首页 > 最新文献

IEEE Geoscience and Remote Sensing Magazine最新文献

英文 中文
Digital Beamforming for Spaceborne Reflector-Based Synthetic Aperture Radar, Part 2: Ultrawide-swath imaging mode 星载反射器型合成孔径雷达的数字波束形成,第2部分:超宽幅成像模式
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/MGRS.2022.3200871
M. Younis, F. Almeida, Michelangelo Villano, S. Huber, G. Krieger, A. Moreira
Utilizing digital beamforming (DBF) techniques in conjunction with the feed array of large deployable reflector antennas can boost the performance of synthetic aperture radar (SAR) systems. Multichannel SAR overcomes the constraints of classical single-channel SAR, allowing for wide-swath imaging at fine azimuth resolution. Part 1 of this tutorial provided an introduction to the instrument structure of a DBF imaging radar and the particularities/variants of its basic operation mode, known as a single-beam scan-on-receive (SCORE) system.
将数字波束成形(DBF)技术与大型可部署反射天线的馈电阵列相结合,可以提高合成孔径雷达(SAR)系统的性能。多通道SAR克服了传统单通道SAR的限制,实现了高方位分辨率的宽幅成像。本教程的第1部分介绍了DBF成像雷达的仪器结构及其基本操作模式的特殊性/变体,即单波束扫描接收(SCORE)系统。
{"title":"Digital Beamforming for Spaceborne Reflector-Based Synthetic Aperture Radar, Part 2: Ultrawide-swath imaging mode","authors":"M. Younis, F. Almeida, Michelangelo Villano, S. Huber, G. Krieger, A. Moreira","doi":"10.1109/MGRS.2022.3200871","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3200871","url":null,"abstract":"Utilizing digital beamforming (DBF) techniques in conjunction with the feed array of large deployable reflector antennas can boost the performance of synthetic aperture radar (SAR) systems. Multichannel SAR overcomes the constraints of classical single-channel SAR, allowing for wide-swath imaging at fine azimuth resolution. Part 1 of this tutorial provided an introduction to the instrument structure of a DBF imaging radar and the particularities/variants of its basic operation mode, known as a single-beam scan-on-receive (SCORE) system.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"10-31"},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45266588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Sparse Synthetic Aperture Radar Imaging From Compressed Sensing and Machine Learning: Theories, applications, and trends 基于压缩传感和机器学习的稀疏合成孔径雷达成像:理论、应用和趋势
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/MGRS.2022.3218801
Gang Xu, Bangjie Zhang, Hanwen Yu, Jianlai Chen, M. Xing, Wei Hong
Synthetic aperture radar (SAR) image formation can be treated as a class of ill-posed linear inverse problems, and the resolution is limited by the data bandwidth for traditional imaging techniques via matched filter (MF). The sparse SAR imaging technology using compressed sensing (CS) has been developed for enhanced performance, such as superresolution, feature enhancement, etc. More recently, sparse SAR imaging from machine learning (ML), including deep learning (DL), has been further studied, showing great potential in the imaging area. However, there are still gaps between the two groups of methods for sparse SAR imaging, and their connections have not been established.
