析。该太阳风流具有明显的区域特征,即主要区域、中间区域和稀薄区域。为了增强其湍流特性的相似性和差异性,对每一个区间都进行了单独研究。在不同的时间/空间尺度上自然出现相干结构,并研究了它们在离子尺度上的特征。这些间歇事件的存在已被发现与离子(质子和α粒子)速度分布函数的动力学特征密切相关,表明在介导亚离子湍流级联的动力学物理过程中起着基本作用。
{"title":"Ion kinetic effects linked to magnetic field discontinuities in the slow Alfvénic wind observed by Solar Orbiter in the inner heliosphere","authors":"Denise Perrone, Adriana Settino, Rossana De Marco, Raffaella D’Amicis, Silvia Perri","doi":"10.3389/fspas.2023.1250219","DOIUrl":"https://doi.org/10.3389/fspas.2023.1250219","url":null,"abstract":"Slow solar wind, sharing magnetic and plasma properties typical of fast wind, the so-called slow Alfvénic wind, has been widely observed in the heliosphere. Here, we report an analysis of the turbulent properties of a slow Alfvénic stream observed by Solar Orbiter at 0.64 AU. This solar wind stream is characterized by well distinguishable regions, namely, a main portion, an intermediate region, and a rarefaction region. Each of those intervals have been studied separately, in order to enhance similarities and differences in their turbulence properties. Coherent structures naturally emerge over different time/spatial scales and their characteristics at ion scales have been investigated. The presence of these intermittent events have been found to be closely related to kinetic features in the ion (both proton and alpha particles) velocity distribution functions, suggesting a fundamental role in the kinetic physical processes that mediate the sub-ion turbulence cascade.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"1984 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress and prospects for research on Martian topographic features and typical landform identification 火星地形特征与典型地貌识别研究进展与展望
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-02 DOI: 10.3389/fspas.2023.1275516
Liu Danyang, Cheng Weiming
The study of Martian surface topography is important for understanding the geological evolution of Mars and revealing the spatial differentiation of the Martian landscape. Identifying typical landform units is a fundamental task when studying the origin and evolution of Mars and provides important information for landing on and exploring Mars, as well as estimating the age of the Martian surface and inferring the evolution of the Earth’s environment. In this paper, we first investigate Mars exploration, data acquisition and mapping, and the classification methods of Martian landforms. Then, the identification of several typical Martian landform types, such as aeolian landforms, fluvial landforms, and impact landforms, is shown in detail. Finally, the prospects of Mars data acquisition, landform mapping, and the construction and identification of the Martian landform classification system are presented. The construction of the Martian landform classification system and the identification of typical Martian landforms using deep learning are important development directions in planetary science.
研究火星地表地形对了解火星地质演化、揭示火星地貌空间分异具有重要意义。识别典型地貌单元是研究火星起源和演化的基础任务,为登陆和探索火星、估计火星表面年龄和推断地球环境演化提供重要信息。本文首先对火星探测、数据采集与制图以及火星地貌分类方法进行了研究。然后,详细介绍了几种典型火星地貌类型的识别,如风成地貌、河流地貌和撞击地貌。最后,展望了火星数据采集、地貌制图、火星地貌分类系统构建与识别的发展前景。构建火星地貌分类体系,利用深度学习识别火星典型地貌,是行星科学的重要发展方向。
{"title":"Progress and prospects for research on Martian topographic features and typical landform identification","authors":"Liu Danyang, Cheng Weiming","doi":"10.3389/fspas.2023.1275516","DOIUrl":"https://doi.org/10.3389/fspas.2023.1275516","url":null,"abstract":"The study of Martian surface topography is important for understanding the geological evolution of Mars and revealing the spatial differentiation of the Martian landscape. Identifying typical landform units is a fundamental task when studying the origin and evolution of Mars and provides important information for landing on and exploring Mars, as well as estimating the age of the Martian surface and inferring the evolution of the Earth’s environment. In this paper, we first investigate Mars exploration, data acquisition and mapping, and the classification methods of Martian landforms. Then, the identification of several typical Martian landform types, such as aeolian landforms, fluvial landforms, and impact landforms, is shown in detail. Finally, the prospects of Mars data acquisition, landform mapping, and the construction and identification of the Martian landform classification system are presented. The construction of the Martian landform classification system and the identification of typical Martian landforms using deep learning are important development directions in planetary science.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"32 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of our understanding of coronal mass ejections 我们对日冕物质抛射理解的演变
