Pub Date : 2023-11-25DOI: 10.1186/s12942-023-00356-1
Binjie Huang, Jie Liu, Feifei Ding, Yumin Li
Background: Both incidence and mortality of gastric cancer in Gansu rank first in china, this study aimed to describe the recent prevalence of gastric cancer and explore the social and environmental determinants of gastric cancer in Gansu Province.
Methods: The incidence of gastric cancer in each city of Gansu Province was calculated by utilizing clinical data from patients with gastric cancer (2013-2021) sourced from the medical big data platform of the Gansu Province Health Commission, and demographic data provided by the Gansu Province Bureau of Statistics. Subsequently, we conducted joinpoint regression analysis, spatial auto-correlation analysis, space-time scanning analysis, as well as an exploration into the correlation between social and environmental factors and GC incidence in Gansu Province with Joinpoint_5.0, ArcGIS_10.8, GeoDa, SaTScanTM_10.1.1 and GeoDetector_2018.
Results: A total of 75,522 cases of gastric cancer were included in this study. Our findings suggested a significant upward trend in the incidence of gastric cancer over the past nine years. Notably, Wuwei, Zhangye and Jinchang had the highest incidence rates while Longnan, Qingyang and Jiayuguan had the lowest. In spatial analysis, we have identified significant high-high cluster areas and delineated two high-risk regions as well as one low-risk region for gastric cancer in Gansu. Furthermore, our findings suggested that several social and environmental determinants such as medical resource allocation, regional economic development and climate conditions exerted significant influence on the incidence of gastric cancer.
Conclusions: Gastric cancer remains an enormous threat to people in Gansu Province, the significant risk areas, social and environmental determinants were observed in this study, which may improve our understanding of gastric cancer epidemiology and help guide public health interventions in Gansu Province.
{"title":"Epidemiology, risk areas and macro determinants of gastric cancer: a study based on geospatial analysis.","authors":"Binjie Huang, Jie Liu, Feifei Ding, Yumin Li","doi":"10.1186/s12942-023-00356-1","DOIUrl":"10.1186/s12942-023-00356-1","url":null,"abstract":"<p><strong>Background: </strong>Both incidence and mortality of gastric cancer in Gansu rank first in china, this study aimed to describe the recent prevalence of gastric cancer and explore the social and environmental determinants of gastric cancer in Gansu Province.</p><p><strong>Methods: </strong>The incidence of gastric cancer in each city of Gansu Province was calculated by utilizing clinical data from patients with gastric cancer (2013-2021) sourced from the medical big data platform of the Gansu Province Health Commission, and demographic data provided by the Gansu Province Bureau of Statistics. Subsequently, we conducted joinpoint regression analysis, spatial auto-correlation analysis, space-time scanning analysis, as well as an exploration into the correlation between social and environmental factors and GC incidence in Gansu Province with Joinpoint_5.0, ArcGIS_10.8, GeoDa, SaTScan<sup>TM</sup>_10.1.1 and GeoDetector_2018.</p><p><strong>Results: </strong>A total of 75,522 cases of gastric cancer were included in this study. Our findings suggested a significant upward trend in the incidence of gastric cancer over the past nine years. Notably, Wuwei, Zhangye and Jinchang had the highest incidence rates while Longnan, Qingyang and Jiayuguan had the lowest. In spatial analysis, we have identified significant high-high cluster areas and delineated two high-risk regions as well as one low-risk region for gastric cancer in Gansu. Furthermore, our findings suggested that several social and environmental determinants such as medical resource allocation, regional economic development and climate conditions exerted significant influence on the incidence of gastric cancer.</p><p><strong>Conclusions: </strong>Gastric cancer remains an enormous threat to people in Gansu Province, the significant risk areas, social and environmental determinants were observed in this study, which may improve our understanding of gastric cancer epidemiology and help guide public health interventions in Gansu Province.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"32"},"PeriodicalIF":4.9,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138441429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-16DOI: 10.1186/s12942-023-00349-0
Lani Fox, Brad G Peter, April N Frake, Joseph P Messina
<p><strong>Background: </strong>African trypanosomiasis is a tsetse-borne parasitic infection that affects humans, wildlife, and domesticated animals. Tsetse flies are endemic to much of Sub-Saharan Africa and a spatial and temporal understanding of tsetse habitat can aid surveillance and support disease risk management. Problematically, current fine spatial resolution remote sensing data are delivered with a temporal lag and are relatively coarse temporal resolution (e.g., 16 days), which results in disease control models often targeting incorrect places. The goal of this study was to devise a heuristic for identifying tsetse habitat (at a fine spatial resolution) into the future and in the temporal gaps where remote sensing and proximal data fail to supply information.</p><p><strong>Methods: </strong>This paper introduces a generalizable and scalable open-access version of the tsetse ecological distribution (TED) model used to predict tsetse distributions across space and time, and contributes a geospatial Bayesian Maximum Entropy (BME) prediction model trained by TED output data to forecast where, herein the Morsitans group of tsetse, persist in Kenya, a method that mitigates the temporal lag problem. This model facilitates identification of tsetse habitat and provides critical information to control tsetse, mitigate the impact of trypanosomiasis on vulnerable human and animal populations, and guide disease minimization in places with ephemeral tsetse. Moreover, this BME analysis is one of the first to utilize cluster and parallel computing along with a Monte Carlo analysis to optimize BME computations. This allows for the analysis of an exceptionally large dataset (over 2 billion data points) at a finer resolution and larger spatiotemporal scale than what had previously been possible.