Pub Date : 2023-12-22DOI: 10.1007/s13753-023-00528-4
Zakaria A. Mani, Mohammed Ali Salem Sultan, Virginia Plummer, Krzysztof Goniewicz
{"title":"Navigating Interoperability in Disaster Management: Insights of Current Trends and Challenges in Saudi Arabia","authors":"Zakaria A. Mani, Mohammed Ali Salem Sultan, Virginia Plummer, Krzysztof Goniewicz","doi":"10.1007/s13753-023-00528-4","DOIUrl":"https://doi.org/10.1007/s13753-023-00528-4","url":null,"abstract":"","PeriodicalId":48740,"journal":{"name":"International Journal of Disaster Risk Science","volume":"5 2","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138944597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1007/s13753-023-00524-8
Chaoran Xu, Benjamin T. Nelson-Mercer, J. Bricker, Meri Davlasheridze, Ashley D. Ross, Jianjun Jia
{"title":"Damage Curves Derived from Hurricane Ike in the West of Galveston Bay Based on Insurance Claims and Hydrodynamic Simulations","authors":"Chaoran Xu, Benjamin T. Nelson-Mercer, J. Bricker, Meri Davlasheridze, Ashley D. Ross, Jianjun Jia","doi":"10.1007/s13753-023-00524-8","DOIUrl":"https://doi.org/10.1007/s13753-023-00524-8","url":null,"abstract":"","PeriodicalId":48740,"journal":{"name":"International Journal of Disaster Risk Science","volume":"129 23","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1007/s13753-023-00523-9
Li Peng, Jing Tan
{"title":"Identifying Neighborhood Effects on Geohazard Adaptation in Mountainous Rural Areas of China: A Spatial Econometric Model","authors":"Li Peng, Jing Tan","doi":"10.1007/s13753-023-00523-9","DOIUrl":"https://doi.org/10.1007/s13753-023-00523-9","url":null,"abstract":"","PeriodicalId":48740,"journal":{"name":"International Journal of Disaster Risk Science","volume":"92 2","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139175069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/s13753-023-00518-6
Nekeisha Spencer
Abstract The damaging effects of extreme weather is concerning for many countries across the globe. Though the impact of these events on the housing market has been studied extensively, one aspect that remains unexplored is the value of mortgages. Further, there is no clarity on the impact of the specific types of homes. This study analyzed mortgages and apartment values and included residential land sale prices over 16 years for different localities across Jamaica. The analysis revealed that mortgages are adversely affected by excess rainfall while apartment sale prices are reduced by hurricanes but increased by excess rain. However, residential land prices remain unaffected by both events. The results point to the importance of climate adaptation for the local real estate market and property investment.
{"title":"Wind and Water: How Extreme Weather Conditions Impact Residential Real Estate in Developing Countries","authors":"Nekeisha Spencer","doi":"10.1007/s13753-023-00518-6","DOIUrl":"https://doi.org/10.1007/s13753-023-00518-6","url":null,"abstract":"Abstract The damaging effects of extreme weather is concerning for many countries across the globe. Though the impact of these events on the housing market has been studied extensively, one aspect that remains unexplored is the value of mortgages. Further, there is no clarity on the impact of the specific types of homes. This study analyzed mortgages and apartment values and included residential land sale prices over 16 years for different localities across Jamaica. The analysis revealed that mortgages are adversely affected by excess rainfall while apartment sale prices are reduced by hurricanes but increased by excess rain. However, residential land prices remain unaffected by both events. The results point to the importance of climate adaptation for the local real estate market and property investment.","PeriodicalId":48740,"journal":{"name":"International Journal of Disaster Risk Science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136153319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/s13753-023-00517-7
Malte von Szombathely, Franziska S. Hanf, Janka Bareis, Linda Meier, Jürgen Oßenbrügge, Thomas Pohl
Abstract In this study, we set out to develop a new social vulnerability index (SVI). In doing so, we suggest some conceptual improvements that can be made to existing methodical approaches to assessing social vulnerability. To make the entanglement of socio-spatial inequalities visible, we are conducting a small-scale study on heterogeneous urban development in the city of Hamburg, Germany. This kind of high-resolution analysis was not previously available, but is increasingly requested by political decision makers. We can thus show hot spots of social vulnerability (SV) in Hamburg, considering the effects of social welfare, education, and age. In doing so, we defined SV as a contextual concept that follows the recent shift in discourse in line with the Intergovernmental Panel on Climate Change’s (IPCC) concepts of risk and vulnerability. Our SVI consists of two subcomponents: sensitivity and coping capacity. Populated areas of Hamburg were identified using satellite information and merged with the social data units of the city. Areas with high SVI are distributed over the entire city, notably in the district of Harburg and the Reiherstieg quarter in Wilhelmsburg near the Elbe, as well as in the densely populated inner city areas of Eimsbüttel and St. Pauli. As a map at a detailed scale, our SVI can be a useful tool to identify areas where the population is most vulnerable to climate-related hazards. We conclude that an enhanced understanding of urban social vulnerability is a prerequisite for urban risk management and urban resilience planning.
