首页 > 最新文献

IEEE Geoscience and Remote Sensing Magazine最新文献

英文 中文
Hyperspectral Image Clustering: Current achievements and future lines 高光谱图像聚类:当前成就和未来路线
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-12-01 DOI: 10.1109/MGRS.2020.3032575
Han Zhai, Hongyan Zhang, Pingxiang Li, Liangpei Zhang
Hyperspectral remote sensing organically combines traditional space imaging with advanced spectral measurement technologies, delivering advantages stemming from continuous spectrum data and rich spatial information. This development of hyperspectral technology takes remote sensing into a brand-new phase, making the technology widely applicable in various fields. Hyperspectral clustering analysis is widely utilized in hyperspectral image (HSI) interpretation and information extraction, which can reveal the natural partition pattern of pixels in an unsupervised way. In this article, current hyperspectral clustering algorithms are systematically reviewed and summarized in nine main categories: centroid-based, density-based, probability-based, bionics-based, intelligent computing-based, graph-based, subspace clustering, deep learning-based, and hybrid mechanism-based. The performance of several popular hyperspectral clustering methods is demonstrated on two widely used data sets. HSI clustering challenges and possible future research lines are identified.
高光谱遥感将传统的空间成像与先进的光谱测量技术有机地结合在一起,带来了连续光谱数据和丰富空间信息的优势。高光谱技术的发展将遥感带入了一个全新的阶段,使该技术在各个领域都有广泛的应用。高光谱聚类分析广泛应用于高光谱图像的解释和信息提取,可以以无监督的方式揭示像素的自然分割模式。本文系统地回顾和总结了当前高光谱聚类算法的九大类:基于质心、基于密度、基于概率、基于仿生学、基于智能计算、基于图、子空间聚类、基于深度学习和基于混合机制。在两个广泛使用的数据集上演示了几种流行的高光谱聚类方法的性能。确定了HSI聚类的挑战和未来可能的研究方向。
{"title":"Hyperspectral Image Clustering: Current achievements and future lines","authors":"Han Zhai, Hongyan Zhang, Pingxiang Li, Liangpei Zhang","doi":"10.1109/MGRS.2020.3032575","DOIUrl":"https://doi.org/10.1109/MGRS.2020.3032575","url":null,"abstract":"Hyperspectral remote sensing organically combines traditional space imaging with advanced spectral measurement technologies, delivering advantages stemming from continuous spectrum data and rich spatial information. This development of hyperspectral technology takes remote sensing into a brand-new phase, making the technology widely applicable in various fields. Hyperspectral clustering analysis is widely utilized in hyperspectral image (HSI) interpretation and information extraction, which can reveal the natural partition pattern of pixels in an unsupervised way. In this article, current hyperspectral clustering algorithms are systematically reviewed and summarized in nine main categories: centroid-based, density-based, probability-based, bionics-based, intelligent computing-based, graph-based, subspace clustering, deep learning-based, and hybrid mechanism-based. The performance of several popular hyperspectral clustering methods is demonstrated on two widely used data sets. HSI clustering challenges and possible future research lines are identified.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"9 1","pages":"35-67"},"PeriodicalIF":14.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MGRS.2020.3032575","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49353878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 35
2021 Index IEEE Geoscience and Remote Sensing Magazine Vol. 9 2021索引IEEE地球科学与遥感杂志第9卷
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-12-01 DOI: 10.1109/mgrs.2022.3151391
{"title":"2021 Index IEEE Geoscience and Remote Sensing Magazine Vol. 9","authors":"","doi":"10.1109/mgrs.2022.3151391","DOIUrl":"https://doi.org/10.1109/mgrs.2022.3151391","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44397911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agenda Items of the World Radiocommunication Conference 2023 With a Potential Impact on Microwave Remote Sensing [Technical Committees] 对微波遥感可能产生影响的2023年世界无线电通信会议议程项目[技术委员会]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-12-01 DOI: 10.1109/mgrs.2021.3120892
