首页 > 最新文献

Frontiers in Astronomy and Space Sciences最新文献

英文 中文
Terrestrial impact sites as field analogs for planetary exploration 地球撞击点作为行星探索的实地类比
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-30 DOI: 10.3389/fspas.2023.1186173
Philippe Lambert, Wolf Uwe Reimold
Terrestrial impact structures provide the only analogs for hands-on astronaut training or robotic exercises in preparation for fieldwork on other planetary surfaces. Impact structures not only represent the dominant surface features on, inter alia , the Moon, Mars, or asteroids but are also crucial for basic geoscientific surface analysis, subsurface geological studies, and analysis of sites of possible exobiological evidence or economic resources for future colonization of other planetary bodies. We assess 11 terrestrial impact structures of varied age, type, size, and erosion level, the majority of which have already served for astronaut or geoscientist/student training purposes, for their suitability as possible impact geological training sites. This evaluation is achieved through a range of (1) practical criteria (such as access time and site infrastructure) and (2) geological criteria (such as impact geology, target geology, aspects of impact cratering, outcrop conditions, and variety). For the practical criteria, Ries, Rochechouart, and Steinheim score the highest, with a small advantage for Ries. Sudbury and Meteor Crater score similarly, yet much lower than the leaders, with Vredefort in between. Talemzane and Araguainha are just below Meteor Crater. Clearwater West, Haughton, and Mistastin are by far the least suitable ones. Regarding geological criteria, the scores vary much less. The three Northern Canada structures and Steinheim are at the end of the record, yet only 23%–39% below Ries, which comes out as the leader and is closely followed by Araguainha (only 2% below Ries). Although the Northern Canada sites compare in size and type to the younger and less eroded Ries and the Araguainha (older and more eroded) structures, the diversity of impact features and lithologies and the outcrop situation are less favorable. Considering only the geological features and lithologies factors, Rochechouart gets the highest mark, followed by Araguainha, Sudbury, Vredefort, and Ries. In view of the targeted objective, the analog testing experiment places Ries and Rochechouart in the first and second positions, respectively. Steinheim and Vredefort score almost the same in the third and fourth positions, respectively. The three Northern Canada sites score the lowest. Based on their accessibility, relative proximity to each other, and remarkable complementarity in terms of crater type and size, and in terms of impact and target features and lithologies, the combination of the three leading structures (Ries–Rochechouart–Steinheim) may represent the most appropriate target for analog training purposes, from anywhere in the world.
地面撞击结构为宇航员的实际训练或机器人练习提供了唯一的类似物,为在其他行星表面进行实地工作做准备。撞击结构不仅代表了月球、火星或小行星的主要表面特征,而且对于基本的地球科学表面分析、地下地质研究和分析可能的外星生物证据或未来殖民其他行星体的经济资源地点至关重要。我们评估了11个不同年龄、类型、大小和侵蚀程度的陆地撞击结构,其中大多数已经用于宇航员或地球科学家/学生的训练目的,以确定它们是否适合作为可能的撞击地质训练地点。这种评价是通过一系列(1)实用标准(如进入时间和现场基础设施)和(2)地质标准(如撞击地质、目标地质、撞击坑的各个方面、露头条件和多样性)来实现的。在实用标准方面,里斯、罗彻霍哈特和施泰因海姆得分最高,里斯略占优。萨德伯里和陨石坑的得分相似,但比领先者低得多,弗里德堡介于两者之间。塔莱姆赞和阿拉瓜尼亚就在陨石坑下面。克利尔沃特韦斯特、霍顿和米斯塔斯汀是迄今为止最不合适的。就地质标准而言,分数差异要小得多。加拿大北部的三个构造和斯坦海姆位于记录的最后,但仅比里斯低23%-39%,名列榜首,紧随其后的是阿拉瓜尼亚(仅比里斯低2%)。尽管加拿大北部的遗址在规模和类型上与更年轻、受侵蚀较少的里斯和阿拉瓜哈(更古老、受侵蚀更严重)的构造相比较,但撞击特征和岩性的多样性以及露头情况都不太有利。仅考虑地质特征和岩性因素,Rochechouart得分最高,其次是阿拉瓜尼亚、萨德伯里、弗里德堡和里斯。针对目标,模拟测试实验将Ries和Rochechouart分别置于第一和第二位置。施泰因海姆和弗里德堡分别位居第三和第四,得分几乎相同。加拿大北部的三个城市得分最低。基于它们的可达性、相互之间的相对接近性,以及在陨石坑类型和大小、撞击和目标特征和岩性方面的显著互补性,三个主要结构(Ries-Rochechouart-Steinheim)的组合可能代表了世界上任何地方模拟训练目的的最合适的目标。
