Hijaz Ahmad, Muhammad Farooq, Ibrar Khan, Rashid Nawaz, Nicholas Fewster-Young, Sameh Askar
In this article, the solution to the time-fractional Fisher equation is determined using two well-known analytical techniques. The suggested approaches are the new iterative method and the optimal auxiliary function method, with the fractional derivative handled in the Caputo sense. The obtained results demonstrate that the suggested approaches are efficient and simple to use for solving fractional-order differential equations. The approximate and exact solutions of the partial fractional differential equations for integer order were compared. Additionally, the fractional-order and integer-order results are contrasted using simple tables. It has been confirmed that the solution produced using the provided methods converges to the exact solution at the appropriate rate. The primary advantage of the suggested method is the small number of computations needed. Moreover, it may be used to address fractional-order physical problems in a number of fields.
{"title":"Analysis of nonlinear fractional-order Fisher equation using two reliable techniques","authors":"Hijaz Ahmad, Muhammad Farooq, Ibrar Khan, Rashid Nawaz, Nicholas Fewster-Young, Sameh Askar","doi":"10.1515/phys-2023-0185","DOIUrl":"https://doi.org/10.1515/phys-2023-0185","url":null,"abstract":"In this article, the solution to the time-fractional Fisher equation is determined using two well-known analytical techniques. The suggested approaches are the new iterative method and the optimal auxiliary function method, with the fractional derivative handled in the Caputo sense. The obtained results demonstrate that the suggested approaches are efficient and simple to use for solving fractional-order differential equations. The approximate and exact solutions of the partial fractional differential equations for integer order were compared. Additionally, the fractional-order and integer-order results are contrasted using simple tables. It has been confirmed that the solution produced using the provided methods converges to the exact solution at the appropriate rate. The primary advantage of the suggested method is the small number of computations needed. Moreover, it may be used to address fractional-order physical problems in a number of fields.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"7 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Zahid, Fateh Ali, Basma Souayeh, Muhammad Tahir Khan
The calendering process is pivotal in enhancing various materials’ surface properties and characteristics, making them indispensable for achieving desired product quality and performance. Also, this process holds significant relevance in various industrial applications, such as polymer processing, food production, and the manufacturing of composite materials. So, the aim of this study is to theoretically examine the calendering process applied to third-grade materials. It specifically explores how temperature variations impact material behavior during passage through two counter-rotating heated rolls. Particular consideration is given to the influence of temperature-dependent viscosity via Reynold’s model. The complexities of mass, momentum, and energy balance equations are reduced through the application of the Lubrication approximation theory. Solutions to these equations for variables such as velocity, flow rate, and temperature fields are accomplished by combining perturbation and numerical techniques. In relation to the calendering process, the thickness of the exiting sheet is specifically explored. Furthermore, this study quantifies substantial engineering parameters such as roll-separating force, pressure distribution, and power transferal from the rolls to the fluid. The governing equations belong to three key dimensionless parameters, namely, the Brinkman number, which is a product of Eckert number and Prandtl number, the temperature-dependent consistency index μmu , and a parameter ηeta correlating to non-Newtonian behavior. The outcomes of this study are presented both graphically and in tabular form. It has been observed that a rise in the third-grade parameter decreases detachment point and sheet thickness due to increased material rigidity. Furthermore, established results in the literature regarding the calendering of Newtonian fluids are validated.