P. de Matthaeis
{"title":"Agenda Items of the World Radiocommunication Conference 2023 With a Potential Impact on Microwave Remote Sensing [Technical Committees]","authors":"P. de Matthaeis","doi":"10.1109/mgrs.2021.3120892","DOIUrl":"https://doi.org/10.1109/mgrs.2021.3120892","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45397233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GRSS Accomplishments in 2021: Success and Unexpected Turns [President’s Message] 2021年GRSS的成就:成功与意外转折[总统致辞]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-12-01 DOI: 10.1109/mgrs.2021.3129110
D. Kunkee
{"title":"GRSS Accomplishments in 2021: Success and Unexpected Turns [President’s Message]","authors":"D. Kunkee","doi":"10.1109/mgrs.2021.3129110","DOIUrl":"https://doi.org/10.1109/mgrs.2021.3129110","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48835242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front cover 封面
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-12-01 DOI: 10.1109/mgrs.2021.3120175
{"title":"Front cover","authors":"","doi":"10.1109/mgrs.2021.3120175","DOIUrl":"https://doi.org/10.1109/mgrs.2021.3120175","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46993354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning for Unmanned Aerial Vehicle-Based Object Detection and Tracking: A survey 基于深度学习的无人机目标检测与跟踪研究综述
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-10-25 DOI: 10.1109/MGRS.2021.3115137
Xin Wu, Wei Li, D. Hong, R. Tao, Qian Du
Owing to effective and flexible data acquisition, unmanned aerial vehicles (UAVs) have recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by the recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, and traffic management.
由于数据采集的有效性和灵活性,无人机最近成为计算机视觉(CV)和遥感(RS)领域的热点。受深度学习(DL)最近成功的启发,许多先进的目标检测和跟踪方法已被广泛应用于各种无人机相关任务,如环境监测、精准农业和交通管理。
{"title":"Deep Learning for Unmanned Aerial Vehicle-Based Object Detection and Tracking: A survey","authors":"Xin Wu, Wei Li, D. Hong, R. Tao, Qian Du","doi":"10.1109/MGRS.2021.3115137","DOIUrl":"https://doi.org/10.1109/MGRS.2021.3115137","url":null,"abstract":"Owing to effective and flexible data acquisition, unmanned aerial vehicles (UAVs) have recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by the recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, and traffic management.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"91-124"},"PeriodicalIF":14.6,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41389892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 78
Decennial Geomorphic Transport From Archived Time Series Digital Elevation Models: A cookbook for tropical and alpine environments 存档时间序列数字高程模型的十年地貌传输:热带和高山环境食谱
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-09-13 DOI: 10.36227/techrxiv.14828256.v2
A. Lucas, É. Gayer
On the seasonal timescale, for accessible locations and when manpower is available, direct observations and field surveys are the most useful and standard approaches. However very limited studies have been conducted through direct examination on decennial-to-century timescales due to observational constrains. Here, we present an open and reproducible pipeline based on historical aerial images (across a timeline of up to 70 years) that includes sensor calibration, dense matching, and elevation reconstruction in two areas of interest that represent pristine examples of tropical and alpine environments. The Remparts and Langevin rivers, on Réunion Island, and the Bossons glacier, in the French Alps, share limited accessibility (in time and space) that can be overcome only by remote sensing. We reach a metric-to-submetric resolution close to the nominal image spatial sampling. This provides elevation time series with better resolution than most recent satellite images, such as Pleiades, in a decennial time period.