{"title":"Terrestrial impact sites as field analogs for planetary exploration","authors":"Philippe Lambert, Wolf Uwe Reimold","doi":"10.3389/fspas.2023.1186173","DOIUrl":"https://doi.org/10.3389/fspas.2023.1186173","url":null,"abstract":"Terrestrial impact structures provide the only analogs for hands-on astronaut training or robotic exercises in preparation for fieldwork on other planetary surfaces. Impact structures not only represent the dominant surface features on, inter alia , the Moon, Mars, or asteroids but are also crucial for basic geoscientific surface analysis, subsurface geological studies, and analysis of sites of possible exobiological evidence or economic resources for future colonization of other planetary bodies. We assess 11 terrestrial impact structures of varied age, type, size, and erosion level, the majority of which have already served for astronaut or geoscientist/student training purposes, for their suitability as possible impact geological training sites. This evaluation is achieved through a range of (1) practical criteria (such as access time and site infrastructure) and (2) geological criteria (such as impact geology, target geology, aspects of impact cratering, outcrop conditions, and variety). For the practical criteria, Ries, Rochechouart, and Steinheim score the highest, with a small advantage for Ries. Sudbury and Meteor Crater score similarly, yet much lower than the leaders, with Vredefort in between. Talemzane and Araguainha are just below Meteor Crater. Clearwater West, Haughton, and Mistastin are by far the least suitable ones. Regarding geological criteria, the scores vary much less. The three Northern Canada structures and Steinheim are at the end of the record, yet only 23%–39% below Ries, which comes out as the leader and is closely followed by Araguainha (only 2% below Ries). Although the Northern Canada sites compare in size and type to the younger and less eroded Ries and the Araguainha (older and more eroded) structures, the diversity of impact features and lithologies and the outcrop situation are less favorable. Considering only the geological features and lithologies factors, Rochechouart gets the highest mark, followed by Araguainha, Sudbury, Vredefort, and Ries. In view of the targeted objective, the analog testing experiment places Ries and Rochechouart in the first and second positions, respectively. Steinheim and Vredefort score almost the same in the third and fourth positions, respectively. The three Northern Canada sites score the lowest. Based on their accessibility, relative proximity to each other, and remarkable complementarity in terms of crater type and size, and in terms of impact and target features and lithologies, the combination of the three leading structures (Ries–Rochechouart–Steinheim) may represent the most appropriate target for analog training purposes, from anywhere in the world.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"206 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosignature preparation for ocean worlds (BioPOW) instrument prototype 海洋世界生物签名制备(BioPOW)仪器样机
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-26 DOI: 10.3389/fspas.2023.1244682
Korine A. Duval, Tessa B. Van Volkenburg, Kathleen L. Craft, Chanel M. Person, John S. Harshman, Diarny O. Fernandes, Jennifer S. Benzing, Emil G. McDowell, Tyler W. Nelson, Gautham S. Divakar, Owen M. Pochettino, Mark E. Perry, Christopher E. Bradburne
In situ sampling missions to detect biosignatures on ocean worlds requires thorough sample preparation to manage the expected chemical complexity of such environments. Proposed instruments must be capable of automatic liquid sample handling to ensure sensitive and accurate detections of biosignatures, regardless of the initial chemical composition. Herein, we outline the design, build, and test of the integrated Biosignature Preparation for Ocean Worlds (BioPOW) system capable of purifying amino acids from icy samples. This four step modular instrument 1) melts ice samples, 2) purifies amino acids via cation exchange chromatography, 3) concentrates via vacuum drying, and 4) derivatizes amino acids to volatilize and enable detection with downstream analytical instruments. Initial experiments validated the thermal performance of the system by melting ice in the sample cup (1 mL sample, 3°C–28°C, <5 min, 1.4 kJ) and heating the derivatization tank past the concentration temperature (20°C–60°C, 12 min, 3.6 kJ) to the derivatization temperature (60°C–90°C, 25 min, 7.5 kJ). Later experiments investigated important factors for automatic cation exchange using a design of experiments approach, and found that initial salt concentration, sample and eluate flow rates, and water wash volumes all play significant roles in reducing conductivity (1.1 x–6.7 x) while maintaining phenylalanine yields between 31% and 94%. The modules were then integrated into a 12 cm × 20 cm × 20 cm fieldable platform for analysis, and the maturation of this design for future spaceflight is discussed.