</p><p><strong>Results: </strong>Under the most conservative assessment for Kenya, the BME kriging analysis showed an overall prediction accuracy of 74.8% (limited to the maximum suitability extent). In predicting tsetse distribution outcomes for the entire country the BME kriging analysis was 97% accurate in its forecasts.</p><p><strong>Conclusions: </strong>This work offers a solution to the persistent temporal data gap in accurate and spatially precise rainfall predictions and the delayed processing of remotely sensed data collectively in the - 45 days past to + 180 days future temporal window. As is shown here, the BME model is a reliable alternative for forecasting future tsetse distributions to allow preplanning for tsetse control. Furthermore, this model provides guidance on disease control that would otherwise not be available. These 'big data' BME methods are particularly useful for large domain studies. Considering that past BME studies required reduction of the spatiotemporal grid to facilitate analysis. Both the GEE-TED and the BME libraries have been made open source to enable reproducibility and offer continual updates into the future as new remotel
{"title":"A Bayesian maximum entropy model for predicting tsetse ecological distributions.","authors":"Lani Fox, Brad G Peter, April N Frake, Joseph P Messina","doi":"10.1186/s12942-023-00349-0","DOIUrl":"10.1186/s12942-023-00349-0","url":null,"abstract":"<p><strong>Background: </strong>African trypanosomiasis is a tsetse-borne parasitic infection that affects humans, wildlife, and domesticated animals. Tsetse flies are endemic to much of Sub-Saharan Africa and a spatial and temporal understanding of tsetse habitat can aid surveillance and support disease risk management. Problematically, current fine spatial resolution remote sensing data are delivered with a temporal lag and are relatively coarse temporal resolution (e.g., 16 days), which results in disease control models often targeting incorrect places. The goal of this study was to devise a heuristic for identifying tsetse habitat (at a fine spatial resolution) into the future and in the temporal gaps where remote sensing and proximal data fail to supply information.</p><p><strong>Methods: </strong>This paper introduces a generalizable and scalable open-access version of the tsetse ecological distribution (TED) model used to predict tsetse distributions across space and time, and contributes a geospatial Bayesian Maximum Entropy (BME) prediction model trained by TED output data to forecast where, herein the Morsitans group of tsetse, persist in Kenya, a method that mitigates the temporal lag problem. This model facilitates identification of tsetse habitat and provides critical information to control tsetse, mitigate the impact of trypanosomiasis on vulnerable human and animal populations, and guide disease minimization in places with ephemeral tsetse. Moreover, this BME analysis is one of the first to utilize cluster and parallel computing along with a Monte Carlo analysis to optimize BME computations. This allows for the analysis of an exceptionally large dataset (over 2 billion data points) at a finer resolution and larger spatiotemporal scale than what had previously been possible.</p><p><strong>Results: </strong>Under the most conservative assessment for Kenya, the BME kriging analysis showed an overall prediction accuracy of 74.8% (limited to the maximum suitability extent). In predicting tsetse distribution outcomes for the entire country the BME kriging analysis was 97% accurate in its forecasts.</p><p><strong>Conclusions: </strong>This work offers a solution to the persistent temporal data gap in accurate and spatially precise rainfall predictions and the delayed processing of remotely sensed data collectively in the - 45 days past to + 180 days future temporal window. As is shown here, the BME model is a reliable alternative for forecasting future tsetse distributions to allow preplanning for tsetse control. Furthermore, this model provides guidance on disease control that would otherwise not be available. These 'big data' BME methods are particularly useful for large domain studies. Considering that past BME studies required reduction of the spatiotemporal grid to facilitate analysis. Both the GEE-TED and the BME libraries have been made open source to enable reproducibility and offer continual updates into the future as new remotel","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"31"},"PeriodicalIF":4.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136399853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: It has been pointed out that eye-level greenery streetscape promotes leisure walking which is known to be a health -positive physical activity. Most previous studies have focused on the total amount of greenery in the eye-level streetscape to investigate its association with walking behaviour. While it is acknowledged that taller trees contribute to greener environments, providing enhanced physical and psychological comfort compared to lawns and shrubs, the examination of streetscape metrics specifically focused on greenery height remains largely unexplored. Therefore, this study examined the relationship between objective indicators of street greenery categorized by height from a pedestrian viewpoint and leisure walking time.
Methods: We created streetscape indices of street greenery using Google Street View Images at 50-m intervals in an urban area in Sendai City, Japan. The indices were classified into four ranges according to the latitude of the virtual hemisphere centred on the viewer. We then investigated their relationship to self-reported leisure walking.