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-02 DOI: 10.3389/fspas.2023.1264226
Russell A. Howard, Angelos Vourlidas, Guillermo Stenborg
The unexpected observation of a sudden expulsion of mass through the solar corona in 1971 opened up a new field of interest in solar and stellar physics. The discovery came from a white-light coronagraph, which creates an artificial eclipse of the Sun, enabling the viewing of the faint glow from the corona. This observation was followed by many more observations and new missions. In the five decades since that discovery, there have been five generations of coronagraphs, each with improved performance, enabling continued understanding of the phenomena, which became known as Coronal Mass Ejection (CME) events. The conceptualization of the CME structure evolved from the elementary 2-dimensional loop to basically two fundamental types: a 3-dimensional magnetic flux rope and a non-magnetic eruption from pseudo-streamers. The former persists to 1 AU and beyond, whereas the latter dissipates by 15 R ⊙ . Historically, most of the studies have been devoted to understanding the CME large-scale structure and its associations, but this is changing. With the advent of the fourth and fifth coronagraph generations, more attention is being devoted to the their internal structure and initiation mechanisms. In this review, we describe the evolution of CME observations and their associations with other solar and heliospheric phenomena, with one of the more important correlations being its recognition as a driver of space-weather. We conclude with a brief overview of open questions and present some ideas for future observations.
1971年对太阳日冕物质突然喷射的意外观测,为太阳和恒星物理学开辟了一个新的研究领域。这一发现来自于一台白光日冕仪,它制造了一个人造的日食,使人们能够看到日冕发出的微弱光芒。这次观测之后又有更多的观测和新的任务。在这一发现之后的50年里,已经有了五代日冕仪,每一代都改进了性能,使人们能够继续了解日冕物质抛射(CME)事件。CME结构的概念从基本的二维环演变为基本的两种基本类型:三维磁通绳和伪飘带的非磁性喷发。前者持续到1au或更高,而后者在15r⊙时消散。从历史上看,大多数研究都致力于了解CME的大规模结构及其关联,但这种情况正在发生变化。随着第四代和第五代日冕的出现,日冕的内部结构和启动机制受到越来越多的关注。在这篇综述中,我们描述了CME观测的演变及其与其他太阳和日球层现象的联系,其中一个更重要的相关性是它被认为是空间天气的驱动因素。最后,我们简要概述了一些悬而未决的问题,并提出了一些未来观察的想法。
{"title":"The evolution of our understanding of coronal mass ejections","authors":"Russell A. Howard, Angelos Vourlidas, Guillermo Stenborg","doi":"10.3389/fspas.2023.1264226","DOIUrl":"https://doi.org/10.3389/fspas.2023.1264226","url":null,"abstract":"The unexpected observation of a sudden expulsion of mass through the solar corona in 1971 opened up a new field of interest in solar and stellar physics. The discovery came from a white-light coronagraph, which creates an artificial eclipse of the Sun, enabling the viewing of the faint glow from the corona. This observation was followed by many more observations and new missions. In the five decades since that discovery, there have been five generations of coronagraphs, each with improved performance, enabling continued understanding of the phenomena, which became known as Coronal Mass Ejection (CME) events. The conceptualization of the CME structure evolved from the elementary 2-dimensional loop to basically two fundamental types: a 3-dimensional magnetic flux rope and a non-magnetic eruption from pseudo-streamers. The former persists to 1 AU and beyond, whereas the latter dissipates by 15 R ⊙ . Historically, most of the studies have been devoted to understanding the CME large-scale structure and its associations, but this is changing. With the advent of the fourth and fifth coronagraph generations, more attention is being devoted to the their internal structure and initiation mechanisms. In this review, we describe the evolution of CME observations and their associations with other solar and heliospheric phenomena, with one of the more important correlations being its recognition as a driver of space-weather. We conclude with a brief overview of open questions and present some ideas for future observations.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"16 46","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Astronomy and Space Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1