在季节性的时间尺度上,在可到达的地点和有人力的情况下,直接观察和实地调查是最有用和标准的办法。然而,由于观测的限制,通过对十年至世纪时间尺度的直接检查进行了非常有限的研究。在这里,我们提出了一个基于历史航空图像(跨越长达70年的时间轴)的开放和可复制的管道,包括传感器校准、密集匹配和海拔重建,这两个领域代表了热带和高山环境的原始例子。Remparts河和Langevin河位于rsamunion岛,Bossons冰川位于法国阿尔卑斯山,它们在时间和空间上的可达性有限,只有通过遥感才能克服。我们达到了接近标称图像空间采样的度量到亚度量的分辨率。这提供了比最近的卫星图像(如昴宿星团)在十年周期内分辨率更高的高程时间序列。
{"title":"Decennial Geomorphic Transport From Archived Time Series Digital Elevation Models: A cookbook for tropical and alpine environments","authors":"A. Lucas, É. Gayer","doi":"10.36227/techrxiv.14828256.v2","DOIUrl":"https://doi.org/10.36227/techrxiv.14828256.v2","url":null,"abstract":"On the seasonal timescale, for accessible locations and when manpower is available, direct observations and field surveys are the most useful and standard approaches. However very limited studies have been conducted through direct examination on decennial-to-century timescales due to observational constrains. Here, we present an open and reproducible pipeline based on historical aerial images (across a timeline of up to 70 years) that includes sensor calibration, dense matching, and elevation reconstruction in two areas of interest that represent pristine examples of tropical and alpine environments. The Remparts and Langevin rivers, on Réunion Island, and the Bossons glacier, in the French Alps, share limited accessibility (in time and space) that can be overcome only by remote sensing. We reach a metric-to-submetric resolution close to the nominal image spatial sampling. This provides elevation time series with better resolution than most recent satellite images, such as Pleiades, in a decennial time period.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"120-134"},"PeriodicalIF":14.6,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47423125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Classification of Remote Sensing Data With Morphological Attribute Profiles: A decade of advances 基于形态属性剖面的遥感数据分类:十年进展
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-09-01 DOI: 10.1109/MGRS.2021.3051859
D. S. Maia, M. Pham, E. Aptoula, Florent Guiotte, S. Lefèvre
Morphological attribute profiles (APs) are among the most prominent methods for spatial–spectral pixel analysis of remote sensing images. Since their introduction a decade ago to tackle land cover classification, many studies have been contributed to the state of the art, focusing not only on their application to a wider range of tasks but also on their performance improvement and extension to more complex Earth observation data.
形态属性轮廓(APs)是遥感影像空间光谱像元分析的重要方法之一。自十年前引入土地覆盖分类以来,许多研究都对最新技术做出了贡献,不仅关注它们在更广泛任务中的应用,而且关注它们的性能改进和扩展到更复杂的地球观测数据。
{"title":"Classification of Remote Sensing Data With Morphological Attribute Profiles: A decade of advances","authors":"D. S. Maia, M. Pham, E. Aptoula, Florent Guiotte, S. Lefèvre","doi":"10.1109/MGRS.2021.3051859","DOIUrl":"https://doi.org/10.1109/MGRS.2021.3051859","url":null,"abstract":"Morphological attribute profiles (APs) are among the most prominent methods for spatial–spectral pixel analysis of remote sensing images. Since their introduction a decade ago to tackle land cover classification, many studies have been contributed to the state of the art, focusing not only on their application to a wider range of tasks but also on their performance improvement and extension to more complex Earth observation data.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"9 1","pages":"43-71"},"PeriodicalIF":14.6,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MGRS.2021.3051859","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43657854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
IEEE Collabratec IEEE Collabratec
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-09-01 DOI: 10.1109/mgrs.2021.3109415
{"title":"IEEE Collabratec","authors":"","doi":"10.1109/mgrs.2021.3109415","DOIUrl":"https://doi.org/10.1109/mgrs.2021.3109415","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47557565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The New Working Groups of the GRSS Technical Committee on Image Analysis and Data Fusion [Technical Committees] GRSS图像分析和数据融合技术委员会的新工作组[技术委员会]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-09-01 DOI: 10.1109/mgrs.2021.3100654
M. Schmitt, C. Persello, G. Vivone, D. Lunga, Wenzhi Liao, N. Yokoya, Pedram Ghamisi, R. Hänsch
{"title":"The New Working Groups of the GRSS Technical Committee on Image Analysis and Data Fusion [Technical Committees]","authors":"M. Schmitt, C. Persello, G. Vivone, D. Lunga, Wenzhi Liao, N. Yokoya, Pedram Ghamisi, R. Hänsch","doi":"10.1109/mgrs.2021.3100654","DOIUrl":"https://doi.org/10.1109/mgrs.2021.3100654","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49356969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Geoscience and Remote Sensing Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1