Results: Positive associations were identified between the street greenery in higher positions and leisure walking time, while there was no significant association between the greenery in lower positions.
Conclusion: The findings indicated that streets with rich greenery in high positions may promote residents' leisure walking, indicating that greenery in higher positions contributes to thermally comfortable and aesthetic streetscapes, thus promoting leisure walking. Increasing the amount of greenery in higher positions may encourage residents to increase the time spent leisure walking.
{"title":"Effects of greenery at different heights in neighbourhood streetscapes on leisure walking: a cross-sectional study using machine learning of streetscape images in Sendai City, Japan.","authors":"Shusuke Sakamoto, Mana Kogure, Tomoya Hanibuchi, Naoki Nakaya, Atsushi Hozawa, Tomoki Nakaya","doi":"10.1186/s12942-023-00351-6","DOIUrl":"10.1186/s12942-023-00351-6","url":null,"abstract":"<p><strong>Background: </strong>It has been pointed out that eye-level greenery streetscape promotes leisure walking which is known to be a health -positive physical activity. Most previous studies have focused on the total amount of greenery in the eye-level streetscape to investigate its association with walking behaviour. While it is acknowledged that taller trees contribute to greener environments, providing enhanced physical and psychological comfort compared to lawns and shrubs, the examination of streetscape metrics specifically focused on greenery height remains largely unexplored. Therefore, this study examined the relationship between objective indicators of street greenery categorized by height from a pedestrian viewpoint and leisure walking time.</p><p><strong>Methods: </strong>We created streetscape indices of street greenery using Google Street View Images at 50-m intervals in an urban area in Sendai City, Japan. The indices were classified into four ranges according to the latitude of the virtual hemisphere centred on the viewer. We then investigated their relationship to self-reported leisure walking.</p><p><strong>Results: </strong>Positive associations were identified between the street greenery in higher positions and leisure walking time, while there was no significant association between the greenery in lower positions.</p><p><strong>Conclusion: </strong>The findings indicated that streets with rich greenery in high positions may promote residents' leisure walking, indicating that greenery in higher positions contributes to thermally comfortable and aesthetic streetscapes, thus promoting leisure walking. Increasing the amount of greenery in higher positions may encourage residents to increase the time spent leisure walking.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"29"},"PeriodicalIF":4.9,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631008/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1186/s12942-023-00353-4
Jisu Moon, Minseok Kim, Inkyung Jung
Background: Correctly identifying spatial disease cluster is a fundamental concern in public health and epidemiology. The spatial scan statistic is widely used for detecting spatial disease clusters in spatial epidemiology and disease surveillance. Many studies default to a maximum reported cluster size (MRCS) set at 50% of the total population when searching for spatial clusters. However, this default setting can sometimes report clusters larger than true clusters, which include less relevant regions. For the Poisson, Bernoulli, ordinal, normal, and exponential models, a Gini coefficient has been developed to optimize the MRCS. Yet, no measure is available for the multinomial model.
Results: We propose two versions of a spatial cluster information criterion (SCIC) for selecting the optimal MRCS value for the multinomial-based spatial scan statistic. Our simulation study suggests that SCIC improves the accuracy of reporting true clusters. Analysis of the Korea Community Health Survey (KCHS) data further demonstrates that our method identifies more meaningful small clusters compared to the default setting.
Conclusions: Our method focuses on improving the performance of the spatial scan statistic by optimizing the MRCS value when using the multinomial model. In public health and disease surveillance, the proposed method can be used to provide more accurate and meaningful spatial cluster detection for multinomial data, such as disease subtypes.
{"title":"Optimizing the maximum reported cluster size for the multinomial-based spatial scan statistic.","authors":"Jisu Moon, Minseok Kim, Inkyung Jung","doi":"10.1186/s12942-023-00353-4","DOIUrl":"10.1186/s12942-023-00353-4","url":null,"abstract":"<p><strong>Background: </strong>Correctly identifying spatial disease cluster is a fundamental concern in public health and epidemiology. The spatial scan statistic is widely used for detecting spatial disease clusters in spatial epidemiology and disease surveillance. Many studies default to a maximum reported cluster size (MRCS) set at 50% of the total population when searching for spatial clusters. However, this default setting can sometimes report clusters larger than true clusters, which include less relevant regions. For the Poisson, Bernoulli, ordinal, normal, and exponential models, a Gini coefficient has been developed to optimize the MRCS. Yet, no measure is available for the multinomial model.</p><p><strong>Results: </strong>We propose two versions of a spatial cluster information criterion (SCIC) for selecting the optimal MRCS value for the multinomial-based spatial scan statistic. Our simulation study suggests that SCIC improves the accuracy of reporting true clusters. Analysis of the Korea Community Health Survey (KCHS) data further demonstrates that our method identifies more meaningful small clusters compared to the default setting.</p><p><strong>Conclusions: </strong>Our method focuses on improving the performance of the spatial scan statistic by optimizing the MRCS value when using the multinomial model. In public health and disease surveillance, the proposed method can be used to provide more accurate and meaningful spatial cluster detection for multinomial data, such as disease subtypes.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"30"},"PeriodicalIF":4.9,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-28DOI: 10.1186/s12942-023-00350-7
Johnny A Uelmen, Andrew Clark, John Palmer, Jared Kohler, Landon C Van Dyke, Russanne Low, Connor D Mapes, Ryan M Carney
Background: Mosquitoes and the diseases they transmit pose a significant public health threat worldwide, causing more fatalities than any other animal. To effectively combat this issue, there is a need for increased public awareness and mosquito control. However, traditional surveillance programs are time-consuming, expensive, and lack scalability. Fortunately, the widespread availability of mobile devices with high-resolution cameras presents a unique opportunity for mosquito surveillance. In response to this, the Global Mosquito Observations Dashboard (GMOD) was developed as a free, public platform to improve the detection and monitoring of invasive and vector mosquitoes through citizen science participation worldwide.
