Pub Date : 2023-10-09DOI: 10.1080/19386362.2023.2264052
W. Elsiwi, M. Gunaratne, G. Mullins
ABSTRACTA dynamic finite element methodology (FEM) was developed to simulate an entire dynamic replacement (DR) program of clay with sand involving multiple poundings. The main objective of this research was to employ FEM and geotechnical test data such as cone penetration test (CPT) data at the site to predict the maximum achievable sand column (SC) depth and the corresponding optimum levels of attributing parameters such as number and height of pounder drops. Another goal was to predict the pore pressure generated in clay due to pounding. A full-scale ground improvement project was used to guide the analytical process. Comparison of FEM predictions and field measurements showed the potential of using FEM to achieve the above objectives in advance of the field work. Finally, a step – by-step procedure for using a FEM procedure to predict the optimum field setup and hence improve the efficacy of DR field implementation is illustrated.KEYWORDS: Dynamic replacementFEMsand columnground improvement Disclosure statementNo potential conflict of interest was reported by the author(s).
{"title":"Application of FEM tools in efficient field implementation of dynamic replacement of soft soils","authors":"W. Elsiwi, M. Gunaratne, G. Mullins","doi":"10.1080/19386362.2023.2264052","DOIUrl":"https://doi.org/10.1080/19386362.2023.2264052","url":null,"abstract":"ABSTRACTA dynamic finite element methodology (FEM) was developed to simulate an entire dynamic replacement (DR) program of clay with sand involving multiple poundings. The main objective of this research was to employ FEM and geotechnical test data such as cone penetration test (CPT) data at the site to predict the maximum achievable sand column (SC) depth and the corresponding optimum levels of attributing parameters such as number and height of pounder drops. Another goal was to predict the pore pressure generated in clay due to pounding. A full-scale ground improvement project was used to guide the analytical process. Comparison of FEM predictions and field measurements showed the potential of using FEM to achieve the above objectives in advance of the field work. Finally, a step – by-step procedure for using a FEM procedure to predict the optimum field setup and hence improve the efficacy of DR field implementation is illustrated.KEYWORDS: Dynamic replacementFEMsand columnground improvement Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1080/19386362.2023.2264056
Hari Gopinadhanpillai, Balu Elias George
ABSTRACTObservations of Plate Load Tests conducted on 12 locations in the coastal belt of central Kerala, India, to investigate the performance of soft soil improved by Floating Stone Compaction Pile (FSCP) groups are presented in this paper. The soil in the sites chosen was predominantly cohesive with low shear strength. FSCPs 100mm in diameter spaced at 300mm center-to-center, and constructed using 6 mm broken stones were installed to a depth of 5.0 m. The improvement in bearing capacity, Elastic Modulus, and Modulus of Subgrade reaction of the soil were evaluated after 6 months. From the results, it was seen that an average increase of 85% in modulus of subgrade reaction, 52% for bearing capacity, and 90% for elastic modulus was gained due to the installation of FSCPs. The additional cost involved for the installation of FSCPs is only around 2% of the total cost for the construction of the structure, proving the method to be a cost-effective option.KEYWORDS: Ground improvementFloating Stone Compaction Pile (FSCP)plate load testcohesive soil AcknowledgmentsThe support by funding from Cochin Geotechnical Laboratory, India, National Institute of Technology, Calicut Kerala, and the facilities provided at the construction sites are acknowledgedDisclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementSome or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.
