Robotic assisted unicompartmental knee arthroplasty (RAUKA) has emerged as a successful approach for optimizing implant positioning accuracy, minimizing soft tissue injury, and improving patient-reported outcomes. The application of RAUKA is expected to increase because of its advantages over conventional unicompartmental knee arthroplasty. This review article provides an overview of RAUKA, encompassing the historical development of the procedure, the features of the robotic arm and navigation systems, and the characteristics of contemporary RAUKA. The article also includes a comparison between conventional unicompartmental arthroplasty and RAUKA, as well as a discussion of current challenges and future advancements in the field of RAUKA.
Parkinson's disease (PD) is a neurodegenerative disorder affecting people worldwide. The PD symptoms are divided into motor and non-motor symptoms. Detection of PD is very crucial and essential. Such challenges can be overcome by applying artificial intelligence to diagnose PD. Many studies have also proposed the implementation of computer-aided diagnosis for the detection of PD. This systematic review comprehensively analyzed all appropriate algorithms for detecting and assessing PD based on the literature from 2012 to 2023 which are conducted as per PRISMA model. This review focused on motor symptoms, namely handwriting dynamics, voice impairments and gait, multimodal features, and brain observation using single photon emission computed tomography, magnetic resonance and electroencephalogram signals. The significant challenges are critically analyzed, and appropriate recommendations are provided. The critical discussion of this review article can be helpful in today's PD community in such a way that it allows clinicians to provide proper treatment and timely medication.
This study conducted a systematic review to determine the feasibility of automatic Cyclic Alternating Pattern (CAP) analysis. Specifically, this review followed the 2020 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to address the formulated research question: is automatic CAP analysis viable for clinical application? From the identified 1,280 articles, the review included 35 studies that proposed various methods for examining CAP, including the classification of A phase, their subtypes, or the CAP cycles. Three main trends were observed over time regarding A phase classification, starting with mathematical models or features classified with a tuned threshold, followed by using conventional machine learning models and, recently, deep learning models. Regarding the CAP cycle detection, it was observed that most studies employed a finite state machine to implement the CAP scoring rules, which depended on an initial A phase classifier, stressing the importance of developing suitable A phase detection models. The assessment of A-phase subtypes has proven challenging due to various approaches used in the state-of-the-art for their detection, ranging from multiclass models to creating a model for each subtype. The review provided a positive answer to the main research question, concluding that automatic CAP analysis can be reliably performed. The main recommended research agenda involves validating the proposed methodologies on larger datasets, including more subjects with sleep-related disorders, and providing the source code for independent confirmation.
Purpose We aim to evaluate the diagnostic performance of the SleepImage Ring device in identifying obstructive sleep apnea (OSA) across different severity in comparison to standard polysomnography (PSG). Methods Thirty-nine patients (mean age, 56.8 ± 15.0 years; 29 [74.3%] males) were measured with the SleepImage Ring and PSG study simultaneously in order to evaluate the diagnostic performance of the SleepImage device for diagnosing OSA. Variables such as sensitivity, specificity, positive and negative likelihood ratio, positive and negative predictive value, and accuracy were calculated with PSG-AHI thresholds of 5, 15, and 30 events/h. Receiver operating characteristic curves were also built according to the above PSG-AHI thresholds. In addition, we analyzed the correlation and agreement between the apnea-hypopnea index (AHI) obtained from the two measurement devices. Results There was a strong correlation (r = 0.89, P < 0.001 and high agreement in AHI between the SleepImage Ring and standard PSG. Also, the SleepImage Ring showed reliable diagnostic capability, with areas under the receiver operating characteristic curve of 1.00 (95% CI, 0.91, 1.00), 0.90 (95% CI, 0.77, 0.97), and 0.98 (95% CI, 0.88, 1.000) for corresponding PSG-AHI of 5, 15 and 30 events/h, respectively. Conclusion The SleepImage Ring could be a clinically reliable and cheaper alternative to the gold standard PSG when aiming to diagnose OSA in adults.
Supplementary information: The online version contains supplementary material available at 10.1007/s13534-023-00304-9.