Methods: GMOD is an interactive web interface that collects and displays mosquito observation and habitat data supplied by four datastreams with data generated by citizen scientists worldwide. By providing information on the locations and times of observations, the platform enables the visualization of mosquito population trends and ranges. It also serves as an educational resource, encouraging collaboration and data sharing. The data acquired and displayed on GMOD is freely available in multiple formats and can be accessed from any device with an internet connection.
Results: Since its launch less than a year ago, GMOD has already proven its value. It has successfully integrated and processed large volumes of real-time data (~ 300,000 observations), offering valuable and actionable insights into mosquito species prevalence, abundance, and potential distributions, as well as engaging citizens in community-based surveillance programs.
Conclusions: GMOD is a cloud-based platform that provides open access to mosquito vector data obtained from citizen science programs. Its user-friendly interface and data filters make it valuable for researchers, mosquito control personnel, and other stakeholders. With its expanding data resources and the potential for machine learning integration, GMOD is poised to support public health initiatives aimed at reducing the spread of mosquito-borne diseases in a cost-effective manner, particularly in regions where traditional surveillance methods are limited. GMOD is continually evolving, with ongoing development of powerful artificial intelligence algorithms to identify mosquito species and other features from submitted data. The future of citizen science holds great promise, and GMOD stands as an exciting initiative in this field.
{"title":"Global mosquito observations dashboard (GMOD): creating a user-friendly web interface fueled by citizen science to monitor invasive and vector mosquitoes.","authors":"Johnny A Uelmen, Andrew Clark, John Palmer, Jared Kohler, Landon C Van Dyke, Russanne Low, Connor D Mapes, Ryan M Carney","doi":"10.1186/s12942-023-00350-7","DOIUrl":"10.1186/s12942-023-00350-7","url":null,"abstract":"<p><strong>Background: </strong>Mosquitoes and the diseases they transmit pose a significant public health threat worldwide, causing more fatalities than any other animal. To effectively combat this issue, there is a need for increased public awareness and mosquito control. However, traditional surveillance programs are time-consuming, expensive, and lack scalability. Fortunately, the widespread availability of mobile devices with high-resolution cameras presents a unique opportunity for mosquito surveillance. In response to this, the Global Mosquito Observations Dashboard (GMOD) was developed as a free, public platform to improve the detection and monitoring of invasive and vector mosquitoes through citizen science participation worldwide.</p><p><strong>Methods: </strong>GMOD is an interactive web interface that collects and displays mosquito observation and habitat data supplied by four datastreams with data generated by citizen scientists worldwide. By providing information on the locations and times of observations, the platform enables the visualization of mosquito population trends and ranges. It also serves as an educational resource, encouraging collaboration and data sharing. The data acquired and displayed on GMOD is freely available in multiple formats and can be accessed from any device with an internet connection.</p><p><strong>Results: </strong>Since its launch less than a year ago, GMOD has already proven its value. It has successfully integrated and processed large volumes of real-time data (~ 300,000 observations), offering valuable and actionable insights into mosquito species prevalence, abundance, and potential distributions, as well as engaging citizens in community-based surveillance programs.</p><p><strong>Conclusions: </strong>GMOD is a cloud-based platform that provides open access to mosquito vector data obtained from citizen science programs. Its user-friendly interface and data filters make it valuable for researchers, mosquito control personnel, and other stakeholders. With its expanding data resources and the potential for machine learning integration, GMOD is poised to support public health initiatives aimed at reducing the spread of mosquito-borne diseases in a cost-effective manner, particularly in regions where traditional surveillance methods are limited. GMOD is continually evolving, with ongoing development of powerful artificial intelligence algorithms to identify mosquito species and other features from submitted data. The future of citizen science holds great promise, and GMOD stands as an exciting initiative in this field.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"28"},"PeriodicalIF":3.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66784458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.1186/s12942-023-00348-1
Yuliang Lan, Marco Helbich
Background: Short-term environmental exposures, including green space, air pollution, and noise, have been suggested to affect health. However, the evidence is limited to aggregated exposure estimates which do not allow the capture of daily spatiotemporal exposure sequences. We aimed to (1) determine individuals' sequential exposure patterns along their daily mobility paths and (2) examine whether and to what extent these exposure patterns were associated with anxiety symptoms.
