首页 > 最新文献

Environmental Microbiome最新文献

英文 中文
Arctic's hidden hydrocarbon degradation microbes: investigating the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on microbial communities and hydrocarbon biodegradation pathways in high-Arctic beaches. 北极隐藏的碳氢化合物降解微生物:研究碳氢化合物污染、生物刺激和表面清洗剂对高纬度北极海滩微生物群落和碳氢化合物生物降解途径的影响。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-31 DOI: 10.1186/s40793-024-00626-w
Ya-Jou Chen, Ianina Altshuler, Nastasia J Freyria, Antoine Lirette, Esteban Góngora, Charles W Greer, Lyle G Whyte

Background: Canadian Arctic summer sea ice has dramatically declined due to global warming, resulting in the rapid opening of the Northwest Passage (NWP), slated to be a major shipping route connecting the Atlantic and Pacific Oceans by 2040. This development elevates the risk of oil spills in Arctic regions, prompting growing concerns over the remediation and minimizing the impact on affected shorelines.

Results: This research aims to assess the viability of nutrient and a surface washing agent addition as potential bioremediation methods for Arctic beaches. To achieve this goal, we conducted two semi-automated mesocosm experiments simulating hydrocarbon contamination in high-Arctic beach tidal sediments: a 32-day experiment at 8 °C and a 92-day experiment at 4 °C. We analyzed the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on the microbial community and its functional capacity using 16S rRNA gene sequencing and metagenomics. Hydrocarbon removal rates were determined through total petroleum hydrocarbon analysis. Biostimulation is commonly considered the most effective strategy for enhancing the bioremediation process in response to oil contamination. However, our findings suggest that nutrient addition has limited effectiveness in facilitating the biodegradation process in Arctic beaches, despite its initial promotion of aliphatic hydrocarbons within a constrained timeframe. Alternatively, our study highlights the promise of a surface washing agent as a potential bioremediation approach. By implementing advanced -omics approaches, we unveiled highly proficient, unconventional hydrocarbon-degrading microorganisms such as Halioglobus and Acidimicrobiales genera.

Conclusions: Given the receding Arctic sea ice and the rising traffic in the NWP, heightened awareness and preparedness for potential oil spills are imperative. While continuously exploring optimal remediation strategies through the integration of microbial and chemical studies, a paramount consideration involves limiting traffic in the NWP and Arctic regions to prevent beach oil contamination, as cleanup in these remote areas proves exceedingly challenging and costly.

背景:由于全球变暖,加拿大北极地区夏季海冰急剧减少,导致西北航道(NWP)迅速开放,预计到 2040 年,西北航道将成为连接大西洋和太平洋的主要航道。这一发展提高了北极地区发生石油泄漏的风险,促使人们越来越关注受影响海岸线的补救和影响最小化问题:本研究旨在评估添加营养物和表面清洗剂作为北极海滩潜在生物修复方法的可行性。为了实现这一目标,我们进行了两次半自动中观实验,模拟高纬度北极海滩潮汐沉积物中的碳氢化合物污染:一次是在 8 °C 下进行的为期 32 天的实验,另一次是在 4 °C 下进行的为期 92 天的实验。我们利用 16S rRNA 基因测序和元基因组学分析了碳氢化合物污染、生物刺激和表面清洗剂对微生物群落及其功能能力的影响。碳氢化合物去除率是通过总石油碳氢化合物分析确定的。生物刺激通常被认为是针对石油污染加强生物修复过程的最有效策略。然而,我们的研究结果表明,尽管在有限的时间内添加营养物质能初步促进脂肪族碳氢化合物的降解,但其在促进北极海滩生物降解过程中的效果有限。另外,我们的研究还强调了表面清洗剂作为一种潜在生物修复方法的前景。通过采用先进的组学方法,我们发现了高度熟练的非常规碳氢化合物降解微生物,如 Halioglobus 和 Acidimicrobiales 属:鉴于北极海冰的消退和西北太平洋流量的增加,提高对潜在石油泄漏的认识并做好准备势在必行。在通过整合微生物和化学研究不断探索最佳补救策略的同时,一个最重要的考虑因素是限制西北太平洋和北极地区的交通,以防止海滩油类污染,因为在这些偏远地区进行清理极具挑战性且成本高昂。
{"title":"Arctic's hidden hydrocarbon degradation microbes: investigating the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on microbial communities and hydrocarbon biodegradation pathways in high-Arctic beaches.","authors":"Ya-Jou Chen, Ianina Altshuler, Nastasia J Freyria, Antoine Lirette, Esteban Góngora, Charles W Greer, Lyle G Whyte","doi":"10.1186/s40793-024-00626-w","DOIUrl":"10.1186/s40793-024-00626-w","url":null,"abstract":"<p><strong>Background: </strong>Canadian Arctic summer sea ice has dramatically declined due to global warming, resulting in the rapid opening of the Northwest Passage (NWP), slated to be a major shipping route connecting the Atlantic and Pacific Oceans by 2040. This development elevates the risk of oil spills in Arctic regions, prompting growing concerns over the remediation and minimizing the impact on affected shorelines.</p><p><strong>Results: </strong>This research aims to assess the viability of nutrient and a surface washing agent addition as potential bioremediation methods for Arctic beaches. To achieve this goal, we conducted two semi-automated mesocosm experiments simulating hydrocarbon contamination in high-Arctic beach tidal sediments: a 32-day experiment at 8 °C and a 92-day experiment at 4 °C. We analyzed the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on the microbial community and its functional capacity using 16S rRNA gene sequencing and metagenomics. Hydrocarbon removal rates were determined through total petroleum hydrocarbon analysis. Biostimulation is commonly considered the most effective strategy for enhancing the bioremediation process in response to oil contamination. However, our findings suggest that nutrient addition has limited effectiveness in facilitating the biodegradation process in Arctic beaches, despite its initial promotion of aliphatic hydrocarbons within a constrained timeframe. Alternatively, our study highlights the promise of a surface washing agent as a potential bioremediation approach. By implementing advanced -omics approaches, we unveiled highly proficient, unconventional hydrocarbon-degrading microorganisms such as Halioglobus and Acidimicrobiales genera.</p><p><strong>Conclusions: </strong>Given the receding Arctic sea ice and the rising traffic in the NWP, heightened awareness and preparedness for potential oil spills are imperative. While continuously exploring optimal remediation strategies through the integration of microbial and chemical studies, a paramount consideration involves limiting traffic in the NWP and Arctic regions to prevent beach oil contamination, as cleanup in these remote areas proves exceedingly challenging and costly.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"81"},"PeriodicalIF":6.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome associated to an H2-emitting zone in the São Francisco basin Brazil. 与巴西圣弗朗西斯科盆地 H2 排放区相关的微生物组。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-26 DOI: 10.1186/s40793-024-00627-9
Otávio Henrique Bezerra Pinto, Rafael da Silva Oliveira, Brendo Ramos Ferreira, Julianna Peixoto, Maria Regina Silveira Sartori, Betania Ferraz Quirino, Fabrice Brunet, Ricardo Henrique Kruger