探测海洋世界生物特征的原位采样任务需要彻底的样品准备,以管理这种环境中预期的化学复杂性。建议的仪器必须能够自动液体样品处理,以确保敏感和准确的生物特征检测,而不管初始化学成分如何。在此,我们概述了能够从冰样品中纯化氨基酸的集成生物签名制备海洋世界(BioPOW)系统的设计,构建和测试。这个四步模块化仪器1)融化冰样,2)通过阳离子交换色谱纯化氨基酸,3)通过真空干燥浓缩,4)衍生化氨基酸挥发并使下游分析仪器能够检测。初始实验通过在样品杯中融化冰(1ml样品,3°C - 28°C, 5分钟,1.4 kJ),并将衍生化槽加热超过浓度温度(20°C - 60°C, 12分钟,3.6 kJ)至衍生化温度(60°C - 90°C, 25分钟,7.5 kJ)来验证系统的热性能。随后的实验使用实验设计方法研究了自动阳离子交换的重要因素,发现初始盐浓度、样品和洗脱液流速以及水洗体积都对降低电导率(1.1 x - 6.7 x)发挥重要作用,同时将苯丙氨酸产率保持在31%至94%之间。然后将这些模块集成到一个12 cm × 20 cm × 20 cm的可现场平台上进行分析,并讨论了该设计在未来航天飞行中的成熟度。
{"title":"Biosignature preparation for ocean worlds (BioPOW) instrument prototype","authors":"Korine A. Duval, Tessa B. Van Volkenburg, Kathleen L. Craft, Chanel M. Person, John S. Harshman, Diarny O. Fernandes, Jennifer S. Benzing, Emil G. McDowell, Tyler W. Nelson, Gautham S. Divakar, Owen M. Pochettino, Mark E. Perry, Christopher E. Bradburne","doi":"10.3389/fspas.2023.1244682","DOIUrl":"https://doi.org/10.3389/fspas.2023.1244682","url":null,"abstract":"In situ sampling missions to detect biosignatures on ocean worlds requires thorough sample preparation to manage the expected chemical complexity of such environments. Proposed instruments must be capable of automatic liquid sample handling to ensure sensitive and accurate detections of biosignatures, regardless of the initial chemical composition. Herein, we outline the design, build, and test of the integrated Biosignature Preparation for Ocean Worlds (BioPOW) system capable of purifying amino acids from icy samples. This four step modular instrument 1) melts ice samples, 2) purifies amino acids via cation exchange chromatography, 3) concentrates via vacuum drying, and 4) derivatizes amino acids to volatilize and enable detection with downstream analytical instruments. Initial experiments validated the thermal performance of the system by melting ice in the sample cup (1 mL sample, 3°C–28°C, <5 min, 1.4 kJ) and heating the derivatization tank past the concentration temperature (20°C–60°C, 12 min, 3.6 kJ) to the derivatization temperature (60°C–90°C, 25 min, 7.5 kJ). Later experiments investigated important factors for automatic cation exchange using a design of experiments approach, and found that initial salt concentration, sample and eluate flow rates, and water wash volumes all play significant roles in reducing conductivity (1.1 x–6.7 x) while maintaining phenylalanine yields between 31% and 94%. The modules were then integrated into a 12 cm × 20 cm × 20 cm fieldable platform for analysis, and the maturation of this design for future spaceflight is discussed.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134906534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
cavsiopy: a Python package to calculate and visualize spacecraft instrument orientation cavsiopy:用于计算和可视化航天器仪器方向的Python包
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-26 DOI: 10.3389/fspas.2023.1278794
E. Ceren Kalafatoglu Eyiguler, Warren Holley, Andrew D. Howarth, Donald W. Danskin, Kuldeep Pandey, Carley J. Martin, Robert G. Gillies, Andrew W. Yau, Glenn C. Hussey
Spacecraft attitude plays an important role in the observations of various atmospheric, planetary, and terrestrial parameters and phenomena that are of interest to the scientific community. Precise measurements from imagers, particle sensors, and antennas require accurate knowledge of instrument orientation. cavsiopy is an easy-to-install and use, light-weight open-source Python package for researchers who need to consider instrument pointing direction and observation geometry. cavsiopy contains the coordinate transformation routines and the corresponding rotation matrices from the spacecraft orbital reference frame (ORF) to any of the geocentric equatorial inertial for epoch J2000 (GEI J2K)/International Celestial Reference Frame (ICRF), Earth-centered, Earth-fixed (ECEF), International Terrestrial Reference Frame (ITRF), geodetic north-east-down, and geocentric north-east-center coordinate systems. Additionally, cavsiopy includes routines for importing Swarm-E ephemeris and generic two-line-element (TLE) data files; for the calculation of spacecraft azimuth, elevation, and orbital parameters; as well as for the 2D/3D visualization of the geometry between the instrument and the target. Functionality and utilization of cavsiopy for research problems are demonstrated with examples and visualizations for the Radio Receiver Instrument (RRI) and the Fast Auroral Imager (FAI) of e-POP/Swarm-E.
在观测科学界感兴趣的各种大气、行星和地球参数和现象时,航天器的姿态起着重要作用。来自成像仪、粒子传感器和天线的精确测量需要对仪器方向有准确的了解。cavsiopy是一个易于安装和使用的轻量级开源Python包,适用于需要考虑仪器指向方向和观测几何的研究人员。cavsiopy包含从航天器轨道参考系(ORF)到J2000历元(GEI J2K)/国际天体参考系(ICRF)、地心、地球固定参考系(ECEF)、国际地球参考系(ITRF)、大地东北-下、地心东北-中心坐标系的任意一个地心赤道惯性坐标系的坐标变换例程和相应的旋转矩阵。此外,cavsiopy还包括用于导入Swarm-E星历和通用两行元素(TLE)数据文件的例程;用于航天器方位角、仰角和轨道参数的计算;以及仪器和目标之间的几何图形的2D/3D可视化。通过e-POP/Swarm-E的无线电接收仪(RRI)和快速极光成像仪(FAI)的实例和可视化演示了cavsiopy在研究问题中的功能和利用。
