首页 > 最新文献

IEEE Geoscience and Remote Sensing Magazine最新文献

英文 中文
IEEE Collabratec 移动Collabratec
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-11-02 DOI: 10.1109/mgrs.2022.3210423
Advertisement.
广告。
{"title":"IEEE Collabratec","authors":"","doi":"10.1109/mgrs.2022.3210423","DOIUrl":"https://doi.org/10.1109/mgrs.2022.3210423","url":null,"abstract":"Advertisement.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"2 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Staff list 工作人员列表
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-11-02 DOI: 10.1109/mgrs.2022.3196420
Presents a listing of the editorial board, board of governors, current staff, committee members, and/or society editors for this issue of the publication.
列出本刊的编辑委员会、理事会、现任工作人员、委员会成员和/或社团编辑。
{"title":"Staff list","authors":"","doi":"10.1109/mgrs.2022.3196420","DOIUrl":"https://doi.org/10.1109/mgrs.2022.3196420","url":null,"abstract":"Presents a listing of the editorial board, board of governors, current staff, committee members, and/or society editors for this issue of the publication. ","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"6 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Access IEEE访问
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-11-02 DOI: 10.1109/mgrs.2022.3210446
Advertisement.
广告。
{"title":"IEEE Access","authors":"","doi":"10.1109/mgrs.2022.3210446","DOIUrl":"https://doi.org/10.1109/mgrs.2022.3210446","url":null,"abstract":"Advertisement.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"55 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TechRxiv: Share Your Preprint Research With the World! techxiv:与世界分享你的预印本研究!
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-11-02 DOI: 10.1109/mgrs.2022.3210448
Prospective authors are requested to submit new, unpublished manuscripts for inclusion in the upcoming event described in this call for papers.
未来的作者被要求提交新的,未发表的手稿,包括在即将到来的事件中描述的这篇论文。
{"title":"TechRxiv: Share Your Preprint Research With the World!","authors":"","doi":"10.1109/mgrs.2022.3210448","DOIUrl":"https://doi.org/10.1109/mgrs.2022.3210448","url":null,"abstract":"Prospective authors are requested to submit new, unpublished manuscripts for inclusion in the upcoming event described in this call for papers. ","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"81 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase Synchronization Techniques for Bistatic and Multistatic Synthetic Aperture Radar: Accounting for frequency offset 双基地和多基地合成孔径雷达的相位同步技术:考虑频率偏移
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-09-01 DOI: 10.1109/MGRS.2022.3189005
D. Liang, Heng Zhang, Kaiyu Liu, Dacheng Liu, Robert Wang
Bistatic synthetic aperture radar (BiSAR) and multistatic (MuSAR) systems with a separated transmitter and receiver have been widely used for remote sensing. However, frequency deviation among different oscillators will cause a modulated phase error on the echo signal. Therefore, phase synchronization is one of the most critical problems to be addressed in BiSAR/MuSAR systems. In this article, we review synchronization techniques, which include synchronization by direct signal, synchronization by synchronization module, and synchronization by autonomous estimation. Furthermore, the future development of synchronization technology is prospected.
具有分离发射器和接收器的双基地合成孔径雷达(BiSAR)和多基地(MuSAR)系统已被广泛用于遥感。然而,不同振荡器之间的频率偏差将导致回波信号上的调制相位误差。因此,相位同步是BiSAR/MuSAR系统中需要解决的最关键的问题之一。在本文中,我们回顾了同步技术,包括直接信号同步、同步模块同步和自主估计同步。并对同步技术的未来发展进行了展望。
{"title":"Phase Synchronization Techniques for Bistatic and Multistatic Synthetic Aperture Radar: Accounting for frequency offset","authors":"D. Liang, Heng Zhang, Kaiyu Liu, Dacheng Liu, Robert Wang","doi":"10.1109/MGRS.2022.3189005","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3189005","url":null,"abstract":"Bistatic synthetic aperture radar (BiSAR) and multistatic (MuSAR) systems with a separated transmitter and receiver have been widely used for remote sensing. However, frequency deviation among different oscillators will cause a modulated phase error on the echo signal. Therefore, phase synchronization is one of the most critical problems to be addressed in BiSAR/MuSAR systems. In this article, we review synchronization techniques, which include synchronization by direct signal, synchronization by synchronization module, and synchronization by autonomous estimation. Furthermore, the future development of synchronization technology is prospected.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"153-167"},"PeriodicalIF":14.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44052862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Active Learning for Hyperspectral Image Classification: A comparative review 主动学习用于高光谱图像分类的比较研究
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-09-01 DOI: 10.1109/MGRS.2022.3169947
R. Thoreau, V. Achard, L. Risser, B. Berthelot, X. Briottet
Machine learning algorithms have demonstrated impressive results for land cover mapping from hyperspectral data. To enhance generalization capabilities of statistical models, active learning (AL) methods guide the annotation of the training data set by querying the most informative samples. The training of the classifier can then be performed on an optimal training data set. We bring under the same framework uncertainty, representativeness, and performance-based AL techniques; conduct a benchmark on state-of-the-art methods and release a toolbox (https://github.com/Romain3Ch216/AL4EO) to allow experimentation with these approaches. The experiments are conducted on various data sets: a toy data set, classic hyperspectral benchmark data sets, and a complex hyperspectral scene. We evaluate the methods with usual accuracy metrics as well as complementary metrics, which allow us to provide guidelines when choosing a relevant AL strategy in a real use case.