Background: Dihydrogen (H₂) natural gas is a clean and renewable energy source of significant interest in the transition to sustainable energy. Unlike conventional petroleum-based fuels, H₂ releases only water vapor upon combustion, making it a promising alternative for reducing carbon footprints in the future. However, the microbial impact on H₂ dynamics in H2-emitting zones remains unclear, as does the origin of H2 - whether it is produced at greater depths or within shallow soil layers. In the São Francisco Basin, soil hydrogen concentrations of approximately 200 ppm were identified in barren ground depressions. In this study, we investigated the microbiome associated with this area using the 16S rRNA gene sequencing, with a focus on metabolic processes related to H₂ consumption and production. Soil samples were collected from two monitored (< 1 m) depths - 10 cm and 1 m - in the emission zone, which is predominantly covered with pasture vegetation, and from an adjacent area with medium and small trees.

Results: Our findings suggest that the H2-emitting zone significantly influences the composition and function of the microbiome, with Bacillus emerging as the dominant genus. In contrast to typical Cerrado soil, we observed a higher prevalence of Actinobacteriota (∼ 40%) and Firmicutes (∼ 20%). Additionally, we identified an abundance of sporulating bacteria and taxonomic groups previously described as H2-oxidizing bacteria.

Conclusions: The H2-emitting zone in the São Francisco Basin presents a unique opportunity to deepen our understanding of the impact of H₂ on microbial communities. This study is the first to characterize a natural H2-associated bacterial community in Cerrado soil using a culture-independent approach.

背景:二氢(H₂)天然气是一种清洁的可再生能源,在向可持续能源过渡的过程中备受关注。与传统的石油燃料不同,二氢天然气在燃烧时只释放水蒸气,这使其成为未来减少碳足迹的一种有前途的替代能源。然而,微生物对 H₂排放区内 H₂ 动力的影响以及 H2 的来源--是在更深处还是在浅层土壤中产生--仍不清楚。在圣弗朗西斯科盆地,在贫瘠的地面凹陷处发现土壤氢浓度约为 200 ppm。在这项研究中,我们使用 16S rRNA 基因测序法调查了与该地区相关的微生物群,重点研究了与氢₂消耗和产生相关的代谢过程。我们从两个监测点收集了土壤样本(结果见表 2):我们的研究结果表明,H2 排放区极大地影响了微生物群的组成和功能,芽孢杆菌是主要的微生物属。与典型的塞拉多(Cerrado)土壤相比,我们观察到放线菌群(∼ 40%)和固着菌群(∼ 20%)的流行率较高。此外,我们还发现了大量的孢子菌和以前被描述为 H2- 氧化菌的分类群:结论:圣弗朗西斯科盆地的 H2- 辐射区为我们提供了一个独特的机会,可借以加深了解 H₂ 对微生物群落的影响。这项研究首次采用独立于培养的方法描述了塞拉多土壤中与 H2- 相关的天然细菌群落的特征。
{"title":"Microbiome associated to an H<sub>2</sub>-emitting zone in the São Francisco basin Brazil.","authors":"Otávio Henrique Bezerra Pinto, Rafael da Silva Oliveira, Brendo Ramos Ferreira, Julianna Peixoto, Maria Regina Silveira Sartori, Betania Ferraz Quirino, Fabrice Brunet, Ricardo Henrique Kruger","doi":"10.1186/s40793-024-00627-9","DOIUrl":"10.1186/s40793-024-00627-9","url":null,"abstract":"<p><strong>Background: </strong>Dihydrogen (H₂) natural gas is a clean and renewable energy source of significant interest in the transition to sustainable energy. Unlike conventional petroleum-based fuels, H₂ releases only water vapor upon combustion, making it a promising alternative for reducing carbon footprints in the future. However, the microbial impact on H₂ dynamics in H<sub>2</sub>-emitting zones remains unclear, as does the origin of H<sub>2</sub> - whether it is produced at greater depths or within shallow soil layers. In the São Francisco Basin, soil hydrogen concentrations of approximately 200 ppm were identified in barren ground depressions. In this study, we investigated the microbiome associated with this area using the 16S rRNA gene sequencing, with a focus on metabolic processes related to H₂ consumption and production. Soil samples were collected from two monitored (< 1 m) depths - 10 cm and 1 m - in the emission zone, which is predominantly covered with pasture vegetation, and from an adjacent area with medium and small trees.</p><p><strong>Results: </strong>Our findings suggest that the H<sub>2</sub>-emitting zone significantly influences the composition and function of the microbiome, with Bacillus emerging as the dominant genus. In contrast to typical Cerrado soil, we observed a higher prevalence of Actinobacteriota (∼ 40%) and Firmicutes (∼ 20%). Additionally, we identified an abundance of sporulating bacteria and taxonomic groups previously described as H<sub>2</sub>-oxidizing bacteria.</p><p><strong>Conclusions: </strong>The H<sub>2</sub>-emitting zone in the São Francisco Basin presents a unique opportunity to deepen our understanding of the impact of H₂ on microbial communities. This study is the first to characterize a natural H<sub>2</sub>-associated bacterial community in Cerrado soil using a culture-independent approach.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"80"},"PeriodicalIF":6.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The epidemic occurrence of decline disease in bayberry trees altered plant and soil related microbiome and metabolome. 杨梅衰退病的流行改变了植物和土壤相关的微生物组和代谢组。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-24 DOI: 10.1186/s40793-024-00618-w
Haiying Ren, Xuefang Huang, Zhenshuo Wang, Yasmine Abdallah, Solabomi Olaitan Ayoade, Xingjiang Qi, Zheping Yu, Qi Wang, Mohamed Mohany, Salim S Al-Rejaie, Bin Li, Gang Li

Background: In China, decline disease with unknown etiology appeared as an epidemic among bayberry trees in the southern area of the Yangtze River. Furthermore, the use of beneficial microbes has been reported to be able to reduce the incidence of this disease, emphasizing the association of this disease with microorganisms. Therefore, it has become critical to uncover the microbiome's function and related metabolites in remodeling the immunity of bayberry trees under biotic or abiotic stresses.

Results: The amplicon sequencing data revealed that decline disease significantly altered bacterial and fungal communities, and their metabolites in the four distinct niches, especially in the rhizosphere soils and roots. Furthermore, the microbial communities in the four niches correlated with the metabolites of the corresponding niches of bayberry plants, and the fungal and bacterial networks of healthy trees were shown to be more complex than those of diseased trees. In addition, the role of microbiome in the resistance of bayberry trees to the occurrence of decline disease was justified by the isolation, identification, and characterization of important microorganisms such as significantly enriched Bacillus ASV804, Pseudomonas ASV815 in healthy plants, and significantly enriched Stenotrophomonas ASV719 in diseased plants.