{"title":"cavsiopy: a Python package to calculate and visualize spacecraft instrument orientation","authors":"E. Ceren Kalafatoglu Eyiguler, Warren Holley, Andrew D. Howarth, Donald W. Danskin, Kuldeep Pandey, Carley J. Martin, Robert G. Gillies, Andrew W. Yau, Glenn C. Hussey","doi":"10.3389/fspas.2023.1278794","DOIUrl":"https://doi.org/10.3389/fspas.2023.1278794","url":null,"abstract":"Spacecraft attitude plays an important role in the observations of various atmospheric, planetary, and terrestrial parameters and phenomena that are of interest to the scientific community. Precise measurements from imagers, particle sensors, and antennas require accurate knowledge of instrument orientation. cavsiopy is an easy-to-install and use, light-weight open-source Python package for researchers who need to consider instrument pointing direction and observation geometry. cavsiopy contains the coordinate transformation routines and the corresponding rotation matrices from the spacecraft orbital reference frame (ORF) to any of the geocentric equatorial inertial for epoch J2000 (GEI J2K)/International Celestial Reference Frame (ICRF), Earth-centered, Earth-fixed (ECEF), International Terrestrial Reference Frame (ITRF), geodetic north-east-down, and geocentric north-east-center coordinate systems. Additionally, cavsiopy includes routines for importing Swarm-E ephemeris and generic two-line-element (TLE) data files; for the calculation of spacecraft azimuth, elevation, and orbital parameters; as well as for the 2D/3D visualization of the geometry between the instrument and the target. Functionality and utilization of cavsiopy for research problems are demonstrated with examples and visualizations for the Radio Receiver Instrument (RRI) and the Fast Auroral Imager (FAI) of e-POP/Swarm-E.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"31 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136382166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Magnetic field reconstruction for a realistic multi-point, multi-scale spacecraft observatory 更正:一个现实的多点、多尺度航天器天文台的磁场重建
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-24 DOI: 10.3389/fspas.2023.1197352
T. Broeren, K. G. Klein, J. M. TenBarge, Ivan Dors, O. W. Roberts, D. Verscharen
{"title":"Corrigendum: Magnetic field reconstruction for a realistic multi-point, multi-scale spacecraft observatory","authors":"T. Broeren, K. G. Klein, J. M. TenBarge, Ivan Dors, O. W. Roberts, D. Verscharen","doi":"10.3389/fspas.2023.1197352","DOIUrl":"https://doi.org/10.3389/fspas.2023.1197352","url":null,"abstract":"","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"9 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135321850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responses of the wintertime auroral E-region neutral wind to varying levels of geomagnetic activity 冬季极光e区中性风对不同地磁活动水平的响应
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-23 DOI: 10.3389/fspas.2023.1282724
Weijia Zhan, Stephen R. Keappler
Introduction: The auroral E-region is an important interface where forces from the magnetosphere and the lower atmosphere converge and have a significant effect on the vertical structure of the neutral winds. The resulting vertical neutral wind structure has been reported to be associated with altitude-dependent and nonlinear effects from different forces. We conduct a statistical examination of the reactions of wintertime neutral winds to four various degrees of geomagnetic activity, with a focus on the impacts of ion drag. Methods: We derive neutral winds using the PFISR measurements covering 2010–2019 and will give a statistical view of the auroral E-region neutral wind with a focus on the winter nighttime during different disturbed conditions. We investigate the effects of the geomagnetic activity on the neutral winds and the tidal components by dividing the dataset into 4 subsets. Tidal decomposition is conducted by least square fitting of the seasonal median winds to obtain the mean, diurnal amplitude, diurnal phase, semidiurnal amplitude, and semidiurnal phase. Results and discussion: We find that 1) when geomagnetic activity increases, dawn-dusk asymmetry exists in both zonal and meridional winds in the upper E-region with stronger zonal wind in the dusk sector than in the dawn sector and much stronger meridional wind in the dawn sector than in the dusk sector. 2) Tidal decomposition results reveal that geomagnetic activity has more significant effects on the meridional diurnal amplitude than zonal diurnal amplitude while the zonal and meridional semidiurnal amplitudes show similar changes when the geomagnetic activity increases. In addition, the maximum semidiurnal amplitude, particularly in the zonal direction, appears at a higher altitude with larger values as geomagnetic activity increases, indicating an ascending transition altitude for the semidiurnal oscillations. The ascending trend of maximum semidiurnal amplitude appearing at higher altitudes during more disturbed conditions has not been reported before. 3) Zonal wind over 110 km demonstrates increasing ion drag effects in the evening sector and the effects of coupled ion drag and other factors after midnight.
