Pub Date : 2020-02-28DOI: 10.1002/9781119706762.index
{"title":"Index","authors":"","doi":"10.1002/9781119706762.index","DOIUrl":"https://doi.org/10.1002/9781119706762.index","url":null,"abstract":"","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79510305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-28DOI: 10.1002/9781119706762.ch4
{"title":"Securing Access Using AAA","authors":"","doi":"10.1002/9781119706762.ch4","DOIUrl":"https://doi.org/10.1002/9781119706762.ch4","url":null,"abstract":"","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85182063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-26DOI: 10.5772/intechopen.89876
Ignacio Velásquez, Angélica Caro, Alfonso Rodríguez
There are multiple techniques for users to authenticate themselves in software applications, such as text passwords, smart cards, and biometrics. Two or more of these techniques can be combined to increase security, which is known as multifactor authentication. Systems commonly utilize authentication as part of their access control with the objective of protecting the information stored within them. However, the decision of what authentication technique to implement in a system is often taken by the software development team in charge of it. A poor decision during this step could lead to a fatal mistake in relation to security, creating the necessity for a method that systematizes this task. Thus, this book chapter presents a theoretical decision framework that tackles this issue by providing guidelines based on the evaluated application ’ s characteristics and target context. These guidelines were defined through the application of an extensive action-research methodology in collaboration with experts from a multinational software development company.
{"title":"Multifactor Authentication Methods: A Framework for Their Comparison and Selection","authors":"Ignacio Velásquez, Angélica Caro, Alfonso Rodríguez","doi":"10.5772/intechopen.89876","DOIUrl":"https://doi.org/10.5772/intechopen.89876","url":null,"abstract":"There are multiple techniques for users to authenticate themselves in software applications, such as text passwords, smart cards, and biometrics. Two or more of these techniques can be combined to increase security, which is known as multifactor authentication. Systems commonly utilize authentication as part of their access control with the objective of protecting the information stored within them. However, the decision of what authentication technique to implement in a system is often taken by the software development team in charge of it. A poor decision during this step could lead to a fatal mistake in relation to security, creating the necessity for a method that systematizes this task. Thus, this book chapter presents a theoretical decision framework that tackles this issue by providing guidelines based on the evaluated application ’ s characteristics and target context. These guidelines were defined through the application of an extensive action-research methodology in collaboration with experts from a multinational software development company.","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82827361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-25DOI: 10.5772/intechopen.89857
R. Singh, T. P. Sharma
Major research domains in the WLAN security include: access control & data frame protection, lightweight authentication and secure handoff. Access control standard like IEEE 802.11i provides flexibility in user authentication but on the other hand fell prey to Denial of Service (DoS) attacks. For Protecting the data communication between two communicating devices—three standard protocols i.e., WEP (Wired Equivalent Privacy), TKIP (Temporal Key Integrity Protocol) and AES-CCMP (Advanced Encryption Standard—Counter mode with CBC-MAC protocol) are used. Out of these, AES-CCMP protocol is secure enough and mostly used in enterprises. In WLAN environment lightweight authentication is an asset, provided it also satisfies other security properties like protecting the authentication stream or token along with securing the transmitted message. CAPWAP (Control and Provisioning of Wireless Access Points), HOKEY (Hand Over Keying) and IEEE 802.11r are major protocols for executing the secure handoff. In WLANs, handoff should not only be performed within time limits as required by the real time applications but should also be used to transfer safely the keying material for further communication. In this chapter, a comparative study of the security mechanisms under the above-mentioned research domains is provided.