合成孔径雷达(SAR)成像可以看作是一类不适定线性逆问题,传统匹配滤波器成像技术的分辨率受到数据带宽的限制。使用压缩传感(CS)的稀疏SAR成像技术已被开发用于增强性能,如超分辨率、特征增强等。最近,包括深度学习(DL)在内的机器学习(ML)稀疏SAR成像得到了进一步研究,在成像领域显示出巨大潜力。然而,这两组稀疏SAR成像方法之间仍然存在差距,它们之间的联系尚未建立。
{"title":"Sparse Synthetic Aperture Radar Imaging From Compressed Sensing and Machine Learning: Theories, applications, and trends","authors":"Gang Xu, Bangjie Zhang, Hanwen Yu, Jianlai Chen, M. Xing, Wei Hong","doi":"10.1109/MGRS.2022.3218801","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3218801","url":null,"abstract":"Synthetic aperture radar (SAR) image formation can be treated as a class of ill-posed linear inverse problems, and the resolution is limited by the data bandwidth for traditional imaging techniques via matched filter (MF). The sparse SAR imaging technology using compressed sensing (CS) has been developed for enhanced performance, such as superresolution, feature enhancement, etc. More recently, sparse SAR imaging from machine learning (ML), including deep learning (DL), has been further studied, showing great potential in the imaging area. However, there are still gaps between the two groups of methods for sparse SAR imaging, and their connections have not been established.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"32-69"},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44164871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
IGARSS 2022 in Kuala Lumpur, Malaysia: Preserving Our Heritage, Enabling Our Future Through Remote Sensing [Conference Reports] IGARSS 2022在马来西亚吉隆坡:通过遥感保护我们的遗产,实现我们的未来[会议报告]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/mgrs.2022.3223267
G. Vetharatnam, H. Ewe, H. Chuah
{"title":"IGARSS 2022 in Kuala Lumpur, Malaysia: Preserving Our Heritage, Enabling Our Future Through Remote Sensing [Conference Reports]","authors":"G. Vetharatnam, H. Ewe, H. Chuah","doi":"10.1109/mgrs.2022.3223267","DOIUrl":"https://doi.org/10.1109/mgrs.2022.3223267","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47489883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Earth Observation and Artificial Intelligence: Understanding emerging ethical issues and opportunities 地球观测与人工智能:理解新出现的伦理问题和机遇
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/MGRS.2022.3208357
M. Kochupillai, Matthias Kahl, Michael Schmitt, Hannes Taubenboeck, Xiao Xiang Zhu
Ethics is a central and growing concern in all applications utilizing artificial intelligence (AI). Earth observation (EO) and remote sensing (RS) research relies heavily on both big data and AI or machine learning (ML). While this reliance is not new, with increasing image resolutions and the growing number of EO/RS use cases that have a direct impact on governance, policy, and the lives of people, ethical issues are taking center stage. In this article, we provide scientists engaged with AI for EO (AI4EO) research, 1) a practically useful overview of the key ethical issues emerging in this field, with concrete examples from within EO/RS to explain these issues, and 2) a first road map (flowchart) that scientists can use to identify ethical issues in their ongoing research. With this, we aim to sensitize scientists to these issues and create a bridge to facilitate constructive and regular communication among scientists engaged in AI4EO research, on the one hand, and ethics research, on the other hand. The article also provides detailed illustrations from four AI4EO research fields to explain how scientists can redesign research questions to more effectively grab ethical opportunities to address real-world problems that are otherwise akin to ethical dilemmas with no win-win solution in sight. The article concludes by providing recommendations to institutions that want to support ethically mindful AI4EO research and provides suggestions for future research in this field.
在使用人工智能(AI)的所有应用程序中,道德是一个核心且日益受到关注的问题。地球观测(EO)和遥感(RS)研究严重依赖大数据和人工智能或机器学习(ML)。虽然这种依赖并不新鲜,但随着图像分辨率的提高和EO/RS用例数量的增加,这些用例对治理、政策和人们的生活产生了直接影响,道德问题正在占据中心位置。在本文中,我们为从事人工智能EO (AI4EO)研究的科学家提供了一个实用的概述,概述了该领域出现的关键伦理问题,并提供了EO/RS内部的具体例子来解释这些问题,以及2)第一个路线图(流程图),科学家可以使用它来识别正在进行的研究中的伦理问题。因此,我们的目标是让科学家对这些问题更加敏感,并在从事AI4EO研究的科学家和从事伦理研究的科学家之间建立一个建设性和定期沟通的桥梁。文章还提供了四个AI4EO研究领域的详细例证,以解释科学家如何重新设计研究问题,以更有效地抓住伦理机会,解决现实世界中的问题,否则这些问题类似于伦理困境,看不到双赢的解决方案。文章最后向希望支持伦理意识AI4EO研究的机构提供建议,并为该领域的未来研究提供建议。