压延工艺在提高各种材料的表面性能和特性方面起着关键作用,是实现理想产品质量和性能所不可或缺的。此外,该工艺在聚合物加工、食品生产和复合材料制造等各种工业应用中也具有重要意义。因此,本研究旨在从理论上研究应用于第三级材料的压延工艺。它特别探讨了温度变化如何影响材料在通过两个反向旋转的加热辊时的行为。通过雷诺模型,特别考虑了与温度相关的粘度的影响。通过应用润滑近似理论,降低了质量、动量和能量平衡方程的复杂性。速度、流速和温度场等变量方程的解决方案是通过结合扰动和数值技术来实现的。在压光过程中,还特别探讨了流出板材的厚度。此外,这项研究还量化了重要的工程参数,如轧辊分离力、压力分布以及从轧辊到流体的功率传递。控制方程属于三个关键的无量纲参数,即布林克曼数(它是埃克特数和普朗特数的乘积)、与温度相关的稠度指数 μ mu 以及与非牛顿行为相关的参数 η eta 。研究结果以图表形式呈现。研究发现,由于材料刚度增加,第三级参数的增加会降低脱离点和板材厚度。此外,文献中有关牛顿流体压延的既定结果也得到了验证。
{"title":"Influence of variable viscosity on existing sheet thickness in the calendering of non-isothermal viscoelastic materials","authors":"Muhammad Zahid, Fateh Ali, Basma Souayeh, Muhammad Tahir Khan","doi":"10.1515/phys-2024-0023","DOIUrl":"https://doi.org/10.1515/phys-2024-0023","url":null,"abstract":"The calendering process is pivotal in enhancing various materials’ surface properties and characteristics, making them indispensable for achieving desired product quality and performance. Also, this process holds significant relevance in various industrial applications, such as polymer processing, food production, and the manufacturing of composite materials. So, the aim of this study is to theoretically examine the calendering process applied to third-grade materials. It specifically explores how temperature variations impact material behavior during passage through two counter-rotating heated rolls. Particular consideration is given to the influence of temperature-dependent viscosity <jats:italic>via</jats:italic> Reynold’s model. The complexities of mass, momentum, and energy balance equations are reduced through the application of the Lubrication approximation theory. Solutions to these equations for variables such as velocity, flow rate, and temperature fields are accomplished by combining perturbation and numerical techniques. In relation to the calendering process, the thickness of the exiting sheet is specifically explored. Furthermore, this study quantifies substantial engineering parameters such as roll-separating force, pressure distribution, and power transferal from the rolls to the fluid. The governing equations belong to three key dimensionless parameters, namely, the Brinkman number, which is a product of Eckert number and Prandtl number, the temperature-dependent consistency index <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0023_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>μ</m:mi> </m:math> <jats:tex-math>mu </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and a parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0023_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>η</m:mi> </m:math> <jats:tex-math>eta </jats:tex-math> </jats:alternatives> </jats:inline-formula> correlating to non-Newtonian behavior. The outcomes of this study are presented both graphically and in tabular form. It has been observed that a rise in the third-grade parameter decreases detachment point and sheet thickness due to increased material rigidity. Furthermore, established results in the literature regarding the calendering of Newtonian fluids are validated.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"25 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transformer is extensively employed in natural language processing, and computer vision (CV), with the self-attention structure. Due to its outstanding long-range dependency modeling and parallel computing capability, some leading researchers have recently attempted to apply Transformer to intelligent fault diagnosis tasks for mechanical equipment, and have achieved remarkable results. Physical phenomena such as changes in vibration, sound, and heat play a crucial role in the research of mechanical equipment fault diagnosis, which directly reflects the operational status and potential faults of mechanical equipment. Currently, intelligent fault diagnosis of mechanical equipment based on monitoring signals such as vibration, sound, and temperature using Transformer-based models remains a popular research topic. While some review literature has explored the related principles and application scenarios of Transformer, there is still a lack of research on its application in intelligent fault diagnosis tasks for mechanical equipment. Therefore, this work begins by examining the current research status of fault diagnosis methods for mechanical equipment. This study first provides a brief overview of the development history of Transformer, outlines its basic structure and principles, and analyzes the characteristics and advantages of its model structure. Next it focuses on three model variants of Transformer that have generated a significant impact in the field of CV. Following that, the research progress and current challenges of Transformer-based intelligent fault diagnosis methods for mechanical equipment are discussed. Finally, the future development direction of Transformer in the field of mechanical equipment fault diagnosis is proposed.
