G. K. Darkwah, Faisal Hossain, Victoria Tchervenski, Gordon Holtgrieve, David Graves, Charles Seaton, Sanchit Minocha, Pritam Das, Shahzaib Khan, Sarath Suresh
The use of satellite-based thermal infrared remote sensing has facilitated the assessment of surface water temperature on a large scale. However, the inherent limitations of this remote sensing technique make it difficult to assess rivers unless ambient conditions are cloud-free, devoid of steep terrain and the rivers are at least 60 m wide. To address these challenges that limit the spatiotemporal continuity of satellite-based hydro-thermal data, we harnessed the extensive coverage from the Landsat missions' thermal infrared sensors and data-driven techniques to estimate surface water temperature of rivers. Out of the tested data-driven techniques, we selected the Random Forest Regressor as our prime non-linear approach for estimation of surface water temperature in rivers. Using the selected technique, proposed as THORR (Thermal History of Regulated Rivers), we successfully reconstructed a multi-decadal, continuous spatiotemporal surface water temperature record for regulated rivers in the Columbia River Basin. Using 42 years of data, the surface water temperature could be predicted on average with 0.71° C of absolute error regardless of the dam's potential thermal influence in the downstream reaches. The reconstructed hydro-thermal behavior generated from THORR revealed a long-term downstream warming trend along the Columbia River. The open-source THORR tool can be extended to any river system around the world that is not gauged with in-situ temperature measurements for the reconstruction of hydro-thermal behavior.
{"title":"Reconstruction of the Hydro-Thermal Behavior of Regulated River Networks of the Columbia River Basin Using Satellite Remote Sensing and Data-Driven Techniques","authors":"G. K. Darkwah, Faisal Hossain, Victoria Tchervenski, Gordon Holtgrieve, David Graves, Charles Seaton, Sanchit Minocha, Pritam Das, Shahzaib Khan, Sarath Suresh","doi":"10.1029/2024EF004815","DOIUrl":"https://doi.org/10.1029/2024EF004815","url":null,"abstract":"<p>The use of satellite-based thermal infrared remote sensing has facilitated the assessment of surface water temperature on a large scale. However, the inherent limitations of this remote sensing technique make it difficult to assess rivers unless ambient conditions are cloud-free, devoid of steep terrain and the rivers are at least 60 m wide. To address these challenges that limit the spatiotemporal continuity of satellite-based hydro-thermal data, we harnessed the extensive coverage from the Landsat missions' thermal infrared sensors and data-driven techniques to estimate surface water temperature of rivers. Out of the tested data-driven techniques, we selected the Random Forest Regressor as our prime non-linear approach for estimation of surface water temperature in rivers. Using the selected technique, proposed as THORR (<b>T</b>hermal <b>H</b>istory of <b>R</b>egulated <b>R</b>ivers), we successfully reconstructed a multi-decadal, continuous spatiotemporal surface water temperature record for regulated rivers in the Columbia River Basin. Using 42 years of data, the surface water temperature could be predicted on average with 0.71° C of absolute error regardless of the dam's potential thermal influence in the downstream reaches. The reconstructed hydro-thermal behavior generated from THORR revealed a long-term downstream warming trend along the Columbia River. The open-source THORR tool can be extended to any river system around the world that is not gauged with in-situ temperature measurements for the reconstruction of hydro-thermal behavior.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 10","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004815","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the past four decades, global temperatures have increased more rapidly than before, potentially reducing vegetation activity if temperatures exceed the optimum temperature (Topt). However, plants have the capacity to acclimate to rising temperatures by adjusting Topt, thereby maintaining or even enhancing photosynthesis and carbon uptake. Despite this, it remains unclear how Topt of vegetation activity changes over time and to what extent global vegetation can acclimate to current temperature changes. In this study, we evaluated the temporal trends of Topt of vegetation activity and the thermal acclimation magnitudes globally using three remote-sensed vegetation indices and eddy-covariance observations of gross primary productivity from 1982 to 2020. We found that the global Topt of vegetation activity has increased at an average rate of 0.63°C per decade over the past four decades. The increase in Topt closely tracked the rise in annual maximum daily mean temperature (Tmax), indicating that thermal acclimation has occurred widely across the globe. Globally, we found an average thermal acclimation magnitude of 0.38°C per 1°C increase in Tmax. Notably, polar and continental regions exhibited the highest thermal acclimation magnitudes, while arid areas showed the lowest. Additionally, the thermal acclimation magnitude was positively affected by interannual temperature variability and negatively affected by soil moisture and vapor pressure deficits. Our findings indicate that terrestrial ecosystems have acclimated to current climate warming trends with varying degrees, suggesting a greater potential for land carbon uptake. Moreover, these results highlight the necessity for earth system models to integrate the thermal acclimation of Topt to better forecast the global carbon cycle.