极光e区是磁层和低层大气力汇聚的重要界面,对中性风的垂直结构有重要影响。据报道,由此产生的垂直中性风结构与不同力的高度依赖和非线性效应有关。我们对冬季中性风对四种不同程度地磁活动的反应进行了统计检查,重点研究了离子阻力的影响。方法:利用2010-2019年的PFISR观测数据推导中性风,并对不同干扰条件下冬季夜间的极光e区中性风进行统计分析。我们将数据集分为4个子集,研究了地磁活动对中性风和潮汐分量的影响。对季节中位风进行最小二乘拟合进行潮汐分解,得到平均、日幅、日相、半日幅和半日相。结果与讨论:1)地磁活动增加时,上e区纬向风和经向风均存在黎明-黄昏不对称性,黄昏扇区纬向风强于黎明扇区,黎明扇区经向风强于黄昏扇区。(2)潮汐分解结果表明,地磁活动对经向日振幅的影响比对纬向日振幅的影响更为显著,而随着地磁活动的增加,纬向和经向半日日振幅的变化趋势相似。此外,随着地磁活动的增加,最大半日振幅,特别是纬向的最大半日振幅出现在更高的高度和更大的值,表明半日振荡的过渡高度上升。在高海拔和高扰动条件下,最大半日日振幅呈上升趋势,以前没有报道过。③110 km以上纬向风在傍晚扇区离子阻力作用增强,午夜后离子阻力等因素的耦合作用增强。
{"title":"Responses of the wintertime auroral E-region neutral wind to varying levels of geomagnetic activity","authors":"Weijia Zhan, Stephen R. Keappler","doi":"10.3389/fspas.2023.1282724","DOIUrl":"https://doi.org/10.3389/fspas.2023.1282724","url":null,"abstract":"Introduction: The auroral E-region is an important interface where forces from the magnetosphere and the lower atmosphere converge and have a significant effect on the vertical structure of the neutral winds. The resulting vertical neutral wind structure has been reported to be associated with altitude-dependent and nonlinear effects from different forces. We conduct a statistical examination of the reactions of wintertime neutral winds to four various degrees of geomagnetic activity, with a focus on the impacts of ion drag. Methods: We derive neutral winds using the PFISR measurements covering 2010–2019 and will give a statistical view of the auroral E-region neutral wind with a focus on the winter nighttime during different disturbed conditions. We investigate the effects of the geomagnetic activity on the neutral winds and the tidal components by dividing the dataset into 4 subsets. Tidal decomposition is conducted by least square fitting of the seasonal median winds to obtain the mean, diurnal amplitude, diurnal phase, semidiurnal amplitude, and semidiurnal phase. Results and discussion: We find that 1) when geomagnetic activity increases, dawn-dusk asymmetry exists in both zonal and meridional winds in the upper E-region with stronger zonal wind in the dusk sector than in the dawn sector and much stronger meridional wind in the dawn sector than in the dusk sector. 2) Tidal decomposition results reveal that geomagnetic activity has more significant effects on the meridional diurnal amplitude than zonal diurnal amplitude while the zonal and meridional semidiurnal amplitudes show similar changes when the geomagnetic activity increases. In addition, the maximum semidiurnal amplitude, particularly in the zonal direction, appears at a higher altitude with larger values as geomagnetic activity increases, indicating an ascending transition altitude for the semidiurnal oscillations. The ascending trend of maximum semidiurnal amplitude appearing at higher altitudes during more disturbed conditions has not been reported before. 3) Zonal wind over 110 km demonstrates increasing ion drag effects in the evening sector and the effects of coupled ion drag and other factors after midnight.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The saturation mechanism of thermal instability 热不稳定性的饱和机理
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-16 DOI: 10.3389/fspas.2023.1198135
Tim Waters, Daniel Proga
The literature on thermal instability (TI) reveals that even for a simple homogeneous plasma, the nonlinear outcome ranges from a gentle reconfiguration of the initial state to an explosive one, depending on whether the condensations that form evolve in an isobaric or nonisobaric manner. After summarizing the recent developments on the linear and nonlinear theory of TI, here we derive several general identities from the evolution equation for entropy that reveal the mechanism by which TI saturates; whenever the boundary of the instability region (the Balbus contour) is crossed, a dynamical change is triggered that causes the comoving time derivative of the pressure to change the sign. This event implies that the gas pressure force reverses direction, slowing the continued growth of condensation. For isobaric evolution, this “pressure reversal” occurs nearly simultaneously for every fluid element in condensation and a steady state is quickly reached. For nonisobaric evolution, the condensation is no longer in mechanical equilibrium and the contracting gas rebounds with greater force during the expansion phase that accompanies the gas reaching the equilibrium curve. The cloud then pulsates because the return to mechanical equilibrium becomes wave mediated. We show that both the contraction rebound event and subsequent pulsation behavior follow analytically from an analysis of the new identities. Our analysis also leads to the identification of an isochoric TI zone and makes it clear that unless this zone intersects the equilibrium curve, isochoric modes can only become unstable if the plasma is in a state of thermal non-equilibrium.
关于热不稳定性(TI)的文献表明,即使是简单的均匀等离子体,其非线性结果也从初始状态的温和重新配置到爆炸状态,这取决于形成的凝聚是否以等压或非等压方式演化。在总结了TI的线性和非线性理论的最新发展之后,我们从熵的演化方程中导出了几个通用恒等式,揭示了TI饱和的机制;每当不稳定区域的边界(Balbus轮廓)被越过时,就会触发一个动态变化,使压力的运动时间导数改变符号。这一事件表明,气体压力力的方向相反,减缓了冷凝的持续增长。对于等压演化,这种“压力反转”几乎同时发生在冷凝中的每一种流体元素上,并迅速达到稳定状态。对于非等压演化,冷凝不再处于力学平衡状态,在气体到达平衡曲线的膨胀阶段,收缩气体以更大的力反弹。然后云团会脉动,因为回归到机械平衡的过程会以波为媒介。通过对新恒等式的分析,我们证明了收缩反弹事件和随后的脉动行为的解析性。我们的分析还导致了TI等共线区的识别,并清楚地表明,除非该区域与平衡曲线相交,否则等共线模式只有在等离子体处于热非平衡状态时才会变得不稳定。