{"title":"Security in Wireless Local Area Networks (WLANs)","authors":"R. Singh, T. P. Sharma","doi":"10.5772/intechopen.89857","DOIUrl":"https://doi.org/10.5772/intechopen.89857","url":null,"abstract":"Major research domains in the WLAN security include: access control & data frame protection, lightweight authentication and secure handoff. Access control standard like IEEE 802.11i provides flexibility in user authentication but on the other hand fell prey to Denial of Service (DoS) attacks. For Protecting the data communication between two communicating devices—three standard protocols i.e., WEP (Wired Equivalent Privacy), TKIP (Temporal Key Integrity Protocol) and AES-CCMP (Advanced Encryption Standard—Counter mode with CBC-MAC protocol) are used. Out of these, AES-CCMP protocol is secure enough and mostly used in enterprises. In WLAN environment lightweight authentication is an asset, provided it also satisfies other security properties like protecting the authentication stream or token along with securing the transmitted message. CAPWAP (Control and Provisioning of Wireless Access Points), HOKEY (Hand Over Keying) and IEEE 802.11r are major protocols for executing the secure handoff. In WLANs, handoff should not only be performed within time limits as required by the real time applications but should also be used to transfer safely the keying material for further communication. In this chapter, a comparative study of the security mechanisms under the above-mentioned research domains is provided.","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88270498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-11DOI: 10.5772/INTECHOPEN.82287
V. Jyothsna, K. M. Prasad
Anomaly-based network intrusion detection plays a vital role in protecting networks against malicious activities. In recent years, data mining techniques have gained importance in addressing security issues in network. Intrusion detection systems (IDS) aim to identify intrusions with a low false alarm rate and a high detection rate. Although classification-based data mining techniques are popular, they are not effective to detect unknown attacks. Unsupervised learning methods have been given a closer look for network IDS, which are insignificant to detect dynamic intrusion activities. The recent contributions in literature focus on machine learning techniques to build anomaly-based intrusion detection systems, which extract the knowledge from training phase. Though existing intrusion detection techniques address the latest types of attacks like DoS, Probe, U2R, and R2L, reducing false alarm rate is a challenging issue. Most network IDS depend on the deployed environment. Hence, developing a system which is independent of the deployed environment with fast and appropriate feature selection method is a challenging issue. The exponential growth of zero-day attacks emphasizing the need of security mechanisms which can accurately detect previously unknown attacks is another challenging task. In this work, an attempt is made to develop generic meta-heuristic scale for both known and unknown attacks with a high detection rate and low false alarm rate by adopting efficient feature optimization techniques.
{"title":"Anomaly-Based Intrusion Detection System","authors":"V. Jyothsna, K. M. Prasad","doi":"10.5772/INTECHOPEN.82287","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82287","url":null,"abstract":"Anomaly-based network intrusion detection plays a vital role in protecting networks against malicious activities. In recent years, data mining techniques have gained importance in addressing security issues in network. Intrusion detection systems (IDS) aim to identify intrusions with a low false alarm rate and a high detection rate. Although classification-based data mining techniques are popular, they are not effective to detect unknown attacks. Unsupervised learning methods have been given a closer look for network IDS, which are insignificant to detect dynamic intrusion activities. The recent contributions in literature focus on machine learning techniques to build anomaly-based intrusion detection systems, which extract the knowledge from training phase. Though existing intrusion detection techniques address the latest types of attacks like DoS, Probe, U2R, and R2L, reducing false alarm rate is a challenging issue. Most network IDS depend on the deployed environment. Hence, developing a system which is independent of the deployed environment with fast and appropriate feature selection method is a challenging issue. The exponential growth of zero-day attacks emphasizing the need of security mechanisms which can accurately detect previously unknown attacks is another challenging task. In this work, an attempt is made to develop generic meta-heuristic scale for both known and unknown attacks with a high detection rate and low false alarm rate by adopting efficient feature optimization techniques.","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82094387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-23DOI: 10.5772/INTECHOPEN.82272
R. Chitrakar, Roshan Bhusal, Prajwol Maharjan
This chapter introduces two new approaches to block cipher — one is DNA hybridization encryption scheme (DHES) and the other is hybrid graphical encryption algorithm (HGEA). DNA cryptography deals with the techniques of hiding messages in the form of a DNA sequence. The key size of data encryption standard (DES) can be increased by using DHES. In DHES, DNA cryptography algorithm is used for encryption and decryption, and one-time pad (OTP) scheme is used for key generation. The output of DES algorithm is passed as an input to DNA hybridization scheme to provide an added security. The second approach, HGEA, is based on graphical pattern recognition. By performing multiple transformations, shifting and logical operations, a block cipher is obtained. This algorithm is influenced by hybrid cubes encryption algorithm (HiSea). Features like graphical interpretation and computation of selected quadrant value are the unique features of HGEA. Moreover, multiple key generation scheme combined with graphical interpretation method provides an increased level of security.