机器学习算法在利用高光谱数据绘制土地覆盖地图方面取得了令人印象深刻的成果。为了提高统计模型的泛化能力,主动学习方法通过查询最有信息量的样本来指导训练数据集的标注。分类器的训练可以在一个最优的训练数据集上进行。我们将不确定性、代表性和基于性能的人工智能技术纳入同一框架;对最先进的方法进行基准测试,并发布一个工具箱(https://github.com/Romain3Ch216/AL4EO),允许对这些方法进行实验。实验在不同的数据集上进行:玩具数据集、经典的高光谱基准数据集和复杂的高光谱场景。我们用通常的准确性度量和补充度量来评估这些方法,这使我们能够在实际用例中选择相关的人工智能策略时提供指导。
{"title":"Active Learning for Hyperspectral Image Classification: A comparative review","authors":"R. Thoreau, V. Achard, L. Risser, B. Berthelot, X. Briottet","doi":"10.1109/MGRS.2022.3169947","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3169947","url":null,"abstract":"Machine learning algorithms have demonstrated impressive results for land cover mapping from hyperspectral data. To enhance generalization capabilities of statistical models, active learning (AL) methods guide the annotation of the training data set by querying the most informative samples. The training of the classifier can then be performed on an optimal training data set. We bring under the same framework uncertainty, representativeness, and performance-based AL techniques; conduct a benchmark on state-of-the-art methods and release a toolbox (https://github.com/Romain3Ch216/AL4EO) to allow experimentation with these approaches. The experiments are conducted on various data sets: a toy data set, classic hyperspectral benchmark data sets, and a complex hyperspectral scene. We evaluate the methods with usual accuracy metrics as well as complementary metrics, which allow us to provide guidelines when choosing a relevant AL strategy in a real use case.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"256-278"},"PeriodicalIF":14.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43877473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
IEEE Proceedings IEEE论文集
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-09-01 DOI: 10.1109/mgrs.2022.3210424
{"title":"IEEE Proceedings","authors":"","doi":"10.1109/mgrs.2022.3210424","DOIUrl":"https://doi.org/10.1109/mgrs.2022.3210424","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45230318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Different Data-Traceability Approaches to Prevent Data Swamps [Perspectives] 研究不同的数据可追溯性方法以防止数据沼泽[观点]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-09-01 DOI: 10.1109/mgrs.2022.3203865
R. Ramachandran, M. Maskey, C. Lynnes, Aruni John, Tathagata Mukherjee
{"title":"Investigating Different Data-Traceability Approaches to Prevent Data Swamps [Perspectives]","authors":"R. Ramachandran, M. Maskey, C. Lynnes, Aruni John, Tathagata Mukherjee","doi":"10.1109/mgrs.2022.3203865","DOIUrl":"https://doi.org/10.1109/mgrs.2022.3203865","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"1 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41519126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions 森林近距离遥感:系统和数据采集的现状、挑战和机遇
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-09-01 DOI: 10.1109/MGRS.2022.3168135
Xinlian Liang, A. Kukko, Ivan Balenovic, N. Saarinen, S. Junttila, V. Kankare, M. Holopainen, M. Mokroš, P. Surový, H. Kaartinen, Luka Jurjevic, E. Honkavaara, R. Näsi, Jingbin Liu, M. Hollaus, Jiaojiao Tian, Xiaowei Yu, Jie Pan, Shangshu Cai, Juho-Pekka Virtanen, Yunshen Wang, J. Hyyppä
Remote sensing-based forest investigation and monitoring have become more affordable and applicable in the past few decades. The current bottleneck limiting practical use of the vast volume of remote sensing data lies in the lack of affordable, reliable, and detailed field references, which are required for necessary calibrations of satellite and aerial data and calibrations of relevant allometric models. Conventional field investigations are mostly limited to a small scale, using a small quantity of observations. Rapid development in close-range remote sensing has been witnessed during the past two decades, i.e., in the constant decrease of the costs, size, and weight of sensors; steady improvements in the availability, mobility, and reliability of platforms; and progress in computational capacity and data science. These advances have paved the way for turning conventional expensive and inefficient manual forest in situ data collections into affordable and efficient autonomous observations.
