Pub Date : 2024-07-18DOI: 10.24272/j.issn.2095-8137.2024.039
Yu Fu, Jing-Ru Nie, Peng Shang, Bo Zhang, Da-Wei Yan, Xin Hao, Hao Zhang
Tumor necrosis factor α (TNFα) exhibits diverse biological functions; however, its regulatory roles in myogenesis are not fully understood. In the present study, we explored the function of TNFα in myoblast proliferation, differentiation, migration, and myotube fusion in primary myoblasts and C2C12 cells. To this end, we constructed TNFα muscle-conditional knockout ( TNFα-CKO) mice and compared them with flox mice to assess the effects of TNFα knockout on skeletal muscles. Results indicated that TNFα-CKO mice displayed phenotypes such as accelerated muscle development, enhanced regenerative capacity, and improved exercise endurance compared to flox mice, with no significant differences observed in major visceral organs or skeletal structure. Using label-free proteomic analysis, we found that TNFα-CKO altered the distribution of several muscle development-related proteins, such as Hira, Casz1, Casp7, Arhgap10, Gas1, Diaph1, Map3k20, Cfl2, and Igf2, in the nucleus and cytoplasm. Gene set enrichment analysis (GSEA) further revealed that TNFα deficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling. These findings suggest that TNFα-CKO positively regulates muscle growth and development, possibly via these newly identified targets and pathways.
{"title":"Tumor necrosis factor α deficiency promotes myogenesis and muscle regeneration.","authors":"Yu Fu, Jing-Ru Nie, Peng Shang, Bo Zhang, Da-Wei Yan, Xin Hao, Hao Zhang","doi":"10.24272/j.issn.2095-8137.2024.039","DOIUrl":"10.24272/j.issn.2095-8137.2024.039","url":null,"abstract":"<p><p>Tumor necrosis factor α (TNFα) exhibits diverse biological functions; however, its regulatory roles in myogenesis are not fully understood. In the present study, we explored the function of <i>TNFα</i> in myoblast proliferation, differentiation, migration, and myotube fusion in primary myoblasts and C2C12 cells. To this end, we constructed <i>TNFα</i> muscle-conditional knockout ( <i>TNFα</i>-CKO) mice and compared them with <i>flox</i> mice to assess the effects of <i>TNFα</i> knockout on skeletal muscles. Results indicated that <i>TNFα</i>-CKO mice displayed phenotypes such as accelerated muscle development, enhanced regenerative capacity, and improved exercise endurance compared to <i>flox</i> mice, with no significant differences observed in major visceral organs or skeletal structure. Using label-free proteomic analysis, we found that <i>TNFα</i>-CKO altered the distribution of several muscle development-related proteins, such as Hira, Casz1, Casp7, Arhgap10, Gas1, Diaph1, Map3k20, Cfl2, and Igf2, in the nucleus and cytoplasm. Gene set enrichment analysis (GSEA) further revealed that <i>TNFα</i> deficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling. These findings suggest that <i>TNFα</i>-CKO positively regulates muscle growth and development, possibly via these newly identified targets and pathways.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"951-960"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.24272/j.issn.2095-8137.2023.302
Gao-Lin Qiu, Li-Jun Peng, Peng Wang, Zhi-Lai Yang, Ji-Qian Zhang, Hu Liu, Xiao-Na Zhu, Jin Rao, Xue-Sheng Liu
General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.
{"title":"<i>In vivo</i> imaging reveals a synchronized correlation among neurotransmitter dynamics during propofol and sevoflurane anesthesia.","authors":"Gao-Lin Qiu, Li-Jun Peng, Peng Wang, Zhi-Lai Yang, Ji-Qian Zhang, Hu Liu, Xiao-Na Zhu, Jin Rao, Xue-Sheng Liu","doi":"10.24272/j.issn.2095-8137.2023.302","DOIUrl":"10.24272/j.issn.2095-8137.2023.302","url":null,"abstract":"<p><p>General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through <i>in vivo</i> fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 3","pages":"679-690"},"PeriodicalIF":4.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.24272/j.issn.2095-8137.2023.413
Wen-Xin Hang, Yan-Chang Yang, Yu-Han Hu, Fu-Quan Fang, Lang Wang, Xing-Hua Qian, Patrick M Mcquillan, Hui Xiong, Jian-Hang Leng, Zhi-Yong Hu
General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells. Oligodendrocytes perform essential roles in the central nervous system, including myelin sheath formation, axonal metabolism, and neuroplasticity regulation. They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation, differentiation, and apoptosis. Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes. These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways, but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function. In this review, we summarize the effects of general anesthetic agents on oligodendrocytes. We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.