{"title":"Bearing capacity, elastic modulus, and modulus of subgrade reaction of soft soil improved by floating stone compaction pile group","authors":"Hari Gopinadhanpillai, Balu Elias George","doi":"10.1080/19386362.2023.2264056","DOIUrl":"https://doi.org/10.1080/19386362.2023.2264056","url":null,"abstract":"ABSTRACTObservations of Plate Load Tests conducted on 12 locations in the coastal belt of central Kerala, India, to investigate the performance of soft soil improved by Floating Stone Compaction Pile (FSCP) groups are presented in this paper. The soil in the sites chosen was predominantly cohesive with low shear strength. FSCPs 100mm in diameter spaced at 300mm center-to-center, and constructed using 6 mm broken stones were installed to a depth of 5.0 m. The improvement in bearing capacity, Elastic Modulus, and Modulus of Subgrade reaction of the soil were evaluated after 6 months. From the results, it was seen that an average increase of 85% in modulus of subgrade reaction, 52% for bearing capacity, and 90% for elastic modulus was gained due to the installation of FSCPs. The additional cost involved for the installation of FSCPs is only around 2% of the total cost for the construction of the structure, proving the method to be a cost-effective option.KEYWORDS: Ground improvementFloating Stone Compaction Pile (FSCP)plate load testcohesive soil AcknowledgmentsThe support by funding from Cochin Geotechnical Laboratory, India, National Institute of Technology, Calicut Kerala, and the facilities provided at the construction sites are acknowledgedDisclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementSome or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135482681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACTBy using a grey box AI model, a comprehensive study is presented on the behaviour prediction of alum sludge as a soil stabilizer. To creat models for predicting the California bearing rtio (CBR) of alum sludge as a soil stabilizer, the study employs statistical models, including multiple linear regression (MLR) and Partial least squares (PLS), and advanced artificial intelligence, including classificatoin and regression random forests (CRRF) and classification and regression trees (CART). Results show that CRRF and CART models accurately predict CBR values better than MLR and PLS models. For predicting the behaviour of alum sludge in soil stablization, the compaction number of hammer and sludge content were the most significant parameters. Gs and optimum moisture content of soil were the least important parameters. Study results provide valuable insights into alum sludge’s behaviour as a soil stablizer, which could reduce waste and promote sustainable practice.KEYWORDS: Sustainabilityrecyclingwater treatment sludgealum sludgeAIsoil stabiliser Disclosure statementNo potential conflict of interest was reported by the author(s).
{"title":"AI grey box model for alum sludge as a soil stabilizer: an accurate predictive tool","authors":"Abolfazl Baghbani, Minh Duc Nguyen, Bidur Kafle, Hasan Baghbani, Roohollah Shirani Faradonbeh","doi":"10.1080/19386362.2023.2258749","DOIUrl":"https://doi.org/10.1080/19386362.2023.2258749","url":null,"abstract":"ABSTRACTBy using a grey box AI model, a comprehensive study is presented on the behaviour prediction of alum sludge as a soil stabilizer. To creat models for predicting the California bearing rtio (CBR) of alum sludge as a soil stabilizer, the study employs statistical models, including multiple linear regression (MLR) and Partial least squares (PLS), and advanced artificial intelligence, including classificatoin and regression random forests (CRRF) and classification and regression trees (CART). Results show that CRRF and CART models accurately predict CBR values better than MLR and PLS models. For predicting the behaviour of alum sludge in soil stablization, the compaction number of hammer and sludge content were the most significant parameters. Gs and optimum moisture content of soil were the least important parameters. Study results provide valuable insights into alum sludge’s behaviour as a soil stablizer, which could reduce waste and promote sustainable practice.KEYWORDS: Sustainabilityrecyclingwater treatment sludgealum sludgeAIsoil stabiliser Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135154254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06DOI: 10.1080/19386362.2023.2254135
V. Elamathi, S. Jayalekshmi
{"title":"Effect of mineralogical composition and chemical properties on the consolidation behaviour of clay soils","authors":"V. Elamathi, S. Jayalekshmi","doi":"10.1080/19386362.2023.2254135","DOIUrl":"https://doi.org/10.1080/19386362.2023.2254135","url":null,"abstract":"","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49169160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.1080/19386362.2023.2254132
Abdellah Cherif Taiba, Y. Mahmoudi, M. Belkhatir
ABSTRACT The objective of this research is to develop novel empirical equations to predict the extreme void ratios of sand-fly ash mixtures. These equations rely on multiple variables derived from the particle morphology properties of three different types of sandy materials. These sands are mixed with varying fractions of spherical fly ash particles, ranging from 0% to 30% fly ash content. High-quality microscope images of individual particles are used to determine the particle morphology properties. The analysis of the results confirms that combining these particle morphology properties (Acom, Scom, ARcom, Cxcom, and ORcom) provides suitable factors for predicting the extreme void ratios of the examined sand-fly ash mixtures. Furthermore, the study clearly demonstrates the significant influence of particle morphology on the packing density of the materials. The developed multi-variable functions can be systematically employed to predict the limit void ratios of sand-fly ash mixtures commonly encountered in various geotechnical engineering applications.