Methods: We cross-sectionally tracked 141 participants aged 18-65 using their global positioning system (GPS) enabled smartphones for up to 7 days in the Netherlands. We estimated their location-dependent exposures for green space, fine particulate matter, and noise along their moving trajectories at 10-min intervals. The resulting time-resolved exposure sequences were then partitioned using multivariate time series clustering with dynamic time warping as the similarity measure. Respondents' anxiety symptoms were assessed with the Generalized Anxiety Disorders-7 questionnaire. We fitted linear regressions to assess the associations between sequential exposure patterns and anxiety symptoms.
Results: We found four distinctive daily sequential exposure patterns across the participants. Exposure patterns differed in terms of exposure levels and daily variations. Regression results revealed that participants with a "moderately health-threatening" exposure pattern were significantly associated with fewer anxiety symptoms than participants with a "strongly health-threatening" exposure pattern.
Conclusions: Our findings support that environmental exposures' daily sequence and short-term magnitudes may be associated with mental health. We urge more time-resolved mobility-based assessments in future analyses of environmental health effects in daily life.
{"title":"Short-term exposure sequences and anxiety symptoms: a time series clustering of smartphone-based mobility trajectories.","authors":"Yuliang Lan, Marco Helbich","doi":"10.1186/s12942-023-00348-1","DOIUrl":"10.1186/s12942-023-00348-1","url":null,"abstract":"<p><strong>Background: </strong>Short-term environmental exposures, including green space, air pollution, and noise, have been suggested to affect health. However, the evidence is limited to aggregated exposure estimates which do not allow the capture of daily spatiotemporal exposure sequences. We aimed to (1) determine individuals' sequential exposure patterns along their daily mobility paths and (2) examine whether and to what extent these exposure patterns were associated with anxiety symptoms.</p><p><strong>Methods: </strong>We cross-sectionally tracked 141 participants aged 18-65 using their global positioning system (GPS) enabled smartphones for up to 7 days in the Netherlands. We estimated their location-dependent exposures for green space, fine particulate matter, and noise along their moving trajectories at 10-min intervals. The resulting time-resolved exposure sequences were then partitioned using multivariate time series clustering with dynamic time warping as the similarity measure. Respondents' anxiety symptoms were assessed with the Generalized Anxiety Disorders-7 questionnaire. We fitted linear regressions to assess the associations between sequential exposure patterns and anxiety symptoms.</p><p><strong>Results: </strong>We found four distinctive daily sequential exposure patterns across the participants. Exposure patterns differed in terms of exposure levels and daily variations. Regression results revealed that participants with a \"moderately health-threatening\" exposure pattern were significantly associated with fewer anxiety symptoms than participants with a \"strongly health-threatening\" exposure pattern.</p><p><strong>Conclusions: </strong>Our findings support that environmental exposures' daily sequence and short-term magnitudes may be associated with mental health. We urge more time-resolved mobility-based assessments in future analyses of environmental health effects in daily life.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"27"},"PeriodicalIF":4.9,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41216748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-28DOI: 10.1186/s12942-023-00346-3
Randy Boyes, William Pickett, Ian Janssen, David Swanlund, Nadine Schuurman, Louise Masse, Christina Han, Mariana Brussoni
Background: Childrens' outdoor active play is an important part of their development. Play behaviour can be predicted by a variety of physical and social environmental features. Some of these features are difficult to measure with traditional data sources.
Methods: This study investigated the viability of a machine learning method using Google Street View images for measurement of these environmental features. Models to measure natural features, pedestrian traffic, vehicle traffic, bicycle traffic, traffic signals, and sidewalks were developed in one city and tested in another.
Results: The models performed well for features that are time invariant, but poorly for features that change over time, especially when tested outside of the context where they were initially trained.
Conclusion: This method provides a potential automated data source for the development of prediction models for a variety of physical and social environment features using publicly accessible street view images.