Conclusion: Overall, our study revealed that the occurrence of decline disease altered the microbiome and its metabolites in four ecological niches in particular rhizosphere soils and roots of bayberry, which provides new insight into the control of bayberry decline disease.

背景:在中国,病因不明的衰退病在长江以南地区的杨梅树中流行。此外,有报道称使用有益微生物能够降低该病的发病率,这强调了该病与微生物的关联。因此,揭示微生物组在生物或非生物胁迫下重塑杨梅树免疫力的功能和相关代谢物变得至关重要:扩增子测序数据显示,衰退病显著改变了四个不同壁龛中的细菌和真菌群落及其代谢产物,尤其是根圈土壤和根部。此外,四个壁龛中的微生物群落与杨梅植物相应壁龛中的代谢物相关,健康树木的真菌和细菌网络比患病树木的更复杂。此外,通过分离、鉴定和表征重要的微生物,如健康植株中显著富集的芽孢杆菌ASV804、假单胞菌ASV815,以及病株中显著富集的臭单胞菌ASV719,证明了微生物组在杨梅抗衰退病发生中的作用:总之,我们的研究揭示了衰退病的发生改变了杨梅根圈土壤和根部等四个生态位中的微生物组及其代谢产物,这为控制杨梅衰退病提供了新的视角。
{"title":"The epidemic occurrence of decline disease in bayberry trees altered plant and soil related microbiome and metabolome.","authors":"Haiying Ren, Xuefang Huang, Zhenshuo Wang, Yasmine Abdallah, Solabomi Olaitan Ayoade, Xingjiang Qi, Zheping Yu, Qi Wang, Mohamed Mohany, Salim S Al-Rejaie, Bin Li, Gang Li","doi":"10.1186/s40793-024-00618-w","DOIUrl":"10.1186/s40793-024-00618-w","url":null,"abstract":"<p><strong>Background: </strong>In China, decline disease with unknown etiology appeared as an epidemic among bayberry trees in the southern area of the Yangtze River. Furthermore, the use of beneficial microbes has been reported to be able to reduce the incidence of this disease, emphasizing the association of this disease with microorganisms. Therefore, it has become critical to uncover the microbiome's function and related metabolites in remodeling the immunity of bayberry trees under biotic or abiotic stresses.</p><p><strong>Results: </strong>The amplicon sequencing data revealed that decline disease significantly altered bacterial and fungal communities, and their metabolites in the four distinct niches, especially in the rhizosphere soils and roots. Furthermore, the microbial communities in the four niches correlated with the metabolites of the corresponding niches of bayberry plants, and the fungal and bacterial networks of healthy trees were shown to be more complex than those of diseased trees. In addition, the role of microbiome in the resistance of bayberry trees to the occurrence of decline disease was justified by the isolation, identification, and characterization of important microorganisms such as significantly enriched Bacillus ASV804, Pseudomonas ASV815 in healthy plants, and significantly enriched Stenotrophomonas ASV719 in diseased plants.</p><p><strong>Conclusion: </strong>Overall, our study revealed that the occurrence of decline disease altered the microbiome and its metabolites in four ecological niches in particular rhizosphere soils and roots of bayberry, which provides new insight into the control of bayberry decline disease.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"79"},"PeriodicalIF":6.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515357/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the hidden world: How arbuscular mycorrhizal fungi and its regulated core fungi modify the composition and metabolism of soybean rhizosphere microbiome. 揭开隐藏世界的面纱:丛枝菌根真菌及其调控的核心真菌如何改变大豆根瘤微生物组的组成和代谢。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-22 DOI: 10.1186/s40793-024-00624-y
Minkai Yang, Yuhang Song, Hanke Ma, Zhenghua Li, Jiawei Ding, Tongming Yin, Kechang Niu, Shucun Sun, Jinliang Qi, Guihua Lu, Aliya Fazal, Yonghua Yang, Zhongling Wen

Background: The symbiosis between arbuscular mycorrhizal fungi (AMF) and plants often stimulates plant growth, increases agricultural yield, reduces costs, thereby providing significant economic benefits. AMF can also benefit plants through affecting the rhizosphere microbial community, but the underlying mechanisms remain unclear. Using Rhizophagus intraradices as a model AMF species, we assessed how AMF influences the bacterial composition and functional diversity through 16 S rRNA gene sequencing and non-targeted metabolomics analysis in the rhizosphere of aluminum-sensitive soybean that were inoculated with pathogenic fungus Nigrospora oryzae and phosphorus-solubilizing fungus Talaromyces verruculosus in an acidic soil.

Results: The inoculation of R. intraradices, N. oryzae and T. verruculosus didn't have a significant influence on the levels of soil C, N, and P, or various plant characteristics such as seed weight, crude fat and protein content. However, their inoculation affected the structure, function and nutrient dynamics of the resident bacterial community. The co-inoculation of T. verruculosus and R. intraradices increased the relative abundance of Pseudomonas psychrotolerans, which was capable of N-fixing and was related to cry-for-help theory (plants signal for beneficial microbes when under stress), within the rhizosphere. R. intraradices increased the expression of metabolic pathways associated with the synthesis of unsaturated fatty acids, which was known to enhance plant resistance under adverse environmental conditions. The inoculation of N. oryzae stimulated the stress response inside the soil environment by enriching the polyene macrolide antifungal antibiotic-producing bacterial genus Streptomyces in the root endosphere and upregulating two antibacterial activity metabolic pathways associated with steroid biosynthesis pathways in the rhizosphere. Although inoculation of pathogenic fungus N. oryzae enriched Bradyrhizobium and increased soil urease activity, it had no significant effects on biomass and N content of soybean. Lastly, the host niches exhibited differences in the composition of the bacterial community, with most N-fixing bacteria accumulating in the endosphere and Rhizobium vallis only detected in the endosphere.

Conclusions: Our findings demonstrate that intricate interactions between AMF, associated core fungi, and the soybean root-associated ecological niches co-mediate the regulation of soybean growth, the dynamics of rhizosphere soil nutrients, and the composition, function, and metabolisms of the root-associated microbiome in an acidic soil.

