首页 > 最新文献

IEEE Geoscience and Remote Sensing Magazine最新文献

英文 中文
The Fourth China International Synthetic Aperture Radar Symposium [Conference Reports] 第四届中国国际合成孔径雷达研讨会[会议报告]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3371933
Hui Wang, Yongqi Wang, Shaohui Mei, Zhaokai Pan, Hanwen Yu, Qiang Zhao
Provides society information that may include news, reviews or technical notes that should be of interest to practitioners and researchers.
提供从业人员和研究人员感兴趣的社会信息,包括新闻、评论或技术说明。
{"title":"The Fourth China International Synthetic Aperture Radar Symposium [Conference Reports]","authors":"Hui Wang, Yongqi Wang, Shaohui Mei, Zhaokai Pan, Hanwen Yu, Qiang Zhao","doi":"10.1109/mgrs.2024.3371933","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3371933","url":null,"abstract":"Provides society information that may include news, reviews or technical notes that should be of interest to practitioners and researchers.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HexaLCSeg: A historical benchmark dataset from Hexagon satellite images for land cover segmentation [Software and Data Sets] HexaLCSeg:来自 Hexagon 卫星图像的历史基准数据集,用于土地覆被分割 [软件和数据集]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3394248
Elif Sertel, Mustafa Erdem Kabadayi, Gafur Semi Sengul, Ilay Nur Tumer
Historical land cover (LC) maps are significant geospatial data sources used to understand past land characteristics and accurately determine the long-term land changes that provide valuable insights into the interactions between human activities and the environment over time. This article introduces a novel open LC benchmark dataset generated from very high spatial resolution historical Hexagon (KH-9) reconnaissance satellite images to be used in deep learning (DL)-based image segmentation tasks. This new benchmark dataset, which includes very high-resolution (VHR) mono-band Hexagon images of several Turkish and Bulgarian territories from the 1970s and 1980s, covers a large geographic area. Our dataset includes eight LC classes inspired by the European Space Agency (ESA) WorldCover project except for the tree class, which we divided into subclasses, namely agricultural fruit trees and other trees. We implemented widely used U-Net++ and DeepLabv3+ segmentation architectures with appropriate hyperparameters and backbone structures to demonstrate the versatility and impact of our HexaLCSeg dataset and to compare the performance of these models for accurate and fast LC mapping of past terrain conditions. We achieved the highest accuracy using U-Net++ with an SE-ResNeXt50 backbone and obtained an F1-score of 0.8804. The findings of this study can be applied to different geographical regions with similar Hexagon images, providing valuable contributions to the field of remote sensing and LC mapping. Our dataset, related source codes, and pretrained models are available at https://github.com/RSandAI/HexaLCSeg and https://doi.org/10.5281/zenodo.11005344.
历史土地覆被图(LC)是重要的地理空间数据来源,可用于了解过去的土地特征并准确确定长期的土地变化,从而为深入了解人类活动与环境之间随着时间的推移而产生的相互作用提供有价值的见解。本文介绍了一种新的开放式地表植被基准数据集,该数据集由空间分辨率极高的历史性六角(KH-9)侦察卫星图像生成,可用于基于深度学习(DL)的图像分割任务。这一新的基准数据集包括 20 世纪 70 年代和 80 年代土耳其和保加利亚若干领土的超高分辨率(VHR)单波段六边形图像,覆盖了大片地理区域。我们的数据集包括 8 个 LC 类,其灵感来自欧洲航天局 (ESA) 的 WorldCover 项目,但树木类除外,我们将其分为多个子类,即农用果树和其他树木。我们采用了广泛使用的 U-Net++ 和 DeepLabv3+ 分割架构,并配备了适当的超参数和骨干结构,以证明我们的 HexaLCSeg 数据集的多功能性和影响力,并比较这些模型在准确、快速地绘制过去地形条件的 LC 地图方面的性能。我们使用带有 SE-ResNeXt50 主干网的 U-Net++ 实现了最高精度,F1 分数为 0.8804。本研究的结果可应用于具有类似 Hexagon 图像的不同地理区域,为遥感和 LC 绘图领域做出了宝贵贡献。我们的数据集、相关源代码和预训练模型可在 https://github.com/RSandAI/HexaLCSeg 和 https://doi.org/10.5281/zenodo.11005344 上查阅。
{"title":"HexaLCSeg: A historical benchmark dataset from Hexagon satellite images for land cover segmentation [Software and Data Sets]","authors":"Elif Sertel, Mustafa Erdem Kabadayi, Gafur Semi Sengul, Ilay Nur Tumer","doi":"10.1109/mgrs.2024.3394248","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3394248","url":null,"abstract":"Historical land cover (LC) maps are significant geospatial data sources used to understand past land characteristics and accurately determine the long-term land changes that provide valuable insights into the interactions between human activities and the environment over time. This article introduces a novel open LC benchmark dataset generated from very high spatial resolution historical Hexagon (KH-9) reconnaissance satellite images to be used in deep learning (DL)-based image segmentation tasks. This new benchmark dataset, which includes very high-resolution (VHR) mono-band Hexagon images of several Turkish and Bulgarian territories from the 1970s and 1980s, covers a large geographic area. Our dataset includes eight LC classes inspired by the European Space Agency (ESA) WorldCover project except for the tree class, which we divided into