{"title":"Earth Observation and Artificial Intelligence: Understanding emerging ethical issues and opportunities","authors":"M. Kochupillai, Matthias Kahl, Michael Schmitt, Hannes Taubenboeck, Xiao Xiang Zhu","doi":"10.1109/MGRS.2022.3208357","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3208357","url":null,"abstract":"Ethics is a central and growing concern in all applications utilizing artificial intelligence (AI). Earth observation (EO) and remote sensing (RS) research relies heavily on both big data and AI or machine learning (ML). While this reliance is not new, with increasing image resolutions and the growing number of EO/RS use cases that have a direct impact on governance, policy, and the lives of people, ethical issues are taking center stage. In this article, we provide scientists engaged with AI for EO (AI4EO) research, 1) a practically useful overview of the key ethical issues emerging in this field, with concrete examples from within EO/RS to explain these issues, and 2) a first road map (flowchart) that scientists can use to identify ethical issues in their ongoing research. With this, we aim to sensitize scientists to these issues and create a bridge to facilitate constructive and regular communication among scientists engaged in AI4EO research, on the one hand, and ethics research, on the other hand. The article also provides detailed illustrations from four AI4EO research fields to explain how scientists can redesign research questions to more effectively grab ethical opportunities to address real-world problems that are otherwise akin to ethical dilemmas with no win-win solution in sight. The article concludes by providing recommendations to institutions that want to support ethically mindful AI4EO research and provides suggestions for future research in this field.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"90-124"},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48127866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Protection of Earth Observation Satellites From Radio-Frequency Interference: Policies and practices [Perspectives] 保护地球观测卫星免受射频干扰:政策与实践[观点]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/MGRS.2022.3221824
Luís Pedro, Manuel Sa, Rui Fernandes, Flávio Jorge, Sandro Mendonca
Carrying onboard remote sensing systems, Earth observation (EO) satellites provide unique global, systematic, and consistent space-based measurements of natural and man-made phenomena. Measurements can be produced on atmospheric, surface, and subsurface characteristics, properties, and constituents as well as other indicators and related data, enabling comparisons in time and across different parts of the globe, including remote and otherwise inaccessible areas.
地球观测(EO)卫星携带遥感系统,对自然和人为现象提供独特的全球、系统和一致的天基测量。可以对大气、地表和地下的特征、性质和成分以及其他指标和相关数据进行测量,以便在全球不同地区(包括偏远地区和其他难以到达的地区)进行时间比较。
{"title":"Protection of Earth Observation Satellites From Radio-Frequency Interference: Policies and practices [Perspectives]","authors":"Luís Pedro, Manuel Sa, Rui Fernandes, Flávio Jorge, Sandro Mendonca","doi":"10.1109/MGRS.2022.3221824","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3221824","url":null,"abstract":"Carrying onboard remote sensing systems, Earth observation (EO) satellites provide unique global, systematic, and consistent space-based measurements of natural and man-made phenomena. Measurements can be produced on atmospheric, surface, and subsurface characteristics, properties, and constituents as well as other indicators and related data, enabling comparisons in time and across different parts of the globe, including remote and otherwise inaccessible areas.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"278-288"},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43151152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Report on the 2022 IEEE Geoscience and Remote Sensing Society Data Fusion Contest: Semisupervised Learning [Technical Committees] 2022年IEEE地球科学与遥感学会数据融合竞赛报告:半监督学习[技术委员会]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/MGRS.2022.3219935
Ronny Hansch, C. Persello, G. Vivone, J. Castillo Navarro, Alexandre Boulch, S. Lefèvre, Bertrand Le Saux
The Image Analysis and Data Fusion (IADF) Technical Committee (TC) of the IEEE Geoscience and Remote Sensing Society (GRSS) has been organizing the annual Data Fusion Contest (DFC) since 2006. The contest promotes the development of methods for extracting geospatial information from large-scale, multisensor, multimodal, and multitemporal data. It aims to propose new problem settings that are challenging to address with existing techniques and to establish new benchmarks for scientific challenges in remote sensing image analysis [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19].