背景:丛枝菌根真菌(AMF)与植物之间的共生关系往往能刺激植物生长,提高农业产量,降低成本,从而带来显著的经济效益。AMF还能通过影响根圈微生物群落使植物受益,但其潜在机制仍不清楚。我们以Rhizophagus intraradices为模式AMF物种,通过16 S rRNA基因测序和非靶向代谢组学分析,评估了在酸性土壤中接种病原真菌Nigrospora oryzae和溶磷真菌Talaromyces verruculosus的铝敏感大豆根圈中,AMF如何影响细菌组成和功能多样性:接种R. intraradices、N. oryzae和T. verruculosus对土壤中C、N和P的含量以及种子重量、粗脂肪和蛋白质含量等植物特征没有显著影响。不过,它们的接种影响了常驻细菌群落的结构、功能和营养动态。T.verruculosus和R. intraradices的共同接种增加了根瘤菌圈中精神耐旱假单胞菌的相对丰度,这种假单胞菌具有固氮能力,与呼救理论(植物在受到胁迫时发出信号寻求有益微生物)有关。R. intraradices 增加了与合成不饱和脂肪酸有关的代谢途径的表达,而众所周知,不饱和脂肪酸能增强植物在不利环境条件下的抵抗力。接种 N. oryzae 真菌后,根系内圈的多烯类大环内酯类抗真菌抗生素产生菌属链霉菌富集,并上调了根圈中与类固醇生物合成途径相关的两条抗菌活性代谢途径,从而刺激了土壤环境中的应激反应。虽然病原真菌 N. oryzae 的接种富集了巴西根瘤菌并提高了土壤尿素酶活性,但对大豆的生物量和氮含量没有显著影响。最后,寄主壁龛的细菌群落组成存在差异,大多数固氮菌聚集在内圈,而根瘤菌只在内圈被检测到:我们的研究结果表明,AMF、相关核心真菌和大豆根相关生态位之间错综复杂的相互作用共同调节着酸性土壤中大豆的生长、根圈土壤养分的动态以及根相关微生物群的组成、功能和代谢。
{"title":"Unveiling the hidden world: How arbuscular mycorrhizal fungi and its regulated core fungi modify the composition and metabolism of soybean rhizosphere microbiome.","authors":"Minkai Yang, Yuhang Song, Hanke Ma, Zhenghua Li, Jiawei Ding, Tongming Yin, Kechang Niu, Shucun Sun, Jinliang Qi, Guihua Lu, Aliya Fazal, Yonghua Yang, Zhongling Wen","doi":"10.1186/s40793-024-00624-y","DOIUrl":"https://doi.org/10.1186/s40793-024-00624-y","url":null,"abstract":"<p><strong>Background: </strong>The symbiosis between arbuscular mycorrhizal fungi (AMF) and plants often stimulates plant growth, increases agricultural yield, reduces costs, thereby providing significant economic benefits. AMF can also benefit plants through affecting the rhizosphere microbial community, but the underlying mechanisms remain unclear. Using Rhizophagus intraradices as a model AMF species, we assessed how AMF influences the bacterial composition and functional diversity through 16 S rRNA gene sequencing and non-targeted metabolomics analysis in the rhizosphere of aluminum-sensitive soybean that were inoculated with pathogenic fungus Nigrospora oryzae and phosphorus-solubilizing fungus Talaromyces verruculosus in an acidic soil.</p><p><strong>Results: </strong>The inoculation of R. intraradices, N. oryzae and T. verruculosus didn't have a significant influence on the levels of soil C, N, and P, or various plant characteristics such as seed weight, crude fat and protein content. However, their inoculation affected the structure, function and nutrient dynamics of the resident bacterial community. The co-inoculation of T. verruculosus and R. intraradices increased the relative abundance of Pseudomonas psychrotolerans, which was capable of N-fixing and was related to cry-for-help theory (plants signal for beneficial microbes when under stress), within the rhizosphere. R. intraradices increased the expression of metabolic pathways associated with the synthesis of unsaturated fatty acids, which was known to enhance plant resistance under adverse environmental conditions. The inoculation of N. oryzae stimulated the stress response inside the soil environment by enriching the polyene macrolide antifungal antibiotic-producing bacterial genus Streptomyces in the root endosphere and upregulating two antibacterial activity metabolic pathways associated with steroid biosynthesis pathways in the rhizosphere. Although inoculation of pathogenic fungus N. oryzae enriched Bradyrhizobium and increased soil urease activity, it had no significant effects on biomass and N content of soybean. Lastly, the host niches exhibited differences in the composition of the bacterial community, with most N-fixing bacteria accumulating in the endosphere and Rhizobium vallis only detected in the endosphere.</p><p><strong>Conclusions: </strong>Our findings demonstrate that intricate interactions between AMF, associated core fungi, and the soybean root-associated ecological niches co-mediate the regulation of soybean growth, the dynamics of rhizosphere soil nutrients, and the composition, function, and metabolisms of the root-associated microbiome in an acidic soil.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"78"},"PeriodicalIF":6.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold-water coral mortality under ocean warming is associated with pathogenic bacteria. 海洋变暖导致的冷水珊瑚死亡与病原菌有关。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-16 DOI: 10.1186/s40793-024-00622-0
Mathilde Chemel, Erwan Peru, Mohammad Binsarhan, Ramiro Logares, Franck Lartaud, Pierre E Galand

Cold-water corals form vast reefs that are highly valuable habitats for diverse deep-sea communities. However, as the deep ocean is warming, it is essential to assess the resilience of cold-water corals to future conditions. The effects of elevated temperatures on the cold-water coral Lophelia pertusa (now named Desmophyllum pertusum) from the north-east Atlantic Ocean were experimentally investigated at the holobiont level, the coral host, and its microbiome. We show that at temperature increases of + 3 and + 5 °C, L. pertusa exhibits significant mortality concomitant with changes in its microbiome composition. In addition, a metagenomic approach revealed the presence of gene markers for bacterial virulence factors suggesting that coral death was due to infection by pathogenic bacteria. Interestingly, different coral colonies had different survival rates and, colony-specific microbiome signatures, indicating strong colony-specific variability in their response to warming waters. These results suggest that L. pertusa can only survive a long-term temperature increase of < 3 °C. Therefore, regional variations in deep-sea temperature increase should be considered in future estimates of the global distribution of cold-water corals.