{"title":"General anesthetic agents induce neurotoxicity through oligodendrocytes in the developing brain.","authors":"Wen-Xin Hang, Yan-Chang Yang, Yu-Han Hu, Fu-Quan Fang, Lang Wang, Xing-Hua Qian, Patrick M Mcquillan, Hui Xiong, Jian-Hang Leng, Zhi-Yong Hu","doi":"10.24272/j.issn.2095-8137.2023.413","DOIUrl":"10.24272/j.issn.2095-8137.2023.413","url":null,"abstract":"<p><p>General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells. Oligodendrocytes perform essential roles in the central nervous system, including myelin sheath formation, axonal metabolism, and neuroplasticity regulation. They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation, differentiation, and apoptosis. Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes. These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways, but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function. In this review, we summarize the effects of general anesthetic agents on oligodendrocytes. We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 3","pages":"691-703"},"PeriodicalIF":4.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.24272/j.issn.2095-8137.2023.205
Guang-Hui Tan, Shi-Jie Liu, Ming-Le Dou, De-Feng Zhao, Ao Zhang, Heng-Kuan Li, Fu-Nong Luo, Tao Shi, Hao-Ping Wang, Jing-Yuan Lei, Yong Zhang, Yu Jiang, Yi Zheng, Fei Wang
The placenta plays a crucial role in successful mammalian reproduction. Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons, essential for full-term fetal development. The cow placenta harbors at least two trophoblast cell populations: uninucleate (UNC) and binucleate (BNC) cells. However, the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches, and the molecular mechanisms governing trophoblast differentiation and functionalization. To fill this knowledge gap, we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation, attaining high-resolution, spatially resolved gene expression profiles. Based on clustering and cell marker gene expression analyses, key transcription factors, including YBX1 and NPAS2, were shown to regulate the heterogeneity of trophoblast cell subpopulations. Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment. Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation. Additionally, spatial modules and co-variant genes that help shape specific tissue structures were identified. Together, these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.
{"title":"Spatially resolved transcriptomic profiling of placental development in dairy cow.","authors":"Guang-Hui Tan, Shi-Jie Liu, Ming-Le Dou, De-Feng Zhao, Ao Zhang, Heng-Kuan Li, Fu-Nong Luo, Tao Shi, Hao-Ping Wang, Jing-Yuan Lei, Yong Zhang, Yu Jiang, Yi Zheng, Fei Wang","doi":"10.24272/j.issn.2095-8137.2023.205","DOIUrl":"10.24272/j.issn.2095-8137.2023.205","url":null,"abstract":"<p><p>The placenta plays a crucial role in successful mammalian reproduction. Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons, essential for full-term fetal development. The cow placenta harbors at least two trophoblast cell populations: uninucleate (UNC) and binucleate (BNC) cells. However, the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches, and the molecular mechanisms governing trophoblast differentiation and functionalization. To fill this knowledge gap, we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation, attaining high-resolution, spatially resolved gene expression profiles. Based on clustering and cell marker gene expression analyses, key transcription factors, including YBX1 and NPAS2, were shown to regulate the heterogeneity of trophoblast cell subpopulations. Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment. Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation. Additionally, spatial modules and co-variant genes that help shape specific tissue structures were identified. Together, these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 3","pages":"586-600"},"PeriodicalIF":4.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Painful stimuli elicit first-line reflexive defensive reactions and, in many cases, also evoke second-line recuperative behaviors, the latter of which reflects the sensing of tissue damage and the alleviation of suffering. The lateral parabrachial nucleus (lPBN), composed of external- (elPBN), dorsal- (dlPBN), and central/superior-subnuclei (jointly referred to as slPBN), receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption. However, the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear. In this study, we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor ( NK1R) (lPBN NK1R) are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle, while elPBN neurons are dispensable for driving such reactions. Notably, lPBN NK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats. Lastly, both lPBN NK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions. Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.