subclasses, namely agricultural fruit trees and other trees. We implemented widely used U-Net++ and DeepLabv3+ segmentation architectures with appropriate hyperparameters and backbone structures to demonstrate the versatility and impact of our HexaLCSeg dataset and to compare the performance of these models for accurate and fast LC mapping of past terrain conditions. We achieved the highest accuracy using U-Net++ with an SE-ResNeXt50 backbone and obtained an F1-score of 0.8804. The findings of this study can be applied to different geographical regions with similar Hexagon images, providing valuable contributions to the field of remote sensing and LC mapping. Our dataset, related source codes, and pretrained models are available at <uri xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">https://github.com/RSandAI/HexaLCSeg</uri> and <uri xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">https://doi.org/10.5281/zenodo.11005344</uri>\u0000.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Tech RXIV: Share Your Preprint Research with the world! IEEE Tech RXIV:与世界分享您的预印本研究成果!
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3455659
{"title":"IEEE Tech RXIV: Share Your Preprint Research with the world!","authors":"","doi":"10.1109/mgrs.2024.3455659","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3455659","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Staff List 工作人员名单
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3437510
{"title":"Staff List","authors":"","doi":"10.1109/mgrs.2024.3437510","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3437510","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Proceedings 电气和电子工程师学会论文集
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3455658
{"title":"IEEE Proceedings","authors":"","doi":"10.1109/mgrs.2024.3455658","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3455658","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
InGARSS 2023 in Bangalore: Striking a Balance [Conference Reports] 班加罗尔 InGARSS 2023:取得平衡 [会议报告]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3437174
Jaya Sreevalsan-Nair, Amruth Kiran, Avik Bhattacharya, B. S. Daya Sagar, Gurudatta K. N., Ujjwal Verma, Saroj K. Meher, Lanka Karthikeyan
{"title":"InGARSS 2023 in Bangalore: Striking a Balance [Conference Reports]","authors":"Jaya Sreevalsan-Nair, Amruth Kiran, Avik Bhattacharya, B. S. Daya Sagar, Gurudatta K. N., Ujjwal Verma, Saroj K. Meher, Lanka Karthikeyan","doi":"10.1109/mgrs.2024.3437174","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3437174","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Glimpse at the Women Mentoring Women Program From a Mentor/Mentee Perspective [Conference Reports] 从指导者/被指导者的角度看 "妇女指导妇女 "计划 [会议报告]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3441936
Margot Flemming, Paula Castro Brandão Vaz Dos Santos
{"title":"A Glimpse at the Women Mentoring Women Program From a Mentor/Mentee Perspective [Conference Reports]","authors":"Margot Flemming, Paula Castro Brandão Vaz Dos Santos","doi":"10.1109/mgrs.2024.3441936","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3441936","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highlighting IGARSS 2024 [From The Editor] 突出 IGARSS 2024 [编辑的话]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3442620
Paolo Gamba
{"title":"Highlighting IGARSS 2024 [From The Editor]","authors":"Paolo Gamba","doi":"10.1109/mgrs.2024.3442620","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3442620","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Access IEEE Access
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3455656
{"title":"IEEE Access","authors":"","doi":"10.1109/mgrs.2024.3455656","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3455656","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
44th IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2024)—Athens, Greece, 7–12 July 2024: Impressions of the first days [Conference Reports] 第 44 届 IEEE 国际地球科学与遥感研讨会(IGARSS 2024)--希腊雅典,2024 年 7 月 7-12 日:首日印象 [会议报告]
IF 14.6 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-23 DOI: 10.1109/mgrs.2024.3442820
Alberto Moreira, Francesca Bovolo, Antonio Plaza, Jaya Sreevalsan-Nair
{"title":"44th IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2024)—Athens, Greece, 7–12 July 2024: Impressions of the first days [Conference Reports]","authors":"Alberto Moreira, Francesca Bovolo, Antonio Plaza, Jaya Sreevalsan-Nair","doi":"10.1109/mgrs.2024.3442820","DOIUrl":"https://doi.org/10.1109/mgrs.2024.3442820","url":null,"abstract":"","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":null,"pages":null},"PeriodicalIF":14.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Geoscience and Remote Sensing Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1