{"title":"Transformer-based intelligent fault diagnosis methods of mechanical equipment: A survey","authors":"Rongcai Wang, Enzhi Dong, Zhonghua Cheng, Zichang Liu, Xisheng Jia","doi":"10.1515/phys-2024-0015","DOIUrl":"https://doi.org/10.1515/phys-2024-0015","url":null,"abstract":"Transformer is extensively employed in natural language processing, and computer vision (CV), with the self-attention structure. Due to its outstanding long-range dependency modeling and parallel computing capability, some leading researchers have recently attempted to apply Transformer to intelligent fault diagnosis tasks for mechanical equipment, and have achieved remarkable results. Physical phenomena such as changes in vibration, sound, and heat play a crucial role in the research of mechanical equipment fault diagnosis, which directly reflects the operational status and potential faults of mechanical equipment. Currently, intelligent fault diagnosis of mechanical equipment based on monitoring signals such as vibration, sound, and temperature using Transformer-based models remains a popular research topic. While some review literature has explored the related principles and application scenarios of Transformer, there is still a lack of research on its application in intelligent fault diagnosis tasks for mechanical equipment. Therefore, this work begins by examining the current research status of fault diagnosis methods for mechanical equipment. This study first provides a brief overview of the development history of Transformer, outlines its basic structure and principles, and analyzes the characteristics and advantages of its model structure. Next it focuses on three model variants of Transformer that have generated a significant impact in the field of CV. Following that, the research progress and current challenges of Transformer-based intelligent fault diagnosis methods for mechanical equipment are discussed. Finally, the future development direction of Transformer in the field of mechanical equipment fault diagnosis is proposed.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"150 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chulin Yu, Binfeng Liu, Yulin Cui, Wenqing Wang, Yuxi Yang
Airfoil printed circuit heat exchangers (PCHEs) possess exceptional comprehensive performance. In recent years, extensive research has been conducted on the layout and structure optimization of airfoil fins. As biomimetic technologies gradually mature, bionics has achieved numerous outcomes in optimizing airfoil aerodynamic characteristic. Inspired by the sailfish geometry, four types of bionic airfoils are proposed based on the NACA 0015 airfoil, to enhance the thermal-hydraulic performance of the airfoil PCHEs. The results show that while the four types of sailfish airfoils are effective in terms of drag reduction, their overall performance at the same pumping power is suboptimal, with only one type providing an advantage at the low Re region. Moreover, airfoils with concave head curves further increase the weakening of heat transfer by the velocity boundary layer.
机翼印制电路热交换器(PCHE)具有优异的综合性能。近年来,人们对机翼翅片的布局和结构优化进行了广泛的研究。随着仿生技术的逐渐成熟,仿生学在优化机翼气动特性方面取得了众多成果。受旗鱼几何形状的启发,研究人员在 NACA 0015 机翼的基础上提出了四种仿生机翼,以提高机翼 PCHE 的热液压性能。结果表明,虽然四种类型的旗鱼翼面都能有效减少阻力,但在相同抽气功率下,它们的整体性能并不理想,只有一种类型的翼面在低 Re 区域具有优势。此外,具有凹形头部曲线的机翼会进一步加剧速度边界层对热传递的削弱。
{"title":"Numerical study on bionic airfoil fins used in printed circuit plate heat exchanger","authors":"Chulin Yu, Binfeng Liu, Yulin Cui, Wenqing Wang, Yuxi Yang","doi":"10.1515/phys-2023-0200","DOIUrl":"https://doi.org/10.1515/phys-2023-0200","url":null,"abstract":"Airfoil printed circuit heat exchangers (PCHEs) possess exceptional comprehensive performance. In recent years, extensive research has been conducted on the layout and structure optimization of airfoil fins. As biomimetic technologies gradually mature, bionics has achieved numerous outcomes in optimizing airfoil aerodynamic characteristic. Inspired by the sailfish geometry, four types of bionic airfoils are proposed based on the NACA 0015 airfoil, to enhance the thermal-hydraulic performance of the airfoil PCHEs. The results show that while the four types of sailfish airfoils are effective in terms of drag reduction, their overall performance at the same pumping power is suboptimal, with only one type providing an advantage at the low Re region. Moreover, airfoils with concave head curves further increase the weakening of heat transfer by the velocity boundary layer.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"53 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fateh Ali, Muhammad Zahid, Basma Souayeh, Farwa Asmat, Chinedu Nwaigwe