{"title":"The saturation mechanism of thermal instability","authors":"Tim Waters, Daniel Proga","doi":"10.3389/fspas.2023.1198135","DOIUrl":"https://doi.org/10.3389/fspas.2023.1198135","url":null,"abstract":"The literature on thermal instability (TI) reveals that even for a simple homogeneous plasma, the nonlinear outcome ranges from a gentle reconfiguration of the initial state to an explosive one, depending on whether the condensations that form evolve in an isobaric or nonisobaric manner. After summarizing the recent developments on the linear and nonlinear theory of TI, here we derive several general identities from the evolution equation for entropy that reveal the mechanism by which TI saturates; whenever the boundary of the instability region (the Balbus contour) is crossed, a dynamical change is triggered that causes the comoving time derivative of the pressure to change the sign. This event implies that the gas pressure force reverses direction, slowing the continued growth of condensation. For isobaric evolution, this “pressure reversal” occurs nearly simultaneously for every fluid element in condensation and a steady state is quickly reached. For nonisobaric evolution, the condensation is no longer in mechanical equilibrium and the contracting gas rebounds with greater force during the expansion phase that accompanies the gas reaching the equilibrium curve. The cloud then pulsates because the return to mechanical equilibrium becomes wave mediated. We show that both the contraction rebound event and subsequent pulsation behavior follow analytically from an analysis of the new identities. Our analysis also leads to the identification of an isochoric TI zone and makes it clear that unless this zone intersects the equilibrium curve, isochoric modes can only become unstable if the plasma is in a state of thermal non-equilibrium.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136113755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A possible mechanism for the formation of an eastward moving auroral spiral 一种可能形成向东移动的极光螺旋的机制
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-13 DOI: 10.3389/fspas.2023.1240081
Katharina N. Maetschke, Elena A. Kronberg, Noora Partamies, Elena E. Grigorenko
The generation process of auroral spirals is described by different theories varying for their morphology and surrounding conditions. Here, a possible mechanism is proposed for an eastward moving auroral spiral, which was observed in Tromsø, Norway, during the expansion phase of a substorm on 18 September 2013. Measurements from the THEMIS-A and Cluster spacecraft were analyzed, which were located up to ∼10 R E duskward from the spiral generator region in the magnetosphere. Precursory to the spiral observation, concurrent magnetic field dipolarizations, flow bursts and electron injections were measured by the Cluster satellites between 13.6 and 14.2 R E radial distance from Earth. A local Kelvin-Helmholtz-like vortex street in the magnetic field was detected at the same time, which was likely caused by bursty bulk flows. The vortex street was oriented approximately in the X-Y (GSE) plane and presumably propagated towards the source region of the spiral due to a high dawnward velocity component in the flow bursts. The observations suggest that the spiral can have been generated by an associated vortex in the magnetotail and then mapped along the magnetic field lines to the ionosphere. To better understand the role of the ionosphere in auroral spiral generation, in future more mesoscale observations are required.
不同的理论描述了极光螺旋的产生过程,它们的形态和周围条件各不相同。本文提出了2013年9月18日在挪威特罗姆瑟观测到的一个向东移动的极光螺旋的可能机制。来自THEMIS-A和Cluster航天器的测量结果进行了分析,它们位于磁层中螺旋发生器区域向暗约10 R E处。在此之前,星系团卫星在距离地球13.6 ~ 14.2 R E的径向距离上测量了同步磁场双极化、爆发流和电子注入。同时,在磁场中发现了一个局部的类似开尔文-亥姆霍兹的涡旋街,这可能是由突发的大块流引起的。旋涡街大致在X-Y (GSE)平面上,由于流爆发中较高的向南速度分量,可能向螺旋源区域传播。观测结果表明,螺旋可能是由磁尾中相关的涡流产生的,然后沿着磁力线映射到电离层。为了更好地了解电离层在极光螺旋产生中的作用,未来需要更多的中尺度观测。
{"title":"A possible mechanism for the formation of an eastward moving auroral spiral","authors":"Katharina N. Maetschke, Elena A. Kronberg, Noora Partamies, Elena E. Grigorenko","doi":"10.3389/fspas.2023.1240081","DOIUrl":"https://doi.org/10.3389/fspas.2023.1240081","url":null,"abstract":"The generation process of auroral spirals is described by different theories varying for their morphology and surrounding conditions. Here, a possible mechanism is proposed for an eastward moving auroral spiral, which was observed in Tromsø, Norway, during the expansion phase of a substorm on 18 September 2013. Measurements from the THEMIS-A and Cluster spacecraft were analyzed, which were located up to ∼10 R E duskward from the spiral generator region in the magnetosphere. Precursory to the spiral observation, concurrent magnetic field dipolarizations, flow bursts and electron injections were measured by the Cluster satellites between 13.6 and 14.2 R E radial distance from Earth. A local Kelvin-Helmholtz-like vortex street in the magnetic field was detected at the same time, which was likely caused by bursty bulk flows. The vortex street was oriented approximately in the X-Y (GSE) plane and presumably propagated towards the source region of the spiral due to a high dawnward velocity component in the flow bursts. The observations suggest that the spiral can have been generated by an associated vortex in the magnetotail and then mapped along the magnetic field lines to the ionosphere. To better understand the role of the ionosphere in auroral spiral generation, in future more mesoscale observations are required.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135854182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turbulent dipolarization regions in the Earth’s magnetotail: ion fluxes and magnetic field changes 地球磁尾中的湍流双极化区:离子通量和磁场变化
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-13 DOI: 10.3389/fspas.2023.1226200
Liudmyla Kozak, Elena A. Kronberg, Bohdan Petrenko, Aljona Blöcker, Roman Akhmetshyn, Istvan Ballai, Viktor Fedun
In this work, we consider the dynamics of ion fluxes and magnetic field changes in turbulent regions of magnetotail dipolarizations. The data from the Cluster-II mission (magnetic field measurements from fluxgate magnetometers and energetic charged particle observations from RAPID spectrometers) were used for the analysis. We study individual events and investigate statistically the changes of charged particle fluxes during magnetic field dipolarizations observed during 2001–2015. Received changes in the spectral index indicate that CNO+ ions undergo stronger acceleration during dipolarization than protons and helium ions. Before dipolarization front monotonic growth the ions flux is observed (the maximum of flux is observed at 1–1,5 min after the start of dipolarization) in the range of ∼ 92–374 keV for proton; in the energy range ∼ 138–235 keV for He+ and in the energy range of 414–638 keV for CNO+ ions. Flux increase before arriving dipolarization front may result from the reflection of plasma sheet ions at the dipolarization front and the result of the resonant interactions of ions with low-frequency electromagnetic waves.