{"title":"An Index-Based Approach to Assess Social Vulnerability for Hamburg, Germany","authors":"Malte von Szombathely, Franziska S. Hanf, Janka Bareis, Linda Meier, Jürgen Oßenbrügge, Thomas Pohl","doi":"10.1007/s13753-023-00517-7","DOIUrl":"https://doi.org/10.1007/s13753-023-00517-7","url":null,"abstract":"Abstract In this study, we set out to develop a new social vulnerability index (SVI). In doing so, we suggest some conceptual improvements that can be made to existing methodical approaches to assessing social vulnerability. To make the entanglement of socio-spatial inequalities visible, we are conducting a small-scale study on heterogeneous urban development in the city of Hamburg, Germany. This kind of high-resolution analysis was not previously available, but is increasingly requested by political decision makers. We can thus show hot spots of social vulnerability (SV) in Hamburg, considering the effects of social welfare, education, and age. In doing so, we defined SV as a contextual concept that follows the recent shift in discourse in line with the Intergovernmental Panel on Climate Change’s (IPCC) concepts of risk and vulnerability. Our SVI consists of two subcomponents: sensitivity and coping capacity. Populated areas of Hamburg were identified using satellite information and merged with the social data units of the city. Areas with high SVI are distributed over the entire city, notably in the district of Harburg and the Reiherstieg quarter in Wilhelmsburg near the Elbe, as well as in the densely populated inner city areas of Eimsbüttel and St. Pauli. As a map at a detailed scale, our SVI can be a useful tool to identify areas where the population is most vulnerable to climate-related hazards. We conclude that an enhanced understanding of urban social vulnerability is a prerequisite for urban risk management and urban resilience planning.","PeriodicalId":48740,"journal":{"name":"International Journal of Disaster Risk Science","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136168554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/s13753-023-00511-z
Victor Marchezini
Abstract The United Nations Office for Disaster Risk Reduction and the World Meteorological Organization launched in 2022 the executive plan of the world program “Early Warning Systems for All” to be implemented from 2023 to 2027. This program champions an investment of USD 3.1 billion into the four pillars of warning systems and calls for multi-hazard and people-centered warning systems (PCWS). However, there is a scientific gap concerning interdisciplinary approaches to promoting them. Motivated by the call for action of “Early Warning Systems for All” and warning research gaps on the lack of interdisciplinarity, a workshop series “Interdisciplinary Approaches for Advancing People-Centered Warning Systems” was held in early 2023. This short article shares the preliminary findings and recommendations of this research, which involved a transnational virtual dialogue between one scientific organization in Brazil and one from the United States. The findings and recommendations discussed in three virtual sessions and one collective working paper were centered on three aspects: promoting interdisciplinary integration in research; the need to discuss the characteristics of a PCWS; and promoting problem- and solution-based programs with people to integrate them at all phases of the warning system.
{"title":"Transnational Dialogues on Interdisciplinary Approaches for Advancing People-Centered Warning Systems","authors":"Victor Marchezini","doi":"10.1007/s13753-023-00511-z","DOIUrl":"https://doi.org/10.1007/s13753-023-00511-z","url":null,"abstract":"Abstract The United Nations Office for Disaster Risk Reduction and the World Meteorological Organization launched in 2022 the executive plan of the world program “Early Warning Systems for All” to be implemented from 2023 to 2027. This program champions an investment of USD 3.1 billion into the four pillars of warning systems and calls for multi-hazard and people-centered warning systems (PCWS). However, there is a scientific gap concerning interdisciplinary approaches to promoting them. Motivated by the call for action of “Early Warning Systems for All” and warning research gaps on the lack of interdisciplinarity, a workshop series “Interdisciplinary Approaches for Advancing People-Centered Warning Systems” was held in early 2023. This short article shares the preliminary findings and recommendations of this research, which involved a transnational virtual dialogue between one scientific organization in Brazil and one from the United States. The findings and recommendations discussed in three virtual sessions and one collective working paper were centered on three aspects: promoting interdisciplinary integration in research; the need to discuss the characteristics of a PCWS; and promoting problem- and solution-based programs with people to integrate them at all phases of the warning system.","PeriodicalId":48740,"journal":{"name":"International Journal of Disaster Risk Science","volume":"210 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136153317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/s13753-023-00514-w
Xia Wang, Ying Wang, Qigen Lin, Xudong Yang
Abstract Extreme precipitation-induced landslide events are projected to increase under climate change, which poses a serious threat to human lives and property. In this study, a global-scale landslide risk assessment model was established using global landslide data, by considering landslide hazard, exposure, and vulnerability. The global climate model data were then employed to drive the established global landslide risk model to explore the spatial and temporal variations in future landslide risk across the globe as a result of extreme precipitation changes. The results show that compared to the 30-year period from 1971 to 2000, the average annual frequency of landslides triggered by extreme precipitation is projected to increase by 7% and 10%, respectively, in the future 30-year periods of 2031–2060 and 2066–2095. The global average annual casualty risk of landslides is projected to increase from about 3240 to 7670 and 8380, respectively (with growth rates of 140% and 160%), during the 2031–2060 and 2066–2095 periods under the SSP2-4.5 scenario. The top 10 countries with the highest casualty risk of landslides are China, Afghanistan, India, the Philippines, Indonesia, Rwanda, Turkey, Nepal, Guatemala, and Brazil, 60% of which are located in Asia. The frequency and intensity of extreme precipitation will increase under climate change, which will lead to an increase in casualties from landslides in mountainous areas globally, and this risk should be taken seriously. The present study was an attempt to investigate and quantify the impact of global landslide casualty risk under climate change, which still has uncertainty in terms of outcomes, and there remains a need for further understanding in the future of the propagation of uncertainty between the factors that affect the risk.