The current study theoretically and computationally analyses the viscoelastic Sisko fluids during the non-isothermal rollover web phenomenon. The mathematical modeling produces a system of partial differential equations, which we further simplify into ordinary differential equations through appropriate transformations. We have formulated the problem based on the lubrication approximation theory. The solution has been obtained with the perturbation method, and the outcomes are found in mathematical, tabular, and graphical forms that highlight the influence of pertinent parameters on velocity profiles, pressure gradients, flow rates per unit width, Nusselt number, pressure profile, temperature distributions, and other significant engineering quantities. Further, A comparative analysis between analytic and numerical solutions, utilizing the middefer method in the Maple environment, demonstrates reasonable agreement. Also, we observe that the fluid parameter significantly influences both velocity and temperature profiles. Moreover, the determination of a separation point 2.5000, accompanied by the observation of a maximum coating thickness of 0.6960. The enhancement in fluid heat transfer rate is approximately 5% compared to non-Newtonian fluid parameter values, with potential for further improvement by increasing the non-Newtonian parameter values. This comprehensive investigation offers valuable insights for practical implementation and future scholarly endeavors, with zero-order findings showcasing enhanced precision.
本研究从理论和计算角度分析了非等温翻滚网现象中的粘弹性西斯科流体。数学建模产生了一个偏微分方程系,我们通过适当的变换将其进一步简化为常微分方程。我们根据润滑近似理论对问题进行了表述。结果以数学、表格和图形的形式呈现,突出了相关参数对速度剖面、压力梯度、单位宽度流速、努塞尔特数、压力剖面、温度分布和其他重要工程量的影响。此外,利用 Maple 环境中的 middefer 方法,对解析解和数值解进行了比较分析,结果表明两者之间存在合理的一致性。同时,我们还发现流体参数对速度和温度曲线都有显著影响。此外,我们还确定了分离点 2.5000,并观察到最大涂层厚度为 0.6960。与非牛顿流体参数值相比,流体传热速率提高了约 5%,通过增加非牛顿流体参数值,有可能进一步提高传热速率。这项全面的研究为实际应用和未来的学术研究提供了宝贵的见解,零阶研究结果表明精度得到了提高。
{"title":"Analytical and numerical investigation for viscoelastic fluid with heat transfer analysis during rollover-web coating phenomena","authors":"Fateh Ali, Muhammad Zahid, Basma Souayeh, Farwa Asmat, Chinedu Nwaigwe","doi":"10.1515/phys-2024-0024","DOIUrl":"https://doi.org/10.1515/phys-2024-0024","url":null,"abstract":"The current study theoretically and computationally analyses the viscoelastic Sisko fluids during the non-isothermal rollover web phenomenon. The mathematical modeling produces a system of partial differential equations, which we further simplify into ordinary differential equations through appropriate transformations. We have formulated the problem based on the lubrication approximation theory. The solution has been obtained with the perturbation method, and the outcomes are found in mathematical, tabular, and graphical forms that highlight the influence of pertinent parameters on velocity profiles, pressure gradients, flow rates per unit width, Nusselt number, pressure profile, temperature distributions, and other significant engineering quantities. Further, A comparative analysis between analytic and numerical solutions, utilizing the middefer method in the Maple environment, demonstrates reasonable agreement. Also, we observe that the fluid parameter significantly influences both velocity and temperature profiles. Moreover, the determination of a separation point 2.5000, accompanied by the observation of a maximum coating thickness of 0.6960. The enhancement in fluid heat transfer rate is approximately 5% compared to non-Newtonian fluid parameter values, with potential for further improvement by increasing the non-Newtonian parameter values. This comprehensive investigation offers valuable insights for practical implementation and future scholarly endeavors, with zero-order findings showcasing enhanced precision.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"32 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed M. Khader, Hijaz Ahmad, Mohamed Adel, Ahmed M. Megahed
In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation involves the incorporation of both the magnetic field and the influence of viscous dissipation within the model. The sheet is situated within a porous medium, and this medium conforms to the Darcy model. Since more precise outcomes are still required, the model assumes that both fluid conductivity and viscosity change with temperature. In this research, we encounter a system of extremely nonlinear ordinary differential equations that are treated through a numerical technique, specifically by employing the spectral collocation method. Graphical representations are used to illustrate how the relevant parameters impact the nanoparticle volume fraction, velocity, and temperature profiles. The study involves the computation and analysis of the effect of physical parameters on the local Sherwood number, skin friction coefficient, and local Nusselt number. Specific significant findings emerging from the present study highlight that the rate of mass transfer is particularly influenced by the thermophoresis factor, porous parameter, and Williamson parameter, showing heightened effects, while conversely, the Brownian motion parameter demonstrates an opposing pattern. The results were computed and subjected to a comparison with earlier research, indicating a notable degree of conformity and accord.