{"title":"Functional dissection of parabrachial substrates in processing nociceptive information.","authors":"Jin Ke, Wei-Cheng Lu, Hai-Yang Jing, Shen Qian, Sun-Wook Moon, Guang-Fu Cui, Wei-Xin Qian, Xiao-Jing Che, Qian Zhang, Shi-Shi Lai, Ling Zhang, Ying-Jie Zhu, Jing-Dun Xie, Tian-Wen Huang","doi":"10.24272/j.issn.2095-8137.2023.412","DOIUrl":"10.24272/j.issn.2095-8137.2023.412","url":null,"abstract":"<p><p>Painful stimuli elicit first-line reflexive defensive reactions and, in many cases, also evoke second-line recuperative behaviors, the latter of which reflects the sensing of tissue damage and the alleviation of suffering. The lateral parabrachial nucleus (lPBN), composed of external- (elPBN), dorsal- (dlPBN), and central/superior-subnuclei (jointly referred to as slPBN), receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption. However, the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear. In this study, we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor ( <i>NK1R</i>) (lPBN <sup>NK1R</sup>) are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle, while elPBN neurons are dispensable for driving such reactions. Notably, lPBN <sup>NK1R</sup> neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats. Lastly, both lPBN <sup>NK1R</sup> and elPBN neurons contribute to chemical irritant-induced nocifensive reactions. Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 3","pages":"633-647"},"PeriodicalIF":4.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acetaminophen (APAP), the most frequently used mild analgesic and antipyretic drug worldwide, is implicated in causing 46% of all acute liver failures in the USA and between 40% and 70% in Europe. The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine (NAC); however, its efficacy is limited in cases of advanced liver injury or when administered at a late stage. In the current study, we discovered that treatment with a moderate intensity static magnetic field (SMF) notably reduced the mortality rate in mice subjected to high-dose APAP from 40% to 0%, proving effective at both the initial liver injury stage and the subsequent recovery stage. During the early phase of liver injury, SMF markedly reduced APAP-induced oxidative stress, free radicals, and liver damage, resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione (GSH). During the later stage of liver recovery, application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation. Moreover, the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery, even 24 h post overdose, when the effectiveness of NAC alone substantially declines. Overall, this study provides a non-invasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose. Of note, this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP, and potentially other toxic overdoses.
{"title":"Acetaminophen overdose-induced acute liver injury can be alleviated by static magnetic field.","authors":"Han-Xiao Chen, Xin-Yu Wang, Biao Yu, Chuan-Lin Feng, Guo-Feng Cheng, Lei Zhang, Jun-Jun Wang, Ying Wang, Ruo-Wen Guo, Xin-Miao Ji, Wen-Jing Xie, Wei-Li Chen, Chao Song, Xin Zhang","doi":"10.24272/j.issn.2095-8137.2023.410","DOIUrl":"10.24272/j.issn.2095-8137.2023.410","url":null,"abstract":"<p><p>Acetaminophen (APAP), the most frequently used mild analgesic and antipyretic drug worldwide, is implicated in causing 46% of all acute liver failures in the USA and between 40% and 70% in Europe. The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine (NAC); however, its efficacy is limited in cases of advanced liver injury or when administered at a late stage. In the current study, we discovered that treatment with a moderate intensity static magnetic field (SMF) notably reduced the mortality rate in mice subjected to high-dose APAP from 40% to 0%, proving effective at both the initial liver injury stage and the subsequent recovery stage. During the early phase of liver injury, SMF markedly reduced APAP-induced oxidative stress, free radicals, and liver damage, resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione (GSH). During the later stage of liver recovery, application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation. Moreover, the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery, even 24 h post overdose, when the effectiveness of NAC alone substantially declines. Overall, this study provides a non-invasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose. Of note, this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP, and potentially other toxic overdoses.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 3","pages":"478-491"},"PeriodicalIF":4.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coilia nasus, a migratory fish species found in the middle and lower reaches of the Yangtze River and along offshore areas of China, possesses considerable aquacultural and economic potential. However, the species faces challenges due to significant variation in the gonadal development rate among females, resulting in inconsistent ovarian maturation times at the population level, an extended reproductive period, and limitations on fish growth rate due to ovarian prematurity. In the present study, we combined genome-wide association study (GWAS) and comparative transcriptome analysis to investigate the potential single nucleotide polymorphisms (SNPs) and candidate genes associated with population-asynchronous ovarian development in C. nasus. Genotyping of the female population based on whole-genome resequencing yielded 2 120 695 high-quality SNPs, 39 of which were suggestively associated with ovarian development. Of note, a significant SNP peak on LG21 containing 30 suggestively associated SNPs was identified, with cpne5a determined as the causal gene of the peak. Therefore, single-marker and haplotype association analyses were performed on cpne5a, revealing four genetic markers ( P<0.05) and seven haplotypes (r 2>0.9) significantly associated with the phenotype. Comparative transcriptome analysis of precociously and normally maturing individuals screened out 29 and 426 overlapping differentially expressed genes in the brain and ovary, respectively, between individuals of different body sizes. Integrating the GWAS and transcriptome analysis results, this study identified genes and pathways related to hypothalamic-pituitary-gonadal axis hormone secretion, extracellular matrix, angiogenesis, and gap junctions involved in population-asynchronous ovarian development. The insights gained from this study provide a basis for a deeper understanding of the molecular mechanisms underlying ovarian development in fish and may facilitate the genetic breeding of C. nasus strains exhibiting population-synchronous ovarian development in the future.