自2006年以来,IEEE地球科学和遥感学会(GRSS)的图像分析和数据融合技术委员会(IADF)一直在组织一年一度的数据融合竞赛(DFC)。该竞赛促进了从大规模、多传感器、多模式和多时相数据中提取地理空间信息的方法的发展。它旨在提出现有技术难以解决的新问题设置,并为遥感图像分析[1]、[2]、[3]、[4]、[5]、[6]、[7]、[8]、[9]、[10]、[11]、[12]、[13]、[14]、[15]、[16]、[17]、[18]、[19]中的科学挑战建立新的基准。
{"title":"Report on the 2022 IEEE Geoscience and Remote Sensing Society Data Fusion Contest: Semisupervised Learning [Technical Committees]","authors":"Ronny Hansch, C. Persello, G. Vivone, J. Castillo Navarro, Alexandre Boulch, S. Lefèvre, Bertrand Le Saux","doi":"10.1109/MGRS.2022.3219935","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3219935","url":null,"abstract":"The Image Analysis and Data Fusion (IADF) Technical Committee (TC) of the IEEE Geoscience and Remote Sensing Society (GRSS) has been organizing the annual Data Fusion Contest (DFC) since 2006. The contest promotes the development of methods for extracting geospatial information from large-scale, multisensor, multimodal, and multitemporal data. It aims to propose new problem settings that are challenging to address with existing techniques and to establish new benchmarks for scientific challenges in remote sensing image analysis <xref ref-type=\"bibr\" rid=\"ref1\">[1]</xref>, <xref ref-type=\"bibr\" rid=\"ref2\">[2]</xref>, <xref ref-type=\"bibr\" rid=\"ref3\">[3]</xref>, <xref ref-type=\"bibr\" rid=\"ref4\">[4]</xref>, <xref ref-type=\"bibr\" rid=\"ref5\">[5]</xref>, <xref ref-type=\"bibr\" rid=\"ref6\">[6]</xref>, <xref ref-type=\"bibr\" rid=\"ref7\">[7]</xref>, <xref ref-type=\"bibr\" rid=\"ref8\">[8]</xref>, <xref ref-type=\"bibr\" rid=\"ref9\">[9]</xref>, <xref ref-type=\"bibr\" rid=\"ref10\">[10]</xref>, <xref ref-type=\"bibr\" rid=\"ref11\">[11]</xref>, <xref ref-type=\"bibr\" rid=\"ref12\">[12]</xref>, <xref ref-type=\"bibr\" rid=\"ref13\">[13]</xref>, <xref ref-type=\"bibr\" rid=\"ref14\">[14]</xref>, <xref ref-type=\"bibr\" rid=\"ref15\">[15]</xref>, <xref ref-type=\"bibr\" rid=\"ref16\">[16]</xref>, <xref ref-type=\"bibr\" rid=\"ref17\">[17]</xref>, <xref ref-type=\"bibr\" rid=\"ref18\">[18]</xref>, <xref ref-type=\"bibr\" rid=\"ref19\">[19]</xref>.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"270-273"},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41403091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Geoinformation Harvesting From Social Media Data: A community remote sensing approach 从社会媒体数据中获取地理信息:社区遥感方法
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/MGRS.2022.3219584
Xiao Xiang Zhu, Yuanyuan Wang, M. Kochupillai, M. Werner, Matthias Häberle, E. J. Hoffmann, H. Taubenböck, D. Tuia, A. Levering, Nathan Jacobs, Anna M. Kruspe, Karam Abdulahhad
As unconventional sources of geoinformation, massive imagery and text messages from open platforms and social media form a temporally quasi-seamless, spatially multiperspective stream, but with unknown and diverse quality. Due to its complementarity to remote sensing (RS) data, geoinformation from these sources offers promising perspectives, but harvesting is not trivial due to its data characteristics. In this article, we address key aspects in the field, including data availability, analysis-ready data preparation and data management, geoinformation extraction from social media text messages and images, and the fusion of social media and RS data. We then showcase some exemplary geographic applications. In addition, we present the first extensive discussion of ethical considerations of social media data in the context of geoinformation harvesting and geographic applications. With this effort, we wish to stimulate curiosity and lay the groundwork for researchers who intend to explore social media data for geoapplications. We encourage the community to join forces by sharing their code and data.