{"title":"Numerical analysis of the MHD Williamson nanofluid flow over a nonlinear stretching sheet through a Darcy porous medium: Modeling and simulation","authors":"Mohamed M. Khader, Hijaz Ahmad, Mohamed Adel, Ahmed M. Megahed","doi":"10.1515/phys-2024-0016","DOIUrl":"https://doi.org/10.1515/phys-2024-0016","url":null,"abstract":"In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation involves the incorporation of both the magnetic field and the influence of viscous dissipation within the model. The sheet is situated within a porous medium, and this medium conforms to the Darcy model. Since more precise outcomes are still required, the model assumes that both fluid conductivity and viscosity change with temperature. In this research, we encounter a system of extremely nonlinear ordinary differential equations that are treated through a numerical technique, specifically by employing the spectral collocation method. Graphical representations are used to illustrate how the relevant parameters impact the nanoparticle volume fraction, velocity, and temperature profiles. The study involves the computation and analysis of the effect of physical parameters on the local Sherwood number, skin friction coefficient, and local Nusselt number. Specific significant findings emerging from the present study highlight that the rate of mass transfer is particularly influenced by the thermophoresis factor, porous parameter, and Williamson parameter, showing heightened effects, while conversely, the Brownian motion parameter demonstrates an opposing pattern. The results were computed and subjected to a comparison with earlier research, indicating a notable degree of conformity and accord.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"9 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study deals with a mathematical model that examines the spread of Coronavirus disease (COVID-19). This model has been handled with different processes such as deterministic, stochastic, and deterministic–stochastic. First of all, a detailed analysis is presented for the deterministic model, which includes the positivity of the solution, the basic reproduction number, the disease, and endemic equilibrium points. Then, for the stochastic model, we investigate under which conditions, the solution exists and is unique. Later, model is reconsidered with the help of the piecewise derivative, which can combine deterministic and stochastic processes. Numerical simulations are presented for all these processes. Finally, the model has been modified with the rate indicator function. The model presenting these four different situations is compared with the real data in Russia. According to the results obtained from these situations, the model that is obtained by adding the rate indicator function predicts the COVID-19 outbreak in Russia more accurately. Thus, it is concluded that the model with the rate indicator function presents more realistic approach than the previous ones.