{"title":"Increasing Optimum Temperature of Vegetation Activity Over the Past Four Decades","authors":"Yiheng Wang, Sangeeta Sarmah, Mrinal Singha, Weinan Chen, Yong Ge, Liyin L. Liang, Santonu Goswami, Shuli Niu","doi":"10.1029/2024EF004489","DOIUrl":"https://doi.org/10.1029/2024EF004489","url":null,"abstract":"<p>Over the past four decades, global temperatures have increased more rapidly than before, potentially reducing vegetation activity if temperatures exceed the optimum temperature (T<sub>opt</sub>). However, plants have the capacity to acclimate to rising temperatures by adjusting T<sub>opt</sub>, thereby maintaining or even enhancing photosynthesis and carbon uptake. Despite this, it remains unclear how T<sub>opt</sub> of vegetation activity changes over time and to what extent global vegetation can acclimate to current temperature changes. In this study, we evaluated the temporal trends of T<sub>opt</sub> of vegetation activity and the thermal acclimation magnitudes globally using three remote-sensed vegetation indices and eddy-covariance observations of gross primary productivity from 1982 to 2020. We found that the global T<sub>opt</sub> of vegetation activity has increased at an average rate of 0.63°C per decade over the past four decades. The increase in T<sub>opt</sub> closely tracked the rise in annual maximum daily mean temperature (T<sub>max</sub>), indicating that thermal acclimation has occurred widely across the globe. Globally, we found an average thermal acclimation magnitude of 0.38°C per 1°C increase in T<sub>max</sub>. Notably, polar and continental regions exhibited the highest thermal acclimation magnitudes, while arid areas showed the lowest. Additionally, the thermal acclimation magnitude was positively affected by interannual temperature variability and negatively affected by soil moisture and vapor pressure deficits. Our findings indicate that terrestrial ecosystems have acclimated to current climate warming trends with varying degrees, suggesting a greater potential for land carbon uptake. Moreover, these results highlight the necessity for earth system models to integrate the thermal acclimation of T<sub>opt</sub> to better forecast the global carbon cycle.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 10","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas A. Stanley, Rachel B. Soobitsky, Pukar M. Amatya, Dalia B. Kirschbaum
High Mountain Asia has long been known as a hotspot for landslide risk, and studies have suggested that landslide hazard is likely to increase in this region over the coming decades. Extreme precipitation may become more frequent, with a nonlinear response relative to increasing global temperatures. However, these changes are geographically varied. This article maps probable changes to landslide hazard, as shown by a landslide hazard indicator (LHI) derived from downscaled precipitation and temperature. In order to capture the nonlinear response of slopes to extreme precipitation, a simple machine-learning model was trained on a database of landslides across High Mountain Asia to develop a regional LHI. This model was applied to statistically downscaled data from the 30 members of the Seamless System for Prediction and Earth System Research large ensembles to produce a range of possible outcomes under the Shared Socioeconomic Pathways 2-4.5 and 5-8.5. The LHI reveals that landslide hazard will increase in most parts of High Mountain Asia. Absolute increases will be highest in already hazardous areas such as the Central Himalaya, but relative change is greatest on the Tibetan Plateau. Even in regions where landslide hazard declines by year 2100, it will increase prior to the mid-century mark. However, the seasonal cycle of landslide occurrence will not change greatly across High Mountain Asia. Although substantial uncertainty remains in these projections, the overall direction of change seems reliable. These findings highlight the importance of continued analysis to inform disaster risk reduction strategies for stakeholders across High Mountain Asia.