冷水珊瑚形成了巨大的珊瑚礁,是各种深海生物群落非常宝贵的栖息地。然而,随着深海变暖,评估冷水珊瑚对未来条件的适应能力至关重要。我们通过实验研究了温度升高对大西洋东北部的冷水珊瑚 Lophelia pertusa(现名 Desmophyllum pertusum)在全生物体、珊瑚宿主及其微生物组水平上的影响。我们的研究表明,当温度升高到 + 3 和 + 5 ℃ 时,L. pertusa 在微生物组组成发生变化的同时会出现显著的死亡。此外,元基因组学方法揭示了细菌毒力因子基因标记的存在,表明珊瑚的死亡是由于病原菌的感染。有趣的是,不同的珊瑚群有不同的存活率和珊瑚群特有的微生物组特征,这表明珊瑚群对变暖水域的反应具有很强的特异性。这些结果表明,L. pertusa 只能在温度长期升高到
{"title":"Cold-water coral mortality under ocean warming is associated with pathogenic bacteria.","authors":"Mathilde Chemel, Erwan Peru, Mohammad Binsarhan, Ramiro Logares, Franck Lartaud, Pierre E Galand","doi":"10.1186/s40793-024-00622-0","DOIUrl":"https://doi.org/10.1186/s40793-024-00622-0","url":null,"abstract":"<p><p>Cold-water corals form vast reefs that are highly valuable habitats for diverse deep-sea communities. However, as the deep ocean is warming, it is essential to assess the resilience of cold-water corals to future conditions. The effects of elevated temperatures on the cold-water coral Lophelia pertusa (now named Desmophyllum pertusum) from the north-east Atlantic Ocean were experimentally investigated at the holobiont level, the coral host, and its microbiome. We show that at temperature increases of + 3 and + 5 °C, L. pertusa exhibits significant mortality concomitant with changes in its microbiome composition. In addition, a metagenomic approach revealed the presence of gene markers for bacterial virulence factors suggesting that coral death was due to infection by pathogenic bacteria. Interestingly, different coral colonies had different survival rates and, colony-specific microbiome signatures, indicating strong colony-specific variability in their response to warming waters. These results suggest that L. pertusa can only survive a long-term temperature increase of < 3 °C. Therefore, regional variations in deep-sea temperature increase should be considered in future estimates of the global distribution of cold-water corals.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"76"},"PeriodicalIF":6.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The composition of the arbuscular mycorrhizal fungal bacteriome is species dependent. 丛枝菌根真菌细菌群的组成与物种有关。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-16 DOI: 10.1186/s40793-024-00623-z
Zakaria Lahrach, Jean Legeay, Bulbul Ahmed, Mohamed Hijri

Background: In addition to their role as endosymbionts for plant roots, arbuscular mycorrhizal fungi (AMF) engage in complex interactions with various soil microorganisms, the rhizosphere, and the root endosphere of host plants. They also host diverse prokaryotic groups within their mycelia, contributing to what is termed multipartite symbiosis. In this study, we examined the impact of three AMF species-Rhizophagus irregularis, R. clarus, and R. cerebriforme-combined with microbial bioaugmentation on the diversity and composition of bacterial communities in the mycelia and hyphosphere. Using a microcosm design to separate the influence of host plant roots from AMF mycelia and Illumina MiSeq amplicon sequencing to analyze the bacterial communities.

Results: Our results revealed that, while AMF identity and microbial bioaugmentation did not affect the structure of bacterial communities in the hyphosphere soil, they significantly altered the communities associated with their mycelia. Although all three AMF species belong to the same genus, with R. irregularis and R. clarus being closely related compared to R. cerebriforme, we observed variations in the bacterial communities associated with their mycelia. Interestingly, the mycelial bacterial community of R. cerebriforme contained 60 bacteriome core taxa exclusive to it, while R. clarus and R. irregularis had 25 and 9 exclusive taxa, respectively.

Conclusion: This study suggests that organismal phylogeny influences the bacterial communities associated with AMF mycelia. These findings provide new insights into AMF and bacterial interactions, which are crucial for the successful deployment of AMF inoculants. The taxonomic diversity of AMF inoculants is important for engineering the plant microbiome and enhancing ecosystem services.

背景:除了作为植物根系的内共生体外,丛枝菌根真菌(AMF)还与各种土壤微生物、根瘤菌圈和寄主植物的根系内圈发生复杂的相互作用。它们的菌丝体中还寄生着不同的原核生物群体,这就是所谓的多部分共生。在这项研究中,我们考察了三种 AMF 物种--不规则噬菌体(Rhizophagus irregularis)、透明噬菌体(R. clarus)和脑噬菌体(R. criformeme)--与微生物生物增殖相结合对菌丝体和下皮层细菌群落的多样性和组成的影响。利用微生态设计将寄主植物根系与 AMF 菌丝体的影响分开,并利用 Illumina MiSeq 扩增子测序分析细菌群落:结果:我们的研究结果表明,虽然AMF的特性和微生物生物增殖并不影响下圈土壤中细菌群落的结构,但它们却显著改变了与其菌丝体相关的群落。虽然这三种AMF都属于同一属,其中R. irregularis和R. clarus与R. cerebriforme关系密切,但我们观察到与其菌丝体相关的细菌群落存在差异。有趣的是,脑裂褶菌的菌丝体细菌群落包含 60 个专有的细菌组核心类群,而不规则裂褶菌则分别有 25 个和 9 个专有类群:本研究表明,生物系统发育会影响与 AMF 菌丝体相关的细菌群落。这些发现为了解 AMF 与细菌之间的相互作用提供了新的视角,而这对于成功使用 AMF 接种剂至关重要。AMF接种物的分类多样性对于植物微生物组工程和提高生态系统服务非常重要。
{"title":"The composition of the arbuscular mycorrhizal fungal bacteriome is species dependent.","authors":"Zakaria Lahrach, Jean Legeay, Bulbul Ahmed, Mohamed Hijri","doi":"10.1186/s40793-024-00623-z","DOIUrl":"https://doi.org/10.1186/s40793-024-00623-z","url":null,"abstract":"<p><strong>Background: </strong>In addition to their role as endosymbionts for plant roots, arbuscular mycorrhizal fungi (AMF) engage in complex interactions with various soil microorganisms, the rhizosphere, and the root endosphere of host plants. They also host diverse prokaryotic groups within their mycelia, contributing to what is termed multipartite symbiosis. In this study, we examined the impact of three AMF species-Rhizophagus irregularis, R. clarus, and R. cerebriforme-combined with microbial bioaugmentation on the diversity and composition of bacterial communities in the mycelia and hyphosphere. Using a microcosm design to separate the influence of host plant roots from AMF mycelia and Illumina MiSeq amplicon sequencing to analyze the bacterial communities.</p><p><strong>Results: </strong>Our results revealed that, while AMF identity and microbial bioaugmentation did not affect the structure of bacterial communities in the hyphosphere soil, they significantly altered the communities associated with their mycelia. Although all three AMF species belong to the same genus, with R. irregularis and R. clarus being closely related compared to R. cerebriforme, we observed variations in the bacterial communities associated with their mycelia. Interestingly, the mycelial bacterial community of R. cerebriforme contained 60 bacteriome core taxa exclusive to it, while R. clarus and R. irregularis had 25 and 9 exclusive taxa, respectively.</p><p><strong>Conclusion: </strong>This study suggests that organismal phylogeny influences the bacterial communities associated with AMF mycelia. These findings provide new insights into AMF and bacterial interactions, which are crucial for the successful deployment of AMF inoculants. The taxonomic diversity of AMF inoculants is important for engineering the plant microbiome and enhancing ecosystem services.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"77"},"PeriodicalIF":6.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irradiance level and elevation shape the soil microbiome communities of Coffea arabica L. 辐照度水平和海拔高度塑造了阿拉伯咖啡(Coffea arabica L.)的土壤微生物群落。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-15 DOI: 10.1186/s40793-024-00619-9
Inocência da Piedade E Tapaça, Chinedu C Obieze, Gilberto V de Melo Pereira, David Fangueiro, João Coutinho, Irene Fraga, Fábio L Partelli, José C Ramalho, Isabel Marques, Ana I Ribeiro-Barros

Background: The nexus plant-microbe-environment is essential to understand the ecosystem processes shaping plant health and fitness. Within this triangle, soils and associated microflora are among the key ecosystem's drivers, underpinning plant productivity and evolution. In this study, we conducted a comprehensive analysis (physicochemical properties, enzyme activities, and taxonomic diversity) of soils under the canopy projection of Coffea arabica trees along a gradient of elevation (600, 800, and 900 m) and shade (0, 50, 100%).