在过去几十年中,基于遥感的森林调查和监测变得更加经济实惠和适用。目前限制大量遥感数据实际使用的瓶颈在于缺乏负担得起、可靠和详细的实地参考资料,而这些资料是对卫星和航空数据进行必要校准以及对相关异速模型进行校准所必需的。传统的实地调查大多局限于小规模,使用少量观测。近距离遥感在过去二十年中得到了快速发展,即传感器的成本、尺寸和重量不断降低;平台的可用性、移动性和可靠性稳步提高;以及计算能力和数据科学方面的进展。这些进展为将传统的昂贵和低效的人工森林原位数据收集转变为负担得起和高效的自主观测铺平了道路。
{"title":"Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions","authors":"Xinlian Liang, A. Kukko, Ivan Balenovic, N. Saarinen, S. Junttila, V. Kankare, M. Holopainen, M. Mokroš, P. Surový, H. Kaartinen, Luka Jurjevic, E. Honkavaara, R. Näsi, Jingbin Liu, M. Hollaus, Jiaojiao Tian, Xiaowei Yu, Jie Pan, Shangshu Cai, Juho-Pekka Virtanen, Yunshen Wang, J. Hyyppä","doi":"10.1109/MGRS.2022.3168135","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3168135","url":null,"abstract":"Remote sensing-based forest investigation and monitoring have become more affordable and applicable in the past few decades. The current bottleneck limiting practical use of the vast volume of remote sensing data lies in the lack of affordable, reliable, and detailed field references, which are required for necessary calibrations of satellite and aerial data and calibrations of relevant allometric models. Conventional field investigations are mostly limited to a small scale, using a small quantity of observations. Rapid development in close-range remote sensing has been witnessed during the past two decades, i.e., in the constant decrease of the costs, size, and weight of sensors; steady improvements in the availability, mobility, and reliability of platforms; and progress in computational capacity and data science. These advances have paved the way for turning conventional expensive and inefficient manual forest in situ data collections into affordable and efficient autonomous observations.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"32-71"},"PeriodicalIF":14.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45376520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Remote Sensing for Subsurface and Deeper Oceans: An overview and a future outlook 海底和深海遥感:综述和未来展望
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-09-01 DOI: 10.1109/MGRS.2022.3184951
Lingsheng Meng, Xiaohui Yan
The oceans are an important component of Earth’s system and play a crucial role in climate change through the coupled atmosphere–ocean process. Observations are fundamental for studying and understanding the oceans. While in situ measurements are limited, satellites can remotely monitor oceans continuously for extended periods, with broad spatial coverages. These sustained in situ and remotely sensed observations are available for longer time periods; however, the later are limited to the surface ocean. Owing to the unavailability of subsurface observations, the limited studies could focus on understanding subsurface oceanic processes [e.g., subsurface flows and eddies, internal waves (IWs) and tides, undercurrents, and so on] and conducting comprehensive studies of the oceans, such as the recent warming of oceans.
海洋是地球系统的重要组成部分,通过大气-海洋耦合过程在气候变化中发挥着至关重要的作用。观测是研究和理解海洋的基础。虽然现场测量是有限的,但卫星可以长时间连续远程监测海洋,具有广泛的空间覆盖范围。这些持续的原位和遥感观测可以持续更长的时间;然而,后者仅限于表层海洋。由于无法进行地下观测,有限的研究可以集中于了解地下海洋过程[例如,地下流动和涡流、内波和潮汐、暗流等],并对海洋进行全面研究,例如最近海洋变暖。
{"title":"Remote Sensing for Subsurface and Deeper Oceans: An overview and a future outlook","authors":"Lingsheng Meng, Xiaohui Yan","doi":"10.1109/MGRS.2022.3184951","DOIUrl":"https://doi.org/10.1109/MGRS.2022.3184951","url":null,"abstract":"The oceans are an important component of Earth’s system and play a crucial role in climate change through the coupled atmosphere–ocean process. Observations are fundamental for studying and understanding the oceans. While in situ measurements are limited, satellites can remotely monitor oceans continuously for extended periods, with broad spatial coverages. These sustained in situ and remotely sensed observations are available for longer time periods; however, the later are limited to the surface ocean. Owing to the unavailability of subsurface observations, the limited studies could focus on understanding subsurface oceanic processes [e.g., subsurface flows and eddies, internal waves (IWs) and tides, undercurrents, and so on] and conducting comprehensive studies of the oceans, such as the recent warming of oceans.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"72-92"},"PeriodicalIF":14.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43458358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
IEEE Geoscience and Remote Sensing Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1