{"title":"Combining genome-wide association study and transcriptome analysis to identify molecular markers and genetic basis of population-asynchronous ovarian development in <i>Coilia nasus</i>.","authors":"Yue Yu, Shi-Ming Wan, Cheng-You Huang, Shuang-Meng Zhang, Ai-Li Sun, Jun-Qi Liu, Shun-Yao Li, Yong-Fu Zhu, Shu-Xin Gu, Ze-Xia Gao","doi":"10.24272/j.issn.2095-8137.2023.336","DOIUrl":"10.24272/j.issn.2095-8137.2023.336","url":null,"abstract":"<p><p><i>Coilia nasus</i>, a migratory fish species found in the middle and lower reaches of the Yangtze River and along offshore areas of China, possesses considerable aquacultural and economic potential. However, the species faces challenges due to significant variation in the gonadal development rate among females, resulting in inconsistent ovarian maturation times at the population level, an extended reproductive period, and limitations on fish growth rate due to ovarian prematurity. In the present study, we combined genome-wide association study (GWAS) and comparative transcriptome analysis to investigate the potential single nucleotide polymorphisms (SNPs) and candidate genes associated with population-asynchronous ovarian development in <i>C. nasus</i>. Genotyping of the female population based on whole-genome resequencing yielded 2 120 695 high-quality SNPs, 39 of which were suggestively associated with ovarian development. Of note, a significant SNP peak on LG21 containing 30 suggestively associated SNPs was identified, with <i>cpne5a</i> determined as the causal gene of the peak. Therefore, single-marker and haplotype association analyses were performed on <i>cpne5a</i>, revealing four genetic markers ( <i>P</i><0.05) and seven haplotypes (r <sup>2</sup>>0.9) significantly associated with the phenotype. Comparative transcriptome analysis of precociously and normally maturing individuals screened out 29 and 426 overlapping differentially expressed genes in the brain and ovary, respectively, between individuals of different body sizes. Integrating the GWAS and transcriptome analysis results, this study identified genes and pathways related to hypothalamic-pituitary-gonadal axis hormone secretion, extracellular matrix, angiogenesis, and gap junctions involved in population-asynchronous ovarian development. The insights gained from this study provide a basis for a deeper understanding of the molecular mechanisms underlying ovarian development in fish and may facilitate the genetic breeding of <i>C. nasus</i> strains exhibiting population-synchronous ovarian development in the future.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 3","pages":"491-505"},"PeriodicalIF":4.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.
{"title":"PCDH17 restricts dendritic spine morphogenesis by regulating ROCK2-dependent control of the actin cytoskeleton, modulating emotional behavior.","authors":"Laidong Yu, Fangfang Zeng, Mengshu Fan, Kexuan Zhang, Jingjing Duan, Yalu Tan, Panlin Liao, Jin Wen, Chenyu Wang, Meilin Wang, Jialong Yuan, Xinxin Pang, Yan Huang, Yangzhou Zhang, Jia-Da Li, Zhuohua Zhang, Zhonghua Hu","doi":"10.24272/j.issn.2095-8137.2024.055","DOIUrl":"10.24272/j.issn.2095-8137.2024.055","url":null,"abstract":"<p><p>Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 3","pages":"535-550"},"PeriodicalIF":4.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/β-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.
{"title":"Integrated ribosome and proteome analyses reveal insights into sevoflurane-induced long-term social behavior and cognitive dysfunctions through ADNP inhibition in neonatal mice.","authors":"Li-Rong Liang, Bing Liu, Shu-Hui Cao, You-Yi Zhao, Tian Zeng, Mei-Ting Zhai, Ze Fan, Dan-Yi He, San-Xin Ma, Xiao-Tong Shi, Yao Zhang, Hui Zhang","doi":"10.24272/j.issn.2095-8137.2023.315","DOIUrl":"10.24272/j.issn.2095-8137.2023.315","url":null,"abstract":"<p><p>A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca <sup>2+</sup> activity via the Wnt/β-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 3","pages":"663-678"},"PeriodicalIF":4.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}