{"title":"Physical environment features that predict outdoor active play can be measured using Google Street View images.","authors":"Randy Boyes, William Pickett, Ian Janssen, David Swanlund, Nadine Schuurman, Louise Masse, Christina Han, Mariana Brussoni","doi":"10.1186/s12942-023-00346-3","DOIUrl":"10.1186/s12942-023-00346-3","url":null,"abstract":"<p><strong>Background: </strong>Childrens' outdoor active play is an important part of their development. Play behaviour can be predicted by a variety of physical and social environmental features. Some of these features are difficult to measure with traditional data sources.</p><p><strong>Methods: </strong>This study investigated the viability of a machine learning method using Google Street View images for measurement of these environmental features. Models to measure natural features, pedestrian traffic, vehicle traffic, bicycle traffic, traffic signals, and sidewalks were developed in one city and tested in another.</p><p><strong>Results: </strong>The models performed well for features that are time invariant, but poorly for features that change over time, especially when tested outside of the context where they were initially trained.</p><p><strong>Conclusion: </strong>This method provides a potential automated data source for the development of prediction models for a variety of physical and social environment features using publicly accessible street view images.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"26"},"PeriodicalIF":4.9,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26DOI: 10.1186/s12942-023-00347-2
Christian A Klaus, Kevin A Henry, Dora Il'yasova
Background: In response to citizens' concerns about elevated cancer incidence in their locales, US CDC proposed publishing cancer incidence at sub-county scales. At these scales, confidence in patients' residential geolocation becomes a key constraint of geospatial analysis. To support monitoring cancer incidence in sub-county areas, we presented summary metrics to numerically delimit confidence in residential geolocation.
Results: We defined a concept of Residential Address Discriminant Power (RADP) as theoretically perfect within all residential addresses and its practical application, i.e., using Emergency Dispatch (ED) Address Point Candidates of Equivalent Likelihood (CEL) to quantify Residential Geolocation Discriminant Power (RGDP) to approximate RADP. Leveraging different productivity of probabilistic, deterministic, and interactive geocoding record linkage, we simultaneously detected CEL for 5,807 cancer cases reported to North Carolina Central Cancer Registry (NC CCR)- in January 2022. Batch-match probabilistic and deterministic algorithms matched 86.0% cases to their unique ED address point candidates or a CEL, 4.4% to parcel site address, and 1.4% to street centerline. Interactively geocoded cases were 8.2%. To demonstrate differences in residential geolocation confidence between enumeration areas, we calculated sRGDP for cancer cases by county and assessed the existing uncertainty within the ED data, i.e., identified duplicate addresses (as CEL) for each ED address point in the 2014 version of the NC ED data and calculated ED_sRGDP by county. Both summary RGDP (sRGDP) (0.62-1.00) and ED_sRGDP (0.36-1.00) varied across counties and were lower in rural counties (p < 0.05); sRGDP correlated with ED_sRGDP (r = 0.42, p < 0.001). The discussion covered multiple conceptual and economic issues attendant to quantifying confidence in residential geolocation and presented a set of organizing principles for future work.
Conclusions: Our methodology produces simple metrics - sRGDP - to capture confidence in residential geolocation via leveraging ED address points as CEL. Two facts demonstrate the usefulness of sRGDP as area-based summary metrics: sRGDP variability between counties and the overall lower quality of residential geolocation in rural vs. urban counties. Low sRGDP for the cancer cases within the area of interest helps manage expectations for the uncertainty in cancer incidence data. By supplementing cancer incidence data with sRGDP and ED_sRGDP, CCRs can demonstrate transparency in geocoding success, which may help win citizen trust.
{"title":"Capturing emergency dispatch address points as geocoding candidates to quantify delimited confidence in residential geolocation.","authors":"Christian A Klaus, Kevin A Henry, Dora Il'yasova","doi":"10.1186/s12942-023-00347-2","DOIUrl":"10.1186/s12942-023-00347-2","url":null,"abstract":"<p><strong>Background: </strong>In response to citizens' concerns about elevated cancer incidence in their locales, US CDC proposed publishing cancer incidence at sub-county scales. At these scales, confidence in patients' residential geolocation becomes a key constraint of geospatial analysis. To support monitoring cancer incidence in sub-county areas, we presented summary metrics to numerically delimit confidence in residential geolocation.</p><p><strong>Results: </strong>We defined a concept of Residential Address Discriminant Power (RADP) as theoretically perfect within all residential addresses and its practical application, i.e., using Emergency Dispatch (ED) Address Point Candidates of Equivalent Likelihood (CEL) to quantify Residential Geolocation Discriminant Power (RGDP) to approximate RADP. Leveraging different productivity of probabilistic, deterministic, and interactive geocoding record linkage, we simultaneously detected CEL for 5,807 cancer cases reported to North Carolina Central Cancer Registry (NC CCR)- in January 2022. Batch-match probabilistic and deterministic algorithms matched 86.0% cases to their unique ED address point candidates or a CEL, 4.4% to parcel site address, and 1.4% to street centerline. Interactively geocoded cases were 8.2%. To demonstrate differences in residential geolocation confidence between enumeration areas, we calculated sRGDP for cancer cases by county and assessed the existing uncertainty within the ED data, i.e., identified duplicate addresses (as CEL) for each ED address point in the 2014 version of the NC ED data and calculated ED_sRGDP by county. Both summary RGDP (sRGDP) (0.62-1.00) and ED_sRGDP (0.36-1.00) varied across counties and were lower in rural counties (p < 0.05); sRGDP correlated with ED_sRGDP (r = 0.42, p < 0.001). The discussion covered multiple conceptual and economic issues attendant to quantifying confidence in residential geolocation and presented a set of organizing principles for future work.</p><p><strong>Conclusions: </strong>Our methodology produces simple metrics - sRGDP - to capture confidence in residential geolocation via leveraging ED address points as CEL. Two facts demonstrate the usefulness of sRGDP as area-based summary metrics: sRGDP variability between counties and the overall lower quality of residential geolocation in rural vs. urban counties. Low sRGDP for the cancer cases within the area of interest helps manage expectations for the uncertainty in cancer incidence data. By supplementing cancer incidence data with sRGDP and ED_sRGDP, CCRs can demonstrate transparency in geocoding success, which may help win citizen trust.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"25"},"PeriodicalIF":3.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-20DOI: 10.1186/s12942-023-00341-8