Results: While shade had no influence on most parameters, altitude shaped the dynamics of microbial communities. Available phosphorus, soil organic carbon, and nitrate were significantly higher at 800 m, likely due to the higher activities of β-glucosidase and phosphatases at this altitude. Microbial biomass (carbon and nitrogen) and moisture were significantly higher at 600 and 900 m, which might be attributed to the abundance and richness of soil microorganisms. Indeed, metabarcoding analysis revealed a complex pattern of microbial consortia (bacteria, archaea, fungi) at the three altitudes, with the lowest index of richness recorded at 800 m. The highest number of Amplicon Sequence Variants was observed in bacteria, whose functional analysis revealed distinct metabolic adaptations across different altitudes. At 900 m, the main functional attributes favored the responses to environmental stimuli and microbial interactions; at 800 m, the predominant metabolic pathways were related to organic matter, fermentation, and bioremediation; and at the lower 600 m, the pathways shifted towards the breakdown of plant-derived compounds (e.g. geraniol, limonene, and pinene degradation).

Conclusion: Overall, the results indicate a higher effectiveness of the microbial consortium at 800 m, which might result in better nutrient cycling. The study highlights the importance of canopy shade species and elevation for the composition of microbial consortia in C. arabica, unveiling ecological functions beyond plant health, with implications for bio-based solutions and biotechnology.

背景:植物-微生物-环境之间的关系对于了解影响植物健康和适应性的生态系统过程至关重要。在这一三角关系中,土壤和相关微生物是生态系统的关键驱动因素之一,是植物生产力和进化的基础。在这项研究中,我们沿着海拔(600、800 和 900 米)和遮荫度(0、50、100%)的梯度,对阿拉伯咖啡树冠投影下的土壤进行了全面分析(理化性质、酶活性和分类多样性):结果:虽然遮荫度对大多数参数没有影响,但海拔高度影响了微生物群落的动态变化。可用磷、土壤有机碳和硝酸盐在海拔 800 米处明显较高,这可能是由于该海拔高度的 β-葡萄糖苷酶和磷酸酶活性较高。微生物生物量(碳和氮)和水分在 600 米和 900 米处明显较高,这可能与土壤微生物的数量和丰富程度有关。事实上,代谢条形码分析显示,三个海拔高度的微生物群(细菌、古菌、真菌)形态复杂,800 米处的丰富度指数最低。在海拔 900 米处,主要的功能属性偏向于对环境刺激和微生物相互作用的反应;在海拔 800 米处,主要的代谢途径与有机物、发酵和生物修复有关;而在海拔较低的 600 米处,代谢途径则转向植物衍生化合物的分解(如香叶醇、柠檬烯和蒎烯降解):总之,研究结果表明,800 米处的微生物群更有效,这可能会促进养分循环。这项研究强调了冠层遮荫物种和海拔高度对阿拉伯甘蔗微生物群组成的重要性,揭示了植物健康以外的生态功能,对生物解决方案和生物技术具有重要意义。
{"title":"Irradiance level and elevation shape the soil microbiome communities of Coffea arabica L.","authors":"Inocência da Piedade E Tapaça, Chinedu C Obieze, Gilberto V de Melo Pereira, David Fangueiro, João Coutinho, Irene Fraga, Fábio L Partelli, José C Ramalho, Isabel Marques, Ana I Ribeiro-Barros","doi":"10.1186/s40793-024-00619-9","DOIUrl":"https://doi.org/10.1186/s40793-024-00619-9","url":null,"abstract":"<p><strong>Background: </strong>The nexus plant-microbe-environment is essential to understand the ecosystem processes shaping plant health and fitness. Within this triangle, soils and associated microflora are among the key ecosystem's drivers, underpinning plant productivity and evolution. In this study, we conducted a comprehensive analysis (physicochemical properties, enzyme activities, and taxonomic diversity) of soils under the canopy projection of Coffea arabica trees along a gradient of elevation (600, 800, and 900 m) and shade (0, 50, 100%).</p><p><strong>Results: </strong>While shade had no influence on most parameters, altitude shaped the dynamics of microbial communities. Available phosphorus, soil organic carbon, and nitrate were significantly higher at 800 m, likely due to the higher activities of β-glucosidase and phosphatases at this altitude. Microbial biomass (carbon and nitrogen) and moisture were significantly higher at 600 and 900 m, which might be attributed to the abundance and richness of soil microorganisms. Indeed, metabarcoding analysis revealed a complex pattern of microbial consortia (bacteria, archaea, fungi) at the three altitudes, with the lowest index of richness recorded at 800 m. The highest number of Amplicon Sequence Variants was observed in bacteria, whose functional analysis revealed distinct metabolic adaptations across different altitudes. At 900 m, the main functional attributes favored the responses to environmental stimuli and microbial interactions; at 800 m, the predominant metabolic pathways were related to organic matter, fermentation, and bioremediation; and at the lower 600 m, the pathways shifted towards the breakdown of plant-derived compounds (e.g. geraniol, limonene, and pinene degradation).</p><p><strong>Conclusion: </strong>Overall, the results indicate a higher effectiveness of the microbial consortium at 800 m, which might result in better nutrient cycling. The study highlights the importance of canopy shade species and elevation for the composition of microbial consortia in C. arabica, unveiling ecological functions beyond plant health, with implications for bio-based solutions and biotechnology.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"75"},"PeriodicalIF":6.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution. 宿主特异性和生境过滤之间的相互作用影响着污染环境梯度中的海参微生物群。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-13 DOI: 10.1186/s40793-024-00620-2
Sheena Suet-Wah Chung, Khan Cheung, Bovern Suchart Arromrak, Zhenzhen Li, Cham Man Tse, Juan Diego Gaitán-Espitia

Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.