{"title":"Prediction of COVID-19 spread with models in different patterns: A case study of Russia","authors":"Mehmet Akif Cetin, Seda Igret Araz","doi":"10.1515/phys-2024-0009","DOIUrl":"https://doi.org/10.1515/phys-2024-0009","url":null,"abstract":"This study deals with a mathematical model that examines the spread of Coronavirus disease (COVID-19). This model has been handled with different processes such as deterministic, stochastic, and deterministic–stochastic. First of all, a detailed analysis is presented for the deterministic model, which includes the positivity of the solution, the basic reproduction number, the disease, and endemic equilibrium points. Then, for the stochastic model, we investigate under which conditions, the solution exists and is unique. Later, model is reconsidered with the help of the piecewise derivative, which can combine deterministic and stochastic processes. Numerical simulations are presented for all these processes. Finally, the model has been modified with the rate indicator function. The model presenting these four different situations is compared with the real data in Russia. According to the results obtained from these situations, the model that is obtained by adding the rate indicator function predicts the COVID-19 outbreak in Russia more accurately. Thus, it is concluded that the model with the rate indicator function presents more realistic approach than the previous ones.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"29 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, ultrasonic technology is combined with twisted belts to explore the comprehensive performance, and this study also investigated the effect of different Reynolds numbers, ultrasonic frequencies, and number of transducers on the performance of circular and twisted band tubes. It was found that ultrasonic waves applied on the tube plate enhanced the heat transfer performance of the heat exchanger tubes, reduced the flow resistance, and improved the overall performance, and the lower the ultrasonic frequency, the better the heat transfer and resistance reduction ability, and at the experimental condition frequency of 21 kHz, the maximum increase of Nu is 19.06%. With the increase of Reynolds number, the better the ultrasonic enhancement heat transfer performance, but the worse the resistance reduction performance. For different heat exchanger tube structures, the synergistic enhanced heat transfer effect of ultrasonic waves with the twisted belt is better than round tubes, and the synergistic drag reduction effect with the round tube is better than the twisted tape round tube. When the installed ultrasonic transducers are two, the heat transfer performance of the heat exchanger tube is the best, and the maximum increase in the value of Nu was 28.06%.
{"title":"Study of ultrasonic influence on heat transfer and resistance performance of round tube with twisted belt","authors":"Yuxi Yang, Hongyan Liu, Chulin Yu, Wenqing Wang, Xiaohan Lv, Haiqing Zhang","doi":"10.1515/phys-2023-0183","DOIUrl":"https://doi.org/10.1515/phys-2023-0183","url":null,"abstract":"In this study, ultrasonic technology is combined with twisted belts to explore the comprehensive performance, and this study also investigated the effect of different Reynolds numbers, ultrasonic frequencies, and number of transducers on the performance of circular and twisted band tubes. It was found that ultrasonic waves applied on the tube plate enhanced the heat transfer performance of the heat exchanger tubes, reduced the flow resistance, and improved the overall performance, and the lower the ultrasonic frequency, the better the heat transfer and resistance reduction ability, and at the experimental condition frequency of 21 kHz, the maximum increase of Nu is 19.06%. With the increase of Reynolds number, the better the ultrasonic enhancement heat transfer performance, but the worse the resistance reduction performance. For different heat exchanger tube structures, the synergistic enhanced heat transfer effect of ultrasonic waves with the twisted belt is better than round tubes, and the synergistic drag reduction effect with the round tube is better than the twisted tape round tube. When the installed ultrasonic transducers are two, the heat transfer performance of the heat exchanger tube is the best, and the maximum increase in the value of Nu was 28.06%.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"21 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ghada ALMisned, Duygu Sen Baykal, Wiam Elshami, Gulfem Susoy, Gokhan Kilic, Huseyin Ozan Tekin
Nuclear waste control and related equipment play a vital role in safeguarding human health and the environment from the potential dangers of radioactive waste. This study addresses the critical challenge of enhancing the shielding effectiveness of container materials for nuclear waste management, with a focus on comparing the attenuation properties of glass and concrete composites. Our analysis revealed that the copper oxide-reinforced borosilicate glass container demonstrated a significant transmission factor (TF) value decrease by approximately 15% compared to steel–magnetite concrete at 1.3325 MeV, with a standard deviation of ±1.5%, indicating its lower protective characteristics. Nonetheless, it exhibited a 10% higher TF reduction compared to the cement–bitumen mix at the same energy level, with a precision error of ±1.2%. In addition, the half-value layer for this glass was determined to be 2.5 cm for 1.3325 MeV gamma rays, showing moderate shielding capacity. The study demonstrates that optimizing the oxide content in the borosilicate glass matrix significantly enhances its shielding effectiveness. This advancement in nuclear waste management materials is justified by our comprehensive evaluation, highlighting the potential of optimized glass materials to outperform traditional concrete in certain scenarios, thus contributing to the development of more effective nuclear waste containment solutions.