Eleojo Oluwaseun Abubakar, Niall Cunningham
Background: Precise geographical targeting is well recognised as an indispensable intervention strategy for achieving many Sustainable Development Goals (SDGs). This is more cogent for health-related goals such as the reduction of the HIV/AIDS pandemic, which exhibits substantial spatial heterogeneity at various spatial scales (including at microscale levels). Despite the dire data limitations in Low and Middle Income Countries (LMICs), it is essential to produce fine-scale estimates of health-related indicators such as HIV/AIDS. Existing small-area estimates (SAEs) incorporate limited synthesis of the spatial and socio-behavioural aspects of the HIV/AIDS pandemic and/or are not adequately grounded in international indicator frameworks for sustainable development initiatives. They are, therefore, of limited policy-relevance, not least because of their inability to provide necessary fine-scale socio-spatial disaggregation of relevant indicators.
Methods: The current study attempts to overcome these challenges through innovative utilisation of gridded demographic datasets for SAEs as well as the mapping of standard HIV/AIDS indicators in LMICs using spatial microsimulation (SMS).
Results: The result is a spatially enriched synthetic individual-level population of the study area as well as microscale estimates of four standard HIV/AIDS and sexual behaviour indicators. The analysis of these indicators follows similar studies with the added advantage of mapping fine-grained spatial patterns to facilitate precise geographical targeting of relevant interventions. In doing so, the need to explicate socio-spatial variations through proper socioeconomic disaggregation of data is reiterated.
Conclusions: In addition to creating SAEs of standard health-related indicators from disparate multivariate data, the outputs make it possible to establish more robust links (even at individual levels) with other mesoscale models, thereby enabling spatial analytics to be more responsive to evidence-based policymaking in LMICs. It is hoped that international organisations concerned with producing SDG-related indicators for LMICs move towards SAEs of such metrics using methods like SMS.
{"title":"Small-area estimation and analysis of HIV/AIDS indicators for precise geographical targeting of health interventions in Nigeria. a spatial microsimulation approach.","authors":"Eleojo Oluwaseun Abubakar, Niall Cunningham","doi":"10.1186/s12942-023-00341-8","DOIUrl":"10.1186/s12942-023-00341-8","url":null,"abstract":"<p><strong>Background: </strong>Precise geographical targeting is well recognised as an indispensable intervention strategy for achieving many Sustainable Development Goals (SDGs). This is more cogent for health-related goals such as the reduction of the HIV/AIDS pandemic, which exhibits substantial spatial heterogeneity at various spatial scales (including at microscale levels). Despite the dire data limitations in Low and Middle Income Countries (LMICs), it is essential to produce fine-scale estimates of health-related indicators such as HIV/AIDS. Existing small-area estimates (SAEs) incorporate limited synthesis of the spatial and socio-behavioural aspects of the HIV/AIDS pandemic and/or are not adequately grounded in international indicator frameworks for sustainable development initiatives. They are, therefore, of limited policy-relevance, not least because of their inability to provide necessary fine-scale socio-spatial disaggregation of relevant indicators.</p><p><strong>Methods: </strong>The current study attempts to overcome these challenges through innovative utilisation of gridded demographic datasets for SAEs as well as the mapping of standard HIV/AIDS indicators in LMICs using spatial microsimulation (SMS).</p><p><strong>Results: </strong>The result is a spatially enriched synthetic individual-level population of the study area as well as microscale estimates of four standard HIV/AIDS and sexual behaviour indicators. The analysis of these indicators follows similar studies with the added advantage of mapping fine-grained spatial patterns to facilitate precise geographical targeting of relevant interventions. In doing so, the need to explicate socio-spatial variations through proper socioeconomic disaggregation of data is reiterated.</p><p><strong>Conclusions: </strong>In addition to creating SAEs of standard health-related indicators from disparate multivariate data, the outputs make it possible to establish more robust links (even at individual levels) with other mesoscale models, thereby enabling spatial analytics to be more responsive to evidence-based policymaking in LMICs. It is hoped that international organisations concerned with producing SDG-related indicators for LMICs move towards SAEs of such metrics using methods like SMS.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"23"},"PeriodicalIF":4.9,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41169974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-20DOI: 10.1186/s12942-023-00345-4
Yasemin Algur, Pasquale E Rummo, Tara P McAlexander, S Shanika A De Silva, Gina S Lovasi, Suzanne E Judd, Victoria Ryan, Gargya Malla, Alain K Koyama, David C Lee, Lorna E Thorpe, Leslie A McClure
Background: Communities in the United States (US) exist on a continuum of urbanicity, which may inform how individuals interact with their food environment, and thus modify the relationship between food access and dietary behaviors.