环境梯度可影响自然种群的形态生理和生命史差异。然而,目前还不清楚这种梯度在多大程度上还能调节其他生物特征的表型差异,如宿主相关微生物群落的结构和功能。在这项研究中,我们针对这一问题,在世界上城市化程度最高的沿海地区评估了环境相关(沉积物和水)和动物相关(皮肤和肠道)微生物群落的多样性、结构和功能在环境梯度上的特异性差异。我们利用热带海参 Holothuria leucospilota 检验了宿主-微生物组相互作用和微生物组合的决定性(如环境/宿主过滤)和随机性(如随机微生物扩散)过程之间的相互作用。总之,我们的研究结果表明,微生物群落是复杂的,其结构和功能因环境和动物宿主而异。然而,这些差异受整个梯度污染程度的影响,在α和β多样性方面存在明显的克隆。然而,在比较环境相关微生物群落和动物相关微生物群落时,这些支系和总体差异却呈现出相反的方向。在海参中,内在特征(如体内分区、生化组成、免疫系统)可能是所观察到的相关微生物群落个体内差异及其与环境来源差异的基础。这种调节有利于特定的微生物功能途径,这些途径可能对动物宿主的生存和生理起着重要作用,尤其是在高污染地区。这些研究结果表明,环境和宿主过滤之间的相互作用是香港污染梯度上白线鲃微生物群落组合的基础。
{"title":"The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution.","authors":"Sheena Suet-Wah Chung, Khan Cheung, Bovern Suchart Arromrak, Zhenzhen Li, Cham Man Tse, Juan Diego Gaitán-Espitia","doi":"10.1186/s40793-024-00620-2","DOIUrl":"https://doi.org/10.1186/s40793-024-00620-2","url":null,"abstract":"<p><p>Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"74"},"PeriodicalIF":6.2,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic diversity, stress tolerance and phytobeneficial potential in rhizobacteria of Vachellia tortilis subsp. raddiana. Vachellia tortilis subsp. raddiana 根瘤菌的遗传多样性、抗逆性和植物益生潜力。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-27 DOI: 10.1186/s40793-024-00611-3
Mohamed Hnini, Jamal Aurag

Background: Soil bacteria often form close associations with their host plants, particularly within the root compartment, playing a significant role in plant growth and stress resilience. Vachellia tortilis subsp. raddiana, (V. tortilis subsp. raddiana)a leguminous tree, naturally thrives in the harsh, arid climate of the Guelmim region in southern Morocco. This study aims to explore the diversity and potential plant growth-promoting (PGP) activities of bacteria associated with this tree.

Results: A total of 152 bacterial isolates were obtained from the rhizosphere of V. tortilis subsp. raddiana. Rep-PCR fingerprinting revealed 25 distinct genomic groups, leading to the selection of 84 representative strains for further molecular identification via 16 S rRNA gene sequencing. Seventeen genera were identified, with Bacillus and Pseudomonas being predominant. Bacillus strains demonstrated significant tolerance to water stress (up to 30% PEG), while Pseudomonas strains showed high salinity tolerance (up to 14% NaCl). In vitro studies indicated variability in PGP activities among the strains, including mineral solubilization, biological nitrogen fixation, ACC deaminase activity, and production of auxin, siderophores, ammonia, lytic enzymes, and HCN. Three elite strains were selected for greenhouse inoculation trials with V. tortilis subsp. raddiana. Strain LMR725 notably enhanced various plant growth parameters compared to uninoculated control plants.

Conclusions: The findings underscore the potential of Bacillus and Pseudomonas strains as biofertilizers, with strain LMR725 showing particular promise in enhancing the growth of V. tortilis subsp. raddiana. This strain emerges as a strong candidate for biofertilizer formulation aimed at improving plant growth and resilience in arid environments.