{"title":"A comparative analysis of shielding effectiveness in glass and concrete containers","authors":"Ghada ALMisned, Duygu Sen Baykal, Wiam Elshami, Gulfem Susoy, Gokhan Kilic, Huseyin Ozan Tekin","doi":"10.1515/phys-2024-0019","DOIUrl":"https://doi.org/10.1515/phys-2024-0019","url":null,"abstract":"Nuclear waste control and related equipment play a vital role in safeguarding human health and the environment from the potential dangers of radioactive waste. This study addresses the critical challenge of enhancing the shielding effectiveness of container materials for nuclear waste management, with a focus on comparing the attenuation properties of glass and concrete composites. Our analysis revealed that the copper oxide-reinforced borosilicate glass container demonstrated a significant transmission factor (TF) value decrease by approximately 15% compared to steel–magnetite concrete at 1.3325 MeV, with a standard deviation of ±1.5%, indicating its lower protective characteristics. Nonetheless, it exhibited a 10% higher TF reduction compared to the cement–bitumen mix at the same energy level, with a precision error of ±1.2%. In addition, the half-value layer for this glass was determined to be 2.5 cm for 1.3325 MeV gamma rays, showing moderate shielding capacity. The study demonstrates that optimizing the oxide content in the borosilicate glass matrix significantly enhances its shielding effectiveness. This advancement in nuclear waste management materials is justified by our comprehensive evaluation, highlighting the potential of optimized glass materials to outperform traditional concrete in certain scenarios, thus contributing to the development of more effective nuclear waste containment solutions.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"100 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdul Hamid Ganie, Saima Noor, Maryam Al Huwayz, Ahmad Shafee, Samir A. El-Tantawy
In this investigation, the fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) problem is solved using two modern semi-analytic techniques known as the Aboodh residual power series method (ARPSM) and Aboodh transform iteration method (ATIM). The two suggested approaches are briefly explained, along with how to use them to solve the fractional Hirota–Satsuma coupled KdV problem. Some analytical approximate solutions for the current problem are derived using the proposed techniques until the second-order approximation. To ensure high accuracy of the derived approximation, they are analyzed numerically and graphically and compared with the exact solutions of the integer cases. The offered techniques demonstrate more accuracy in their outcomes compared to other alternatives. The numerical results show that ARPSM and ATIM are highly accurate, practical, and beneficial for solving nonlinear equation systems. The current results are expected to help many physics researchers in modeling their different physical problems, especially those interested in plasma physics.
{"title":"Numerical simulations for fractional Hirota–Satsuma coupled Korteweg–de Vries systems","authors":"Abdul Hamid Ganie, Saima Noor, Maryam Al Huwayz, Ahmad Shafee, Samir A. El-Tantawy","doi":"10.1515/phys-2024-0008","DOIUrl":"https://doi.org/10.1515/phys-2024-0008","url":null,"abstract":"In this investigation, the fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) problem is solved using two modern semi-analytic techniques known as the Aboodh residual power series method (ARPSM) and Aboodh transform iteration method (ATIM). The two suggested approaches are briefly explained, along with how to use them to solve the fractional Hirota–Satsuma coupled KdV problem. Some analytical approximate solutions for the current problem are derived using the proposed techniques until the second-order approximation. To ensure high accuracy of the derived approximation, they are analyzed numerically and graphically and compared with the exact solutions of the integer cases. The offered techniques demonstrate more accuracy in their outcomes compared to other alternatives. The numerical results show that ARPSM and ATIM are highly accurate, practical, and beneficial for solving nonlinear equation systems. The current results are expected to help many physics researchers in modeling their different physical problems, especially those interested in plasma physics.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"1 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}