在这项工作中,我们考虑了离子通量的动力学和磁场的变化在磁尾双极化的湍流区域。分析使用了群集ii任务的数据(磁通门磁力计的磁场测量和RAPID光谱仪的高能带电粒子观测)。我们研究了单个事件,并统计研究了2001-2015年观测到的磁场双极化期间带电粒子通量的变化。接收到的光谱指数变化表明,CNO+离子在双极化过程中比质子和氦离子承受更强的加速度。在双极化锋单调生长前,质子的离子通量在~ 92-374 keV范围内(在双极化开始后1 - 1,5 min达到最大值);He+在~ 138 ~ 235 keV的能量范围内,CNO+在414 ~ 638 keV的能量范围内。到达双极化锋前的通量增加可能是等离子体片离子在双极化锋处的反射和离子与低频电磁波共振相互作用的结果。
{"title":"Turbulent dipolarization regions in the Earth’s magnetotail: ion fluxes and magnetic field changes","authors":"Liudmyla Kozak, Elena A. Kronberg, Bohdan Petrenko, Aljona Blöcker, Roman Akhmetshyn, Istvan Ballai, Viktor Fedun","doi":"10.3389/fspas.2023.1226200","DOIUrl":"https://doi.org/10.3389/fspas.2023.1226200","url":null,"abstract":"In this work, we consider the dynamics of ion fluxes and magnetic field changes in turbulent regions of magnetotail dipolarizations. The data from the Cluster-II mission (magnetic field measurements from fluxgate magnetometers and energetic charged particle observations from RAPID spectrometers) were used for the analysis. We study individual events and investigate statistically the changes of charged particle fluxes during magnetic field dipolarizations observed during 2001–2015. Received changes in the spectral index indicate that CNO+ ions undergo stronger acceleration during dipolarization than protons and helium ions. Before dipolarization front monotonic growth the ions flux is observed (the maximum of flux is observed at 1–1,5 min after the start of dipolarization) in the range of ∼ 92–374 keV for proton; in the energy range ∼ 138–235 keV for He+ and in the energy range of 414–638 keV for CNO+ ions. Flux increase before arriving dipolarization front may result from the reflection of plasma sheet ions at the dipolarization front and the result of the resonant interactions of ions with low-frequency electromagnetic waves.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135853799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using the Perseverance MEDA-RDS to identify and track dust devils and dust-lifting gust fronts 利用恒心气象- rds识别及追踪尘卷风及起尘阵风锋
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-11 DOI: 10.3389/fspas.2023.1221726
D. Toledo, V. Apéstigue, J. Martinez-Oter, F. Franchi, F. Serrano, M. Yela, M. de la Torre Juarez, J. A. Rodriguez-Manfredi, I. Arruego
In the framework of the Europlanet 2024 Research Infrastructure Transnational Access programme, a terrestrial field campaign was conducted from 29 September to 6 October 2021 in Makgadikgadi Salt Pans (Botswana). The main goal of the campaign was to study in situ the impact of the dust devils (DDs) on the observations made by the radiometer Radiation and Dust Sensor (RDS), which is part of the Mars Environmental Dynamics Analyzer instrument, on board NASA’s Mars 2020 Perseverance rover. Several DDs and dust lifting events caused by non-vortex wind gusts were detected using the RDS, and the different impacts of these events were analyzed in the observations. DD diameter, advection velocity, and trajectory were derived from the RDS observations, and then, panoramic videos of such events were used to validate these results. The instrument signal variations produced by dust lifting (by vortices or wind gusts) in Makgadikgadi Pans are similar to those observed on Mars with the RDS, showing the potential of this location as a Martian DD analog.