作为非常规的地理信息来源,来自开放平台和社交媒体的大量图像和文本信息形成了一种时间上近乎无缝、空间上多视角的流,但具有未知和多样化的质量。由于其与遥感(RS)数据的互补性,来自这些来源的地理信息提供了有希望的视角,但由于其数据特征,收获并非微不足道。在本文中,我们讨论了该领域的关键方面,包括数据可用性,分析就绪的数据准备和数据管理,从社交媒体文本消息和图像中提取地理信息,以及社交媒体和RS数据的融合。然后我们将展示一些典型的地理应用程序。此外,我们提出了在地理信息收集和地理应用的背景下社交媒体数据的伦理考虑的第一个广泛的讨论。通过这一努力,我们希望激发人们的好奇心,为那些打算探索社交媒体数据用于地理应用的研究人员奠定基础。我们鼓励社区通过分享他们的代码和数据来联合起来。
{"title":"Geoinformation Harvesting From Social Media Data: A community remote sensing approach","authors":"Xiao Xiang Zhu, Yuanyuan Wang, M. Kochupillai, M. Werner, Matthias Häberle, E. J. Hoffmann, H. Taubenböck, D. Tuia, A. Levering, Nathan Jacobs, Anna M. Kruspe, Karam Abdulahhad","doi":"10.1109/MGRS.2022.3219584","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3219584","url":null,"abstract":"As unconventional sources of geoinformation, massive imagery and text messages from open platforms and social media form a temporally quasi-seamless, spatially multiperspective stream, but with unknown and diverse quality. Due to its complementarity to remote sensing (RS) data, geoinformation from these sources offers promising perspectives, but harvesting is not trivial due to its data characteristics. In this article, we address key aspects in the field, including data availability, analysis-ready data preparation and data management, geoinformation extraction from social media text messages and images, and the fusion of social media and RS data. We then showcase some exemplary geographic applications. In addition, we present the first extensive discussion of ethical considerations of social media data in the context of geoinformation harvesting and geographic applications. With this effort, we wish to stimulate curiosity and lay the groundwork for researchers who intend to explore social media data for geoapplications. We encourage the community to join forces by sharing their code and data.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"150-180"},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41459511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Deep Learning-Based Object Tracking in Satellite Videos: A comprehensive survey with a new dataset 基于深度学习的卫星视频目标跟踪:基于新数据集的综合研究
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/MGRS.2022.3198643
Yuxuan Li, Licheng Jiao, Zhongjian Huang, Xin Zhang, Ruohan Zhang, Xue Song, Chenxi Tian, Zixiao Zhang, F. Liu, Yang Shuyuan, B. Hou, Wenping Ma, Xu Liu, Lingling Li
As a fundamental task for research in satellite videos (SVs), object tracking is used to track the target of interest in traffic evaluation, military security, and so forth. The current satellite technology in the remote sensing field makes it possible to track moving targets with a relatively high frame rate and image resolution. However, objects under this special view are often small and blurry, making it hard to extract deep features effectively. As a result, quite a few deep learning (DL) methods were proposed for object tracking in SVs. In addition, evaluation criteria for daily life videos (DLVs) are not fully applicable to SVs, which always get low precision evaluation results for tiny objects. In this article, we make three contributions to the research on SVs. First, a new single object tracking (SOT) dataset, named SV248S, is proposed, including 248 sequences with high-precision manual annotation, and 10 kinds of attribute tags are designed to completely represent the difficulties during tracking. Second, two high-precision evaluation methods are proposed, especially for small object tracking. Finally, 28 DL-based state-of-the-art (SOTA) tracking methods, from 2017 to 2021, covering popular frameworks, are evaluated and compared on the proposed dataset. Furthermore, some guidelines for effectively adopting DL-based methods are summarized based on comprehensive experimental results.
目标跟踪是卫星视频研究的一项基础任务,主要用于交通评估、军事安全等领域的目标跟踪。目前遥感领域的卫星技术使得对运动目标的跟踪具有较高的帧率和图像分辨率成为可能。然而,这种特殊视图下的对象通常很小且模糊,难以有效地提取深层特征。因此,人们提出了许多深度学习(DL)方法来实现svm中的目标跟踪。此外,日常生活视频(dlv)的评价标准并不完全适用于SVs,对于微小物体的评价结果往往精度较低。在本文中,我们对SVs的研究做出了三点贡献。首先,提出了一个新的单目标跟踪数据集SV248S,该数据集包含248个序列,并进行了高精度的人工标注,设计了10种属性标签来完整地表示跟踪过程中的难点。其次,针对小目标跟踪问题,提出了两种高精度的评估方法。最后,从2017年到2021年,涵盖流行框架的28种基于dl的最先进(SOTA)跟踪方法在提议的数据集上进行了评估和比较。在综合实验结果的基础上,总结了一些有效采用基于dl的方法的指导原则。