{"title":"Hybrid Approaches to Block Cipher","authors":"R. Chitrakar, Roshan Bhusal, Prajwol Maharjan","doi":"10.5772/INTECHOPEN.82272","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82272","url":null,"abstract":"This chapter introduces two new approaches to block cipher — one is DNA hybridization encryption scheme (DHES) and the other is hybrid graphical encryption algorithm (HGEA). DNA cryptography deals with the techniques of hiding messages in the form of a DNA sequence. The key size of data encryption standard (DES) can be increased by using DHES. In DHES, DNA cryptography algorithm is used for encryption and decryption, and one-time pad (OTP) scheme is used for key generation. The output of DES algorithm is passed as an input to DNA hybridization scheme to provide an added security. The second approach, HGEA, is based on graphical pattern recognition. By performing multiple transformations, shifting and logical operations, a block cipher is obtained. This algorithm is influenced by hybrid cubes encryption algorithm (HiSea). Features like graphical interpretation and computation of selected quadrant value are the unique features of HGEA. Moreover, multiple key generation scheme combined with graphical interpretation method provides an increased level of security.","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83696260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-11DOI: 10.5772/INTECHOPEN.82390
M. E. Sone
This chapter presents a new cross-layer security scheme which deploys efficient coding techniques in the physical layer in an upper layer classical cryptographic protocol system. The rationale in designing the new scheme is to enhance security-throughput trade-off in wireless networks which is in contrast to existing schemes which either enhances security at the detriment of data throughput or vice versa. The new scheme is implemented using the residue number system (RNS), nonlinear convolutional coding and subband coding at the physical layer and RSA cryptography at the upper layers. The RNS reduces the huge data obtained from RSA cryptography into small parallel data. To increase the security level, iterated wavelet-based subband coding splits the ciphertext into different levels of decomposition. At subsequent levels of decomposition, the ciphertext from the preceding level serves as data for encryption using convolutional codes. In addition, throughput is enhanced by transmitting small parallel data and the bit error correction capability of non-linear convolutional code. It is shown that, various passive and active attacks common to wireless networks could be circumvented. An FPGA implementation applied to CDMA could fit into a single Virtex-4 FPGA due to small parallel data sizes employed.
{"title":"A New Cross-Layer FPGA-Based Security Scheme for Wireless Networks","authors":"M. E. Sone","doi":"10.5772/INTECHOPEN.82390","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82390","url":null,"abstract":"This chapter presents a new cross-layer security scheme which deploys efficient coding techniques in the physical layer in an upper layer classical cryptographic protocol system. The rationale in designing the new scheme is to enhance security-throughput trade-off in wireless networks which is in contrast to existing schemes which either enhances security at the detriment of data throughput or vice versa. The new scheme is implemented using the residue number system (RNS), nonlinear convolutional coding and subband coding at the physical layer and RSA cryptography at the upper layers. The RNS reduces the huge data obtained from RSA cryptography into small parallel data. To increase the security level, iterated wavelet-based subband coding splits the ciphertext into different levels of decomposition. At subsequent levels of decomposition, the ciphertext from the preceding level serves as data for encryption using convolutional codes. In addition, throughput is enhanced by transmitting small parallel data and the bit error correction capability of non-linear convolutional code. It is shown that, various passive and active attacks common to wireless networks could be circumvented. An FPGA implementation applied to CDMA could fit into a single Virtex-4 FPGA due to small parallel data sizes employed.","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88578721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Firewall Design and Analysis","authors":"A. Liu","doi":"10.1142/7229","DOIUrl":"https://doi.org/10.1142/7229","url":null,"abstract":"","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"19 1","pages":"1-124"},"PeriodicalIF":0.0,"publicationDate":"2011-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72942781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Security issues in ad-hoc and sensor networks have become extremely important. This edited book provides a comprehensive treatment for security issues in these networks, ranging from attack mitigation to recovery after an attack has been successfully executed. Security issues include (but are not limited to) attacks, malicious node detection, access control, authentication, intrusion detection, privacy and anonymity, key management, location verification, security architectures and protocols, secrecy and integrity, network resilience and survivability, and trust models. This complete book provides an excellent reference for students, researchers, and industry practitioners related to these areas.
{"title":"Security in Ad Hoc and Sensor Networks","authors":"R. Beyah, J. Mcnair, C. Corbett","doi":"10.1142/7239","DOIUrl":"https://doi.org/10.1142/7239","url":null,"abstract":"Security issues in ad-hoc and sensor networks have become extremely important. This edited book provides a comprehensive treatment for security issues in these networks, ranging from attack mitigation to recovery after an attack has been successfully executed. Security issues include (but are not limited to) attacks, malicious node detection, access control, authentication, intrusion detection, privacy and anonymity, key management, location verification, security architectures and protocols, secrecy and integrity, network resilience and survivability, and trust models. This complete book provides an excellent reference for students, researchers, and industry practitioners related to these areas.","PeriodicalId":47430,"journal":{"name":"International Journal of Computer Science and Network Security","volume":"96 1","pages":"1-420"},"PeriodicalIF":0.0,"publicationDate":"2009-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90717865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}