Background: Increasing inequalities in accessibility to primary care has generated medical deserts. Identifying them is key to target the geographic areas where action is needed. An extensive definition of primary care has been promoted by the World Health Organization: a first level of contact with the health system, which involves the co-presence of different categories of health professionals alongside the general practitioner for the diagnosis and treatment of patients. Previous analyses have focused mainly on a single type of provider while this study proposes an integrated approach including various ones to define medical deserts in primary care.
Method: Our empirical approach focuses on the first point of contact with the health system: general practitioners, proximity primary care providers (nurses, physiotherapists, pharmacies, laboratories, and radiologists), and emergency services. A multiple analysis approach was performed, to classify French municipalities using the information on the evolution and needs of health care accessibility, combining a principal component analysis and a hierarchical ascending classification.
Results: Two clusters of medical deserts were identified with low accessibility to all healthcare professionals, socio-economic disadvantages, and a decrease in care supply. In other clusters, accessibility difficulties only concern a part of the health supply considered, which raises concern for the efficiency of primary care for optimal healthcare pathways. Even for clusters with better accessibility, issues were identified, such as a decrease and high needs of health care supply, revealing potential future difficulties.
Conclusion: This work proposes a multi-professional and multi-dimensional approach to medical deserts based mainly on an extensive definition of primary care that shows the relevance of the co-presence of various healthcare professionals. The classification also makes it possible to identify areas with future problems of accessibility and its potential consequences. This framework could be easily applied to other countries according to their available data and their health systems' specificities.
Background: Increasing disability is of global and national concern. Lack of evidence on disability across socioeconomic groups and geographic levels (especially small areas) impeded interventions for these disadvantaged subgroups. We aimed to examine the socioeconomic and geographic variations in disabilities, namely hearing, speech, visual, mental, and locomotor, in Indian participants using cross-sectional data from the National Family Health Survey 2019-2021.
Methods: Using data from 27,93,971 individuals, we estimated age-sex-adjusted disability rates at the national and sub-national levels. The extent of socioeconomic variations in disabilities was explored using the Erreygers Concentration Index and presented graphically through a concentration curve. We adopted a four-level random intercept logit model to compute the variance partitioning coefficient (VPC) to assess the significance of each geographical unit in total variability. We also calculated precision-weighted disability estimates of individuals across 707 districts and showed their correlation with within-district or between-cluster standard deviation.
Results: We estimated the prevalence of any disability of 10 per 1000 population. The locomotor disability was common, followed by mental, speech, hearing, and visual. The concentration index of each type of disability was highest in the poorest wealth quintile households and illiterate 18 + individuals, confirming higher socioeconomic variations in disability rates. Clusters share the largest source of geographic variation for any disability (6.5%), hearing (5.8%), visual (24.3%), and locomotor (17.4%). However, States/Union Territories (UTs) account for the highest variation in speech (3.7%) and mental (6.5%) disabilities, where the variation at the cluster level becomes negligible. Districts with the highest disability rates were clustered in Madhya Pradesh, Maharashtra, Karnataka, Tamil Nadu, Telangana, and Punjab. Further, we found positive correlations between the district rates and cluster standard deviations (SDs) for disabilities.
Conclusions: Though the growing disability condition in India is itself a concerning issue, wide variations across socioeconomic groups and geographic locations indicate the implementation of several policy-relevant implications focusing on these vulnerable chunks of the population. Further, the critical importance of small-area variations within districts suggests the design of strategies targeting these high-burden areas of disabilities.
Background: Geographic access to food may affect dietary choices and health outcomes, but the strength and direction of associations may depend on the operationalization of exposure measures. We aimed to systematically review the literature on up-to-date evidence on the association between food environment exposures based on Global Positioning System (GPS) and diet-related and cardiometabolic health outcomes.
Methods: The databases PubMed, Embase.com, APA PsycInfo (via Ebsco), Cinahl (via Ebsco), the Web of Science Core Collection, Scopus, and the International Bibliography of the Social Sciences (via ProQuest) were searched from inception to October 31, 2022. We included studies that measured the activity space through GPS tracking data to identify exposure to food outlets and assessed associations with either diet-related or cardiometabolic health outcomes. Quality assessment was evaluated using the criteria from a modified version of the Newcastle-Ottawa Scale (NOS) for cross-sectional studies. We additionally used four items from a quality assessment tool to specifically assess the quality of GPS measurements.
Results: Of 2949 studies retrieved, 14 studies fulfilled our inclusion criteria. They were heterogeneous and represent inconsistent evidence. Yet, three studies found associations between food outlets and food purchases, for example, more exposure to junk food outlets was associated with higher odds of junk food purchases. Two studies found associations between greater exposure to fast food outlets and higher fast food consumption and out of three studies that investigated food environment in relation to metabolic outcomes, two studies found that higher exposure to an unhealthy food environment was associated with higher odds of being overweight.
Conclusions: The current and limited evidence base does not provide strong evidence for consistent associations of GPS-based exposures of the food environment with diet-related and cardiometabolic health outcomes.
Background: Early diagnosis, control of blood glucose levels and cardiovascular risk factors, and regular screening are essential to prevent or delay complications of diabetes. However, most adults with diabetes do not meet recommended targets, and some populations have disproportionately high rates of potentially preventable diabetes-related hospitalizations. Understanding the factors that contribute to geographic disparities can guide resource allocation and help ensure that future interventions are designed to meet the specific needs of these communities. Therefore, the objectives of this study were (1) to identify determinants of diabetes-related hospitalization rates at the ZIP code tabulation area (ZCTA) level in Florida, and (2) assess if the strengths of these relationships vary by geographic location and at different spatial scales.
Methods: Diabetes-related hospitalization (DRH) rates were computed at the ZCTA level using data from 2016 to 2019. A global ordinary least squares regression model was fit to identify socioeconomic, demographic, healthcare-related, and built environment characteristics associated with log-transformed DRH rates. A multiscale geographically weighted regression (MGWR) model was then fit to investigate and describe spatial heterogeneity of regression coefficients.
Results: Populations of ZCTAs with high rates of diabetes-related hospitalizations tended to have higher proportions of older adults (p < 0.0001) and non-Hispanic Black residents (p = 0.003). In addition, DRH rates were associated with higher levels of unemployment (p = 0.001), uninsurance (p < 0.0001), and lack of access to a vehicle (p = 0.002). Population density and median household income had significant (p < 0.0001) negative associations with DRH rates. Non-stationary variables exhibited spatial heterogeneity at local (percent non-Hispanic Black, educational attainment), regional (age composition, unemployment, health insurance coverage), and statewide scales (population density, income, vehicle access).
Conclusions: The findings of this study underscore the importance of socioeconomic resources and rurality in shaping population health. Understanding the spatial context of the observed relationships provides valuable insights to guide needs-based, locally-focused health planning to reduce disparities in the burden of potentially avoidable hospitalizations.