Objective: This cross-sectional study aims to examine the modifying effect of community type in the association between the relative availability of food outlets and dietary inflammation across the US.
Methods: Using baseline data from the REasons for Geographic and Racial Differences in Stroke study (2003-2007), we calculated participants' dietary inflammation score (DIS). Higher DIS indicates greater pro-inflammatory exposure. We defined our exposures as the relative availability of supermarkets and fast-food restaurants (percentage of food outlet type out of all food stores or restaurants, respectively) using street-network buffers around the population-weighted centroid of each participant's census tract. We used 1-, 2-, 6-, and 10-mile (~ 2-, 3-, 10-, and 16 km) buffer sizes for higher density urban, lower density urban, suburban/small town, and rural community types, respectively. Using generalized estimating equations, we estimated the association between relative food outlet availability and DIS, controlling for individual and neighborhood socio-demographics and total food outlets. The percentage of supermarkets and fast-food restaurants were modeled together.
Results: Participants (n = 20,322) were distributed across all community types: higher density urban (16.7%), lower density urban (39.8%), suburban/small town (19.3%), and rural (24.2%). Across all community types, mean DIS was - 0.004 (SD = 2.5; min = - 14.2, max = 9.9). DIS was associated with relative availability of fast-food restaurants, but not supermarkets. Association between fast-food restaurants and DIS varied by community type (P for interaction = 0.02). Increases in the relative availability of fast-food restaurants were associated with higher DIS in suburban/small towns and lower density urban areas (p-values < 0.01); no significant associations were present in higher density urban or rural areas.
Conclusions: The relative availability of fast-food restaurants was associated with higher DIS among participants residing in suburban/small town and lower density urban community types, suggesting that these communities might benefit most from interventions and policies that either promote restaurant diversity or expand healthier food options.
{"title":"Assessing the association between food environment and dietary inflammation by community type: a cross-sectional REGARDS study.","authors":"Yasemin Algur, Pasquale E Rummo, Tara P McAlexander, S Shanika A De Silva, Gina S Lovasi, Suzanne E Judd, Victoria Ryan, Gargya Malla, Alain K Koyama, David C Lee, Lorna E Thorpe, Leslie A McClure","doi":"10.1186/s12942-023-00345-4","DOIUrl":"10.1186/s12942-023-00345-4","url":null,"abstract":"<p><strong>Background: </strong>Communities in the United States (US) exist on a continuum of urbanicity, which may inform how individuals interact with their food environment, and thus modify the relationship between food access and dietary behaviors.</p><p><strong>Objective: </strong>This cross-sectional study aims to examine the modifying effect of community type in the association between the relative availability of food outlets and dietary inflammation across the US.</p><p><strong>Methods: </strong>Using baseline data from the REasons for Geographic and Racial Differences in Stroke study (2003-2007), we calculated participants' dietary inflammation score (DIS). Higher DIS indicates greater pro-inflammatory exposure. We defined our exposures as the relative availability of supermarkets and fast-food restaurants (percentage of food outlet type out of all food stores or restaurants, respectively) using street-network buffers around the population-weighted centroid of each participant's census tract. We used 1-, 2-, 6-, and 10-mile (~ 2-, 3-, 10-, and 16 km) buffer sizes for higher density urban, lower density urban, suburban/small town, and rural community types, respectively. Using generalized estimating equations, we estimated the association between relative food outlet availability and DIS, controlling for individual and neighborhood socio-demographics and total food outlets. The percentage of supermarkets and fast-food restaurants were modeled together.</p><p><strong>Results: </strong>Participants (n = 20,322) were distributed across all community types: higher density urban (16.7%), lower density urban (39.8%), suburban/small town (19.3%), and rural (24.2%). Across all community types, mean DIS was - 0.004 (SD = 2.5; min = - 14.2, max = 9.9). DIS was associated with relative availability of fast-food restaurants, but not supermarkets. Association between fast-food restaurants and DIS varied by community type (P for interaction = 0.02). Increases in the relative availability of fast-food restaurants were associated with higher DIS in suburban/small towns and lower density urban areas (p-values < 0.01); no significant associations were present in higher density urban or rural areas.</p><p><strong>Conclusions: </strong>The relative availability of fast-food restaurants was associated with higher DIS among participants residing in suburban/small town and lower density urban community types, suggesting that these communities might benefit most from interventions and policies that either promote restaurant diversity or expand healthier food options.</p>","PeriodicalId":48739,"journal":{"name":"International Journal of Health Geographics","volume":"22 1","pages":"24"},"PeriodicalIF":4.9,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41149301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}