背景:土壤细菌通常与其寄主植物形成紧密的联系,尤其是在根部,在植物生长和抗逆性方面发挥着重要作用。豆科植物 Vachellia tortilis subsp.本研究旨在探索与这种树相关的细菌的多样性和潜在的植物生长促进(PGP)活性:结果:从 V. tortilis subsp.Rep-PCR指纹图谱显示有 25 个不同的基因组群,从而筛选出 84 株具有代表性的菌株,通过 16 S rRNA 基因测序进行进一步的分子鉴定。共鉴定出 17 个菌属,其中以芽孢杆菌和假单胞菌为主。芽孢杆菌菌株对水分胁迫(高达 30% PEG)表现出明显的耐受性,而假单胞菌菌株则表现出较高的耐盐性(高达 14% NaCl)。体外研究表明,不同菌株的 PGP 活性存在差异,包括矿质溶解、生物固氮、ACC 脱氨酶活性,以及产生辅酶、苷元、氨、裂解酶和 HCN。在与 V. tortilis subsp. raddiana 的温室接种试验中,选出了三个优良菌株。与未接种的对照植物相比,菌株 LMR725 显著提高了植物的各种生长参数:结论:研究结果表明,芽孢杆菌和假单胞菌菌株具有作为生物肥料的潜力,其中菌株 LMR725 在促进 V. tortilis subsp.该菌株是生物肥料配方的有力候选者,旨在改善干旱环境中植物的生长和恢复能力。
{"title":"Genetic diversity, stress tolerance and phytobeneficial potential in rhizobacteria of Vachellia tortilis subsp. raddiana.","authors":"Mohamed Hnini, Jamal Aurag","doi":"10.1186/s40793-024-00611-3","DOIUrl":"https://doi.org/10.1186/s40793-024-00611-3","url":null,"abstract":"<p><strong>Background: </strong>Soil bacteria often form close associations with their host plants, particularly within the root compartment, playing a significant role in plant growth and stress resilience. Vachellia tortilis subsp. raddiana, (V. tortilis subsp. raddiana)a leguminous tree, naturally thrives in the harsh, arid climate of the Guelmim region in southern Morocco. This study aims to explore the diversity and potential plant growth-promoting (PGP) activities of bacteria associated with this tree.</p><p><strong>Results: </strong>A total of 152 bacterial isolates were obtained from the rhizosphere of V. tortilis subsp. raddiana. Rep-PCR fingerprinting revealed 25 distinct genomic groups, leading to the selection of 84 representative strains for further molecular identification via 16 S rRNA gene sequencing. Seventeen genera were identified, with Bacillus and Pseudomonas being predominant. Bacillus strains demonstrated significant tolerance to water stress (up to 30% PEG), while Pseudomonas strains showed high salinity tolerance (up to 14% NaCl). In vitro studies indicated variability in PGP activities among the strains, including mineral solubilization, biological nitrogen fixation, ACC deaminase activity, and production of auxin, siderophores, ammonia, lytic enzymes, and HCN. Three elite strains were selected for greenhouse inoculation trials with V. tortilis subsp. raddiana. Strain LMR725 notably enhanced various plant growth parameters compared to uninoculated control plants.</p><p><strong>Conclusions: </strong>The findings underscore the potential of Bacillus and Pseudomonas strains as biofertilizers, with strain LMR725 showing particular promise in enhancing the growth of V. tortilis subsp. raddiana. This strain emerges as a strong candidate for biofertilizer formulation aimed at improving plant growth and resilience in arid environments.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"73"},"PeriodicalIF":6.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142356176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New fungal primers reveal the diversity of Mucoromycotinian arbuscular mycorrhizal fungi and their response to nitrogen application 新的真菌引物揭示了粘菌属丛枝菌根真菌的多样性及其对施氮的反应
IF 7.9 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-18 DOI: 10.1186/s40793-024-00617-x
Mirjam Seeliger, Sally Hilton, George Muscatt, Christopher Walker, David Bass, Felipe Albornoz, Rachel J. Standish, Neil D. Gray, Louis Mercy, Leonidas Rempelos, Carolin Schneider, Megan H. Ryan, Paul E. Bilsborrow, Gary D. Bending
Arbuscular mycorrhizas (AM) are the most widespread terrestrial symbiosis and are both a key determinant of plant health and a major contributor to ecosystem processes through their role in biogeochemical cycling. Until recently, it was assumed that the fungi which form AM comprise the subphylum Glomeromycotina (G-AMF), and our understanding of the diversity and ecosystem roles of AM is based almost exclusively on this group. However recent evidence shows that fungi which form the distinctive 'fine root endophyte’ (FRE) AM morphotype are members of the subphylum Mucoromycotina (M-AMF), so that AM symbioses are actually formed by two distinct groups of fungi. We investigated the influence of nitrogen (N) addition and wheat variety on the assembly of AM communities under field conditions. Visual assessment of roots showed co-occurrence of G-AMF and M-AMF, providing an opportunity to compare the responses of these two groups. Existing ‘AM’ 18S rRNA primers which co-amplify G-AMF and M-AMF were modified to reduce bias against Mucoromycotina, and compared against a new ‘FRE’ primer set which selectively amplifies Mucoromycotina. Using the AM-primers, no significant effect of either N-addition or wheat variety on G-AMF or M-AMF diversity or community composition was detected. In contrast, using the FRE-primers, N-addition was shown to reduce M-AMF diversity and altered community composition. The ASV which responded to N-addition were closely related, demonstrating a clear phylogenetic signal which was identified only by the new FRE-primers. The most abundant Mucoromycotina sequences we detected belonged to the same Endogonales clades as dominant sequences associated with FRE morphology in Australia, indicating that closely related M-AMF may be globally distributed. The results demonstrate the need to consider both G-AMF and M-AMF when investigating AM communities, and highlight the importance of primer choice when investigating AMF community dynamics.
丛枝菌根(AM)是最广泛的陆生共生关系,既是植物健康的关键决定因素,也通过其在生物地球化学循环中的作用对生态系统过程做出了重要贡献。直到最近,人们还认为形成 AM 的真菌包括团扇菌亚门(G-AMF),我们对 AM 的多样性和生态系统作用的了解几乎完全建立在这一群体的基础上。然而,最近的证据表明,形成独特的 "细根内生菌"(FRE)AM 形态的真菌属于粘菌亚门(M-AMF),因此 AM 共生实际上是由两类不同的真菌形成的。我们研究了在田间条件下,氮(N)添加量和小麦品种对 AM 群落组装的影响。对根部的目测显示,G-AMF 和 M-AMF 同时存在,这为比较这两类真菌的反应提供了机会。现有的 "AM "18S rRNA 引物可共同扩增 G-AMF 和 M-AMF,我们对其进行了修改,以减少对黏菌的偏差,并将其与新的 "FRE "引物组进行比较,后者可选择性地扩增黏菌。使用 AM 引物,没有发现添加氮或小麦品种对 G-AMF 或 M-AMF 多样性或群落组成有明显影响。相反,使用 FRE-引物则表明,添加氮会降低 M-AMF 的多样性并改变群落组成。对添加 N 有反应的 ASV 关系密切,这表明只有新的 FRE-引物才能识别出明显的系统发生学信号。我们检测到的最丰富的粘菌序列与澳大利亚与 FRE 形态相关的主要序列属于同一内生菌科支系,这表明密切相关的 M-AMF 可能分布于全球。研究结果表明,在研究 AM 群落时需要同时考虑 G-AMF 和 M-AMF,并强调了在研究 AMF 群落动态时引物选择的重要性。
{"title":"New fungal primers reveal the diversity of Mucoromycotinian arbuscular mycorrhizal fungi and their response to nitrogen application","authors":"Mirjam Seeliger, Sally Hilton, George Muscatt, Christopher Walker, David Bass, Felipe Albornoz, Rachel J. Standish, Neil D. Gray, Louis Mercy, Leonidas Rempelos, Carolin Schneider, Megan H. Ryan, Paul E. Bilsborrow, Gary D. Bending","doi":"10.1186/s40793-024-00617-x","DOIUrl":"https://doi.org/10.1186/s40793-024-00617-x","url":null,"abstract":"Arbuscular mycorrhizas (AM) are the most widespread terrestrial symbiosis and are both a key determinant of plant health and a major contributor to ecosystem processes through their role in biogeochemical cycling. Until recently, it was assumed that the fungi which form AM comprise the subphylum Glomeromycotina (G-AMF), and our understanding of the diversity and ecosystem roles of AM is based almost exclusively on this group. However recent evidence shows that fungi which form the distinctive 'fine root endophyte’ (FRE) AM morphotype are members of the subphylum Mucoromycotina (M-AMF), so that AM symbioses are actually formed by two distinct groups of fungi. We investigated the influence of nitrogen (N) addition and wheat variety on the assembly of AM communities under field conditions. Visual assessment of roots showed co-occurrence of G-AMF and M-AMF, providing an opportunity to compare the responses of these two groups. Existing ‘AM’ 18S rRNA primers which co-amplify G-AMF and M-AMF were modified to reduce bias against Mucoromycotina, and compared against a new ‘FRE’ primer set which selectively amplifies Mucoromycotina. Using the AM-primers, no significant effect of either N-addition or wheat variety on G-AMF or M-AMF diversity or community composition was detected. In contrast, using the FRE-primers, N-addition was shown to reduce M-AMF diversity and altered community composition. The ASV which responded to N-addition were closely related, demonstrating a clear phylogenetic signal which was identified only by the new FRE-primers. The most abundant Mucoromycotina sequences we detected belonged to the same Endogonales clades as dominant sequences associated with FRE morphology in Australia, indicating that closely related M-AMF may be globally distributed. The results demonstrate the need to consider both G-AMF and M-AMF when investigating AM communities, and highlight the importance of primer choice when investigating AMF community dynamics.","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"30 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Microbiome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1