{"title":"New empirical equations for limiting void ratios as function of particle morphology properties of sand-fly ash binary assemblies","authors":"Abdellah Cherif Taiba, Y. Mahmoudi, M. Belkhatir","doi":"10.1080/19386362.2023.2254132","DOIUrl":"https://doi.org/10.1080/19386362.2023.2254132","url":null,"abstract":"ABSTRACT The objective of this research is to develop novel empirical equations to predict the extreme void ratios of sand-fly ash mixtures. These equations rely on multiple variables derived from the particle morphology properties of three different types of sandy materials. These sands are mixed with varying fractions of spherical fly ash particles, ranging from 0% to 30% fly ash content. High-quality microscope images of individual particles are used to determine the particle morphology properties. The analysis of the results confirms that combining these particle morphology properties (Acom, Scom, ARcom, Cxcom, and ORcom) provides suitable factors for predicting the extreme void ratios of the examined sand-fly ash mixtures. Furthermore, the study clearly demonstrates the significant influence of particle morphology on the packing density of the materials. The developed multi-variable functions can be systematically employed to predict the limit void ratios of sand-fly ash mixtures commonly encountered in various geotechnical engineering applications.","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47801394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/19386362.2023.2246234
Moustafa Abdulrahim Mohamedsalih, A. K. Abd El Aal, Ahmed E. Radwan, Gamil M. S. Abdullah, Mabkhoot Al Saiari
ABSTRACT The rock crushing process produces powdered materials, and tons of these are buried as waste in low-lying areas, dumped on plains, or stacked on them across large areas, negatively impacting the Najran region’s environment in Saudi Arabia, and later they have been used to create manufactured sand (MS). We have studied the feasibility of using Najran MS in the industry of concrete (whose constituents are cement, sand, gravel, and water) by replacing it partially with natural sand in different percentages (20%, 30%, 40%, 60%, and 80%). Based on the British specifications, the physical and mechanical tests of the aggregate and concrete were performed on the Najran manufactured sand concrete samples and compared to conventional concrete samples. In addition, ultrasound tests and scanning electron microscopy of samples were performed to study their internal characteristics. Through the physical tests that were carried out on the two samples of natural sand and Najran manufactured sand, it was found that, except for the absorption of the manufactured sand, they are within the limits of the required British specifications, where the bulk particle density was 2.6 gm/cm 3 and 2.8 gm/cm 3 and the absorption was 1.85% and 9.94% for both natural sand and Najran manufactured sand, respectively. The gradation of natural sand was classified as medium, and the Najran manufactured sand was coarse, falling within the limits of the gradation. According to the ultrasonic test and scanning electron microscope of the concrete samples, it was found that the density of hardened concrete increases by increasing the percentage of Najran manufactured sand replacing natural sand in the concrete mix up to 40%, where the enhancement was 51.78% and 53.46% for the bulk density and the dry density, respectively, subsequently the density decreases gradually. Eventually, it is found that the optimum content of Najran manufactured sand that required improving the mechanical properties of the produced concrete is 40% replacement for natural sand, which gains enhancements of 13.75% for both compressive strength and flexural strength, and 11.9% for splitting strength, respectively, when compared with the properties of conventional concrete. This study can help to manage and reduce significant environmental pollution problems, as well as develop sustainable, low-cost materials that can be used in buildings by low-income people, particularly in Saudi Arabia.