{"title":"Deep Learning-Based Object Tracking in Satellite Videos: A comprehensive survey with a new dataset","authors":"Yuxuan Li, Licheng Jiao, Zhongjian Huang, Xin Zhang, Ruohan Zhang, Xue Song, Chenxi Tian, Zixiao Zhang, F. Liu, Yang Shuyuan, B. Hou, Wenping Ma, Xu Liu, Lingling Li","doi":"10.1109/MGRS.2022.3198643","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3198643","url":null,"abstract":"As a fundamental task for research in satellite videos (SVs), object tracking is used to track the target of interest in traffic evaluation, military security, and so forth. The current satellite technology in the remote sensing field makes it possible to track moving targets with a relatively high frame rate and image resolution. However, objects under this special view are often small and blurry, making it hard to extract deep features effectively. As a result, quite a few deep learning (DL) methods were proposed for object tracking in SVs. In addition, evaluation criteria for daily life videos (DLVs) are not fully applicable to SVs, which always get low precision evaluation results for tiny objects. In this article, we make three contributions to the research on SVs. First, a new single object tracking (SOT) dataset, named SV248S, is proposed, including 248 sequences with high-precision manual annotation, and 10 kinds of attribute tags are designed to completely represent the difficulties during tracking. Second, two high-precision evaluation methods are proposed, especially for small object tracking. Finally, 28 DL-based state-of-the-art (SOTA) tracking methods, from 2017 to 2021, covering popular frameworks, are evaluated and compared on the proposed dataset. Furthermore, some guidelines for effectively adopting DL-based methods are summarized based on comprehensive experimental results.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"181-212"},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46186687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Subsurface Propagation Velocity Estimation Methods in Ground-Penetrating Radar: A review 探地雷达地下传播速度估计方法综述
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/MGRS.2022.3205764
Swarna Laxmi Panda, S. Maiti, U. K. Sahoo
Velocity estimation is one of the most crucial tasks in ground-penetrating radar (GPR) surveys. It is an integral part of GPR data analysis for interpreting GPR-generated images of subsurface media. Error in velocity estimation leads to wrong interpretations of underground scenarios. Since the beginning of GPR development, researchers have proposed various velocity estimation procedures. In this article, a survey of different subsurface propagation velocity estimation techniques is presented. Based on the survey methods, GPR environment, and mathematical models involved, different available techniques are presented in a classified manner. A few techniques are experimentally validated and analyzed for their performance. Finally, the impact of wave velocity on GPR imaging is demonstrated on practical GPR measurement data.
速度估计是探地雷达(GPR)测量中最关键的任务之一。它是探地雷达数据分析的重要组成部分,用于解释探地雷达生成的地下介质图像。速度估计的误差导致对地下情况的错误解释。自探地雷达开始发展以来,研究人员提出了各种速度估计方法。本文综述了各种地下传播速度估计技术。根据调查方法、探地雷达环境和涉及的数学模型,对不同的可用技术进行了分类。对一些技术进行了实验验证和性能分析。最后,通过实际探地雷达测量数据,论证了波速对探地雷达成像的影响。
{"title":"Subsurface Propagation Velocity Estimation Methods in Ground-Penetrating Radar: A review","authors":"Swarna Laxmi Panda, S. Maiti, U. K. Sahoo","doi":"10.1109/MGRS.2022.3205764","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3205764","url":null,"abstract":"Velocity estimation is one of the most crucial tasks in ground-penetrating radar (GPR) surveys. It is an integral part of GPR data analysis for interpreting GPR-generated images of subsurface media. Error in velocity estimation leads to wrong interpretations of underground scenarios. Since the beginning of GPR development, researchers have proposed various velocity estimation procedures. In this article, a survey of different subsurface propagation velocity estimation techniques is presented. Based on the survey methods, GPR environment, and mathematical models involved, different available techniques are presented in a classified manner. A few techniques are experimentally validated and analyzed for their performance. Finally, the impact of wave velocity on GPR imaging is demonstrated on practical GPR measurement data.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"70-89"},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45551877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Strengthening Connections Within GRSS [President’s Message] 加强GRSS内部的联系[主席致辞]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-12-01 DOI: 10.1109/mgrs.2022.3229113
D. Kunkee
{"title":"Strengthening Connections Within GRSS [President’s Message]","authors":"D. Kunkee","doi":"10.1109/mgrs.2022.3229113","DOIUrl":"https://doi.org/10.1109/mgrs.2022.3229113","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46461706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Geoscience and Remote Sensing Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1