{"title":"Assessing Global Landslide Casualty Risk Under Moderate Climate Change Based on Multiple GCM Projections","authors":"Xia Wang, Ying Wang, Qigen Lin, Xudong Yang","doi":"10.1007/s13753-023-00514-w","DOIUrl":"https://doi.org/10.1007/s13753-023-00514-w","url":null,"abstract":"Abstract Extreme precipitation-induced landslide events are projected to increase under climate change, which poses a serious threat to human lives and property. In this study, a global-scale landslide risk assessment model was established using global landslide data, by considering landslide hazard, exposure, and vulnerability. The global climate model data were then employed to drive the established global landslide risk model to explore the spatial and temporal variations in future landslide risk across the globe as a result of extreme precipitation changes. The results show that compared to the 30-year period from 1971 to 2000, the average annual frequency of landslides triggered by extreme precipitation is projected to increase by 7% and 10%, respectively, in the future 30-year periods of 2031–2060 and 2066–2095. The global average annual casualty risk of landslides is projected to increase from about 3240 to 7670 and 8380, respectively (with growth rates of 140% and 160%), during the 2031–2060 and 2066–2095 periods under the SSP2-4.5 scenario. The top 10 countries with the highest casualty risk of landslides are China, Afghanistan, India, the Philippines, Indonesia, Rwanda, Turkey, Nepal, Guatemala, and Brazil, 60% of which are located in Asia. The frequency and intensity of extreme precipitation will increase under climate change, which will lead to an increase in casualties from landslides in mountainous areas globally, and this risk should be taken seriously. The present study was an attempt to investigate and quantify the impact of global landslide casualty risk under climate change, which still has uncertainty in terms of outcomes, and there remains a need for further understanding in the future of the propagation of uncertainty between the factors that affect the risk.","PeriodicalId":48740,"journal":{"name":"International Journal of Disaster Risk Science","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136199776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/s13753-023-00515-9
Adriano Mota Ferreira, Victor Marchezini, Tatiana Sussel Gonçalves Mendes, Miguel Angel Trejo-Rangel, Allan Yu Iwama
Abstract Disaster forensic approaches aim to identify the causes of disasters to support disaster risk management. However, few studies have conducted a systematic literature review of scientific articles that labeled themselves as a forensic approach to disasters. This article provides a qualitative analysis of these forensic studies, focusing on five main issues: (1) the methodologies applied; (2) the forensic approaches used in the disaster risk management phases; (3) the hazards addressed; (4) if the methodologies involve social participation, and using what types of participation; and (5) if there are references to urban planning in the scientific studies analyzed. Our results showed a predominance of the Forensic Investigations of Disasters (FORIN) and Post-Event Review Capability (PERC) methodologies used in isolation or combination. There is a need for methodologies that engage people in participatory FORIN, fostering the co-production of knowledge and action research approaches.
{"title":"A Systematic Review of Forensic Approaches to Disasters: Gaps and Challenges","authors":"Adriano Mota Ferreira, Victor Marchezini, Tatiana Sussel Gonçalves Mendes, Miguel Angel Trejo-Rangel, Allan Yu Iwama","doi":"10.1007/s13753-023-00515-9","DOIUrl":"https://doi.org/10.1007/s13753-023-00515-9","url":null,"abstract":"Abstract Disaster forensic approaches aim to identify the causes of disasters to support disaster risk management. However, few studies have conducted a systematic literature review of scientific articles that labeled themselves as a forensic approach to disasters. This article provides a qualitative analysis of these forensic studies, focusing on five main issues: (1) the methodologies applied; (2) the forensic approaches used in the disaster risk management phases; (3) the hazards addressed; (4) if the methodologies involve social participation, and using what types of participation; and (5) if there are references to urban planning in the scientific studies analyzed. Our results showed a predominance of the Forensic Investigations of Disasters (FORIN) and Post-Event Review Capability (PERC) methodologies used in isolation or combination. There is a need for methodologies that engage people in participatory FORIN, fostering the co-production of knowledge and action research approaches.","PeriodicalId":48740,"journal":{"name":"International Journal of Disaster Risk Science","volume":"133 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136127891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}