{"title":"Feasibility of Najran rocks crushing waste as manufactured sand in the sustainable concrete industry in the Kingdom of Saudi Arabia","authors":"Moustafa Abdulrahim Mohamedsalih, A. K. Abd El Aal, Ahmed E. Radwan, Gamil M. S. Abdullah, Mabkhoot Al Saiari","doi":"10.1080/19386362.2023.2246234","DOIUrl":"https://doi.org/10.1080/19386362.2023.2246234","url":null,"abstract":"ABSTRACT The rock crushing process produces powdered materials, and tons of these are buried as waste in low-lying areas, dumped on plains, or stacked on them across large areas, negatively impacting the Najran region’s environment in Saudi Arabia, and later they have been used to create manufactured sand (MS). We have studied the feasibility of using Najran MS in the industry of concrete (whose constituents are cement, sand, gravel, and water) by replacing it partially with natural sand in different percentages (20%, 30%, 40%, 60%, and 80%). Based on the British specifications, the physical and mechanical tests of the aggregate and concrete were performed on the Najran manufactured sand concrete samples and compared to conventional concrete samples. In addition, ultrasound tests and scanning electron microscopy of samples were performed to study their internal characteristics. Through the physical tests that were carried out on the two samples of natural sand and Najran manufactured sand, it was found that, except for the absorption of the manufactured sand, they are within the limits of the required British specifications, where the bulk particle density was 2.6 gm/cm 3 and 2.8 gm/cm 3 and the absorption was 1.85% and 9.94% for both natural sand and Najran manufactured sand, respectively. The gradation of natural sand was classified as medium, and the Najran manufactured sand was coarse, falling within the limits of the gradation. According to the ultrasonic test and scanning electron microscope of the concrete samples, it was found that the density of hardened concrete increases by increasing the percentage of Najran manufactured sand replacing natural sand in the concrete mix up to 40%, where the enhancement was 51.78% and 53.46% for the bulk density and the dry density, respectively, subsequently the density decreases gradually. Eventually, it is found that the optimum content of Najran manufactured sand that required improving the mechanical properties of the produced concrete is 40% replacement for natural sand, which gains enhancements of 13.75% for both compressive strength and flexural strength, and 11.9% for splitting strength, respectively, when compared with the properties of conventional concrete. This study can help to manage and reduce significant environmental pollution problems, as well as develop sustainable, low-cost materials that can be used in buildings by low-income people, particularly in Saudi Arabia.","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47561399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.1080/19386362.2023.2251796
Neetu Yadav, R. Kumar, Radha J. Gonawala
{"title":"Engineering properties of construction and demolition material blends for pavement subbase applications","authors":"Neetu Yadav, R. Kumar, Radha J. Gonawala","doi":"10.1080/19386362.2023.2251796","DOIUrl":"https://doi.org/10.1080/19386362.2023.2251796","url":null,"abstract":"","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47521448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT Mixing carpet fibre in sand offers great potential for enhancing soil properties. In this study, direct shear tests were conducted on two different sands mixed with varying carpet fibre percentages to investigate the effects on soil strength, stiffness, and deformation. Artificial intelligence techniques were used to analyse the data and develop predictive models, including an empirical equation that predicts the shear strength. The results showed that the addition of carpet fibre improved soil properties, with increased strength, stiffness, and reduced deformation. The AI models, including the empirical equation, accurately predicted the mixture's shear strength. Furthermore, this study investigated the importance of each input parameter in predicting the mixture's shear strength. The input parameters are normal stress, void ratio, mean particle size, and the ratio of carpet fibre content to specific gravity. According to the results, normal stress is the most important parameter, and mean particle size is the least important.
{"title":"Shear strength characteristics of binary mixture sand-carpet fibre using experimental study and machine learning","authors":"Firas Daghistani, Abolfazl Baghbani, Hossam Abuel Naga","doi":"10.1080/19386362.2023.2246247","DOIUrl":"https://doi.org/10.1080/19386362.2023.2246247","url":null,"abstract":"ABSTRACT Mixing carpet fibre in sand offers great potential for enhancing soil properties. In this study, direct shear tests were conducted on two different sands mixed with varying carpet fibre percentages to investigate the effects on soil strength, stiffness, and deformation. Artificial intelligence techniques were used to analyse the data and develop predictive models, including an empirical equation that predicts the shear strength. The results showed that the addition of carpet fibre improved soil properties, with increased strength, stiffness, and reduced deformation. The AI models, including the empirical equation, accurately predicted the mixture's shear strength. Furthermore, this study investigated the importance of each input parameter in predicting the mixture's shear strength. The input parameters are normal stress, void ratio, mean particle size, and the ratio of carpet fibre content to specific gravity. According to the results, normal stress is the most important parameter, and mean particle size is the least important.","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41729582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of thixotropy on mechanical properties of soft clay with different initial disturbance degrees","authors":"Aiwu Yang, Shaopeng Yang, Jing Zhang, Xianwei Zhang","doi":"10.1080/19386362.2023.2246231","DOIUrl":"https://doi.org/10.1080/19386362.2023.2246231","url":null,"abstract":"","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43952414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.1080/19386362.2023.2245230
A. Gaddam, Venkata Ramana Gondu, S. K. Yamsani, Vinod Kumar Adigopula
{"title":"Comprehensive utilization of brick waste as a precursor in synthesizing geopolymer for treating black cotton soil","authors":"A. Gaddam, Venkata Ramana Gondu, S. K. Yamsani, Vinod Kumar Adigopula","doi":"10.1080/19386362.2023.2245230","DOIUrl":"https://doi.org/10.1080/19386362.2023.2245230","url":null,"abstract":"","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45519723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}