在欧洲行星2024年研究基础设施跨国准入计划的框架下,于2021年9月29日至10月6日在Makgadikgadi盐田(博茨瓦纳)开展了地面实地活动。该活动的主要目标是原位研究尘卷风(dd)对辐射和尘埃传感器(RDS)观测结果的影响,RDS是美国宇航局火星2020毅力号漫游车上的火星环境动力学分析仪仪器的一部分。利用RDS检测了几种非涡旋阵风引起的dd和扬尘事件,并在观测中分析了这些事件的不同影响。利用RDS观测得到了DD直径、平流速度和轨迹,并利用这些事件的全景视频对结果进行了验证。在Makgadikgadi平原,由尘埃提升(由漩涡或阵风)产生的仪器信号变化与在火星上用RDS观测到的相似,显示了这个位置作为火星DD模拟的潜力。
{"title":"Using the Perseverance MEDA-RDS to identify and track dust devils and dust-lifting gust fronts","authors":"D. Toledo, V. Apéstigue, J. Martinez-Oter, F. Franchi, F. Serrano, M. Yela, M. de la Torre Juarez, J. A. Rodriguez-Manfredi, I. Arruego","doi":"10.3389/fspas.2023.1221726","DOIUrl":"https://doi.org/10.3389/fspas.2023.1221726","url":null,"abstract":"In the framework of the Europlanet 2024 Research Infrastructure Transnational Access programme, a terrestrial field campaign was conducted from 29 September to 6 October 2021 in Makgadikgadi Salt Pans (Botswana). The main goal of the campaign was to study in situ the impact of the dust devils (DDs) on the observations made by the radiometer Radiation and Dust Sensor (RDS), which is part of the Mars Environmental Dynamics Analyzer instrument, on board NASA’s Mars 2020 Perseverance rover. Several DDs and dust lifting events caused by non-vortex wind gusts were detected using the RDS, and the different impacts of these events were analyzed in the observations. DD diameter, advection velocity, and trajectory were derived from the RDS observations, and then, panoramic videos of such events were used to validate these results. The instrument signal variations produced by dust lifting (by vortices or wind gusts) in Makgadikgadi Pans are similar to those observed on Mars with the RDS, showing the potential of this location as a Martian DD analog.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136064020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full-wave modeling of EMIC wave packets: ducted propagation and reflected waves 主波包的全波建模:导管传播和反射波
3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-10 DOI: 10.3389/fspas.2023.1251563
Miroslav Hanzelka, Wen Li, Qianli Ma, Murong Qin, Xiao-Chen Shen, Luisa Capannolo, Longzhi Gan
Electromagnetic ion cyclotron (EMIC) waves can scatter radiation belt electrons with energies of a few hundred keV and higher. To accurately predict this scattering and the resulting precipitation of these relativistic electrons on short time scales, we need detailed knowledge of the wave field’s spatio-temporal evolution, which cannot be obtained from single spacecraft measurements. Our study presents EMIC wave models obtained from two-dimensional (2D) finite-difference time-domain (FDTD) simulations in the Earth’s dipole magnetic field. We study cases of hydrogen band and helium band wave propagation, rising-tone emissions, packets with amplitude modulations, and ducted waves. We analyze the wave propagation properties in the time domain, enabling comparison with in situ observations. We show that cold plasma density gradients can keep the wave vector quasiparallel, guide the wave energy efficiently, and have a profound effect on mode conversion and reflections. The wave normal angle of unducted waves increases rapidly with latitude, resulting in reflection on the ion hybrid frequency, which prohibits propagation to low altitudes. The modeled wave fields can serve as an input for test-particle analysis of scattering and precipitation of relativistic electrons and energetic ions.
电磁离子回旋波可以散射能量为几百千电子伏特或更高的辐射带电子。为了在短时间尺度上准确地预测这种散射和由此产生的相对论性电子的沉淀,我们需要详细了解波场的时空演化,这是单次航天器测量无法获得的。我们的研究提出了从地球偶极磁场的二维时域有限差分(FDTD)模拟中获得的位波模型。我们研究了氢带和氦带波的传播、升音发射、带振幅调制的包和导管波。我们分析了波在时域的传播特性,并与现场观测结果进行了比较。我们发现冷等离子体密度梯度可以保持波矢量的准平行,有效地引导波能量,并对模式转换和反射产生深远的影响。导波的波法向角随纬度的增加而迅速增加,导致离子混合频率的反射,这阻止了低海拔的传播。模拟的波场可以作为相对论性电子和高能离子散射和沉淀的测试粒子分析的输入。
{"title":"Full-wave modeling of EMIC wave packets: ducted propagation and reflected waves","authors":"Miroslav Hanzelka, Wen Li, Qianli Ma, Murong Qin, Xiao-Chen Shen, Luisa Capannolo, Longzhi Gan","doi":"10.3389/fspas.2023.1251563","DOIUrl":"https://doi.org/10.3389/fspas.2023.1251563","url":null,"abstract":"Electromagnetic ion cyclotron (EMIC) waves can scatter radiation belt electrons with energies of a few hundred keV and higher. To accurately predict this scattering and the resulting precipitation of these relativistic electrons on short time scales, we need detailed knowledge of the wave field’s spatio-temporal evolution, which cannot be obtained from single spacecraft measurements. Our study presents EMIC wave models obtained from two-dimensional (2D) finite-difference time-domain (FDTD) simulations in the Earth’s dipole magnetic field. We study cases of hydrogen band and helium band wave propagation, rising-tone emissions, packets with amplitude modulations, and ducted waves. We analyze the wave propagation properties in the time domain, enabling comparison with in situ observations. We show that cold plasma density gradients can keep the wave vector quasiparallel, guide the wave energy efficiently, and have a profound effect on mode conversion and reflections. The wave normal angle of unducted waves increases rapidly with latitude, resulting in reflection on the ion hybrid frequency, which prohibits propagation to low altitudes. The modeled wave fields can serve as an input for test-particle analysis of scattering and precipitation of relativistic electrons and energetic ions.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136294181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Astronomy and Space Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1