{"title":"Landslide Hazard Is Projected to Increase Across High Mountain Asia","authors":"Thomas A. Stanley, Rachel B. Soobitsky, Pukar M. Amatya, Dalia B. Kirschbaum","doi":"10.1029/2023EF004325","DOIUrl":"https://doi.org/10.1029/2023EF004325","url":null,"abstract":"<p>High Mountain Asia has long been known as a hotspot for landslide risk, and studies have suggested that landslide hazard is likely to increase in this region over the coming decades. Extreme precipitation may become more frequent, with a nonlinear response relative to increasing global temperatures. However, these changes are geographically varied. This article maps probable changes to landslide hazard, as shown by a landslide hazard indicator (LHI) derived from downscaled precipitation and temperature. In order to capture the nonlinear response of slopes to extreme precipitation, a simple machine-learning model was trained on a database of landslides across High Mountain Asia to develop a regional LHI. This model was applied to statistically downscaled data from the 30 members of the Seamless System for Prediction and Earth System Research large ensembles to produce a range of possible outcomes under the Shared Socioeconomic Pathways 2-4.5 and 5-8.5. The LHI reveals that landslide hazard will increase in most parts of High Mountain Asia. Absolute increases will be highest in already hazardous areas such as the Central Himalaya, but relative change is greatest on the Tibetan Plateau. Even in regions where landslide hazard declines by year 2100, it will increase prior to the mid-century mark. However, the seasonal cycle of landslide occurrence will not change greatly across High Mountain Asia. Although substantial uncertainty remains in these projections, the overall direction of change seems reliable. These findings highlight the importance of continued analysis to inform disaster risk reduction strategies for stakeholders across High Mountain Asia.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 10","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yizhang Wei, Barend van Maanen, Danghan Xie, Qin Jiang, Zeng Zhou, Christian Schwarz
Mangrove-saltmarsh ecotones are experiencing rapid alterations due to climate change and human activities, however, the ecological and morphological implications of these shifts remain largely unknown. This study systematically explores how interspecific interactions and herbivory influence the dominant wetland species, as well as the resultant morphological evolution and landscape configuration. To achieve this, we develop a new eco-morphodynamic model that integrates hydrodynamics, sediment transport, bed-level change, and vegetation dynamics. The novelty of the current model lies in newly incorporated modules to simulate biotic interactions between mangroves and saltmarshes, enabling exploration of eco-morphodynamic feedback in mangrove-saltmarsh ecotones in response to tidal flows and species interactions. Our results show that vertical growth rates of coexisting vegetation species are dominant factors in determining wetland dominance. When mangroves and saltmarshes exhibit comparable growth rates, mangroves typically become the dominant wetland species. Conversely, if mangroves grow more slowly than saltmarshes, they are unable to outcompete saltmarshes. Additionally, herbivory can fundamentally alter wetland dominance depending on herbivore food preferences. Our simulations further underline that saltmarsh-dominated wetlands develop channel networks more extensively and rapidly than mangrove-dominated systems. This pattern is also observed during species invasions, with invading saltmarshes extending channel networks, while invading mangroves inhibit ongoing network expansion. This study highlights the pivotal roles of relative growth properties and herbivory in driving ecotone development in respect to wetland dominance and channel network development at the intertidal scale.
{"title":"Mangrove-Saltmarsh Ecotones: Are Species Shifts Determining Eco-Morphodynamic Landform Configurations?","authors":"Yizhang Wei, Barend van Maanen, Danghan Xie, Qin Jiang, Zeng Zhou, Christian Schwarz","doi":"10.1029/2024EF004990","DOIUrl":"https://doi.org/10.1029/2024EF004990","url":null,"abstract":"<p>Mangrove-saltmarsh ecotones are experiencing rapid alterations due to climate change and human activities, however, the ecological and morphological implications of these shifts remain largely unknown. This study systematically explores how interspecific interactions and herbivory influence the dominant wetland species, as well as the resultant morphological evolution and landscape configuration. To achieve this, we develop a new eco-morphodynamic model that integrates hydrodynamics, sediment transport, bed-level change, and vegetation dynamics. The novelty of the current model lies in newly incorporated modules to simulate biotic interactions between mangroves and saltmarshes, enabling exploration of eco-morphodynamic feedback in mangrove-saltmarsh ecotones in response to tidal flows and species interactions. Our results show that vertical growth rates of coexisting vegetation species are dominant factors in determining wetland dominance. When mangroves and saltmarshes exhibit comparable growth rates, mangroves typically become the dominant wetland species. Conversely, if mangroves grow more slowly than saltmarshes, they are unable to outcompete saltmarshes. Additionally, herbivory can fundamentally alter wetland dominance depending on herbivore food preferences. Our simulations further underline that saltmarsh-dominated wetlands develop channel networks more extensively and rapidly than mangrove-dominated systems. This pattern is also observed during species invasions, with invading saltmarshes extending channel networks, while invading mangroves inhibit ongoing network expansion. This study highlights the pivotal roles of relative growth properties and herbivory in driving ecotone development in respect to wetland dominance and channel network development at the intertidal scale.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 10","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004990","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}