Pub Date : 2024-02-22DOI: 10.5194/egusphere-2024-198
Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, Byung Yong Yu
Abstract. Quantifying present topography can provide insights into landscape evolution and its controls, as the present topography is a cumulative expression of the types, distributions, and intensities of past and present processes. The Ulsan Fault Zone (UFZ) is an active fault zone on the southeastern Korean Peninsula that has been reactivated as a reverse fault around 5 Ma. This NNW–SSE-trending fault zone exhibits a predominantly reverse sense of movement today and dips towards the east. This study investigates the history of tectonic activity along the UFZ and the landscape evolution of the hanging wall side of the UFZ, focusing on neotectonic perturbations using 10Be-derived catchment-wide denudation rate and bedrock incision rates, geomorphic indices, and a landscape evolution model. We evaluated the spatial variation in the relative tectonic intensity from the variation in geomorphic indices along the UFZ. Five geological segments were identified along the fault based on the relative tectonic intensity and fault geometry. We then simulated four cases of landscape evolution using modelling to investigate the geomorphic processes and topographic changes in the study area in response to fault slip. The model results reveal that the geomorphic processes and the patterns of geomorphic indices (e.g., χ anomalies) depend on the inherited topography (i.e., the topography that existed prior to reverse faulting on the UFZ). On the basis of this important finding, we interpret the tectono-geomorphic history of the study area as follows: (1) the northern part of the UFZ has been in a transient state and is in topographic and geometric disequilibrium, as this part underwent asymmetric uplift (westward tilting) prior to reverse faulting on the UFZ around 5 Ma; and (2) its southern part was negligibly influenced by the asymmetric uplift before reverse faulting. Our study demonstrates geomorphic indices as reliable criteria for dividing faults into segments and, together with landscape evolution modelling, to investigate the influence of inherited topography on present topography and to help determine tectono-geomorphic histories.
{"title":"Geomorphic indices for unveiling fault segmentation and tectono-geomorphic evolution with insights into the impact of inherited topography, Ulsan Fault Zone, Korea","authors":"Cho-Hee Lee, Yeong Bae Seong, John Weber, Sangmin Ha, Dong-Eun Kim, Byung Yong Yu","doi":"10.5194/egusphere-2024-198","DOIUrl":"https://doi.org/10.5194/egusphere-2024-198","url":null,"abstract":"<strong>Abstract.</strong> Quantifying present topography can provide insights into landscape evolution and its controls, as the present topography is a cumulative expression of the types, distributions, and intensities of past and present processes. The Ulsan Fault Zone (UFZ) is an active fault zone on the southeastern Korean Peninsula that has been reactivated as a reverse fault around 5 Ma. This NNW–SSE-trending fault zone exhibits a predominantly reverse sense of movement today and dips towards the east. This study investigates the history of tectonic activity along the UFZ and the landscape evolution of the hanging wall side of the UFZ, focusing on neotectonic perturbations using <sup>10</sup>Be-derived catchment-wide denudation rate and bedrock incision rates, geomorphic indices, and a landscape evolution model. We evaluated the spatial variation in the relative tectonic intensity from the variation in geomorphic indices along the UFZ. Five geological segments were identified along the fault based on the relative tectonic intensity and fault geometry. We then simulated four cases of landscape evolution using modelling to investigate the geomorphic processes and topographic changes in the study area in response to fault slip. The model results reveal that the geomorphic processes and the patterns of geomorphic indices (e.g., χ anomalies) depend on the inherited topography (i.e., the topography that existed prior to reverse faulting on the UFZ). On the basis of this important finding, we interpret the tectono-geomorphic history of the study area as follows: (1) the northern part of the UFZ has been in a transient state and is in topographic and geometric disequilibrium, as this part underwent asymmetric uplift (westward tilting) prior to reverse faulting on the UFZ around 5 Ma; and (2) its southern part was negligibly influenced by the asymmetric uplift before reverse faulting. Our study demonstrates geomorphic indices as reliable criteria for dividing faults into segments and, together with landscape evolution modelling, to investigate the influence of inherited topography on present topography and to help determine tectono-geomorphic histories.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-21DOI: 10.5194/egusphere-2024-351
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, Sebastien Castelltort
Abstract. Within the stratigraphic record, changes in grain size are often interpreted as a signature of external forcing events. However, it is not yet well constrained how autogenic processes (such as channel mobility) influence grain size signatures within the fluvial system. Here, we combine a landscape evolution model based on the Stream Power Law but modified for sedimentation (Yuan et al., 2019) with an extension of the self-similar grain size model Fedele and Paola (2007) to multiple dimensions (i.e., along dynamically evolving river channels) to study the relative importance of autogenic processes in con- trolling grain size fining. We first show how our new model can reproduce the results obtained by classical analytical solutions assuming that fining is controlled by subsidence only, in a single or amalgamated channel. We then show that deviations from past (subsidence and single channel only) predictions arise when varying two main parameters: first the ratio between the incoming sediment flux and integrated subsidence rate (F ), which increases with the degree of bypass of the system; and second, the ratio of the discharge leaving the mountain to the discharge generated within the subsiding basin (β), which controls the shape of the topography of the basin. We demonstrate that there exists two regimes, one corresponding to low values of F or high values of β, where the grain size fining is controlled by subsidence, and one corresponding to high F and low β values, where grain size fining is controlled by autogenic processes under steep topographic slopes that propagate sedimentary waves through the basin. Coupling the LEM to a flexural model predicts that grain size fining evolves from subsidence to autogeniccontrol in basins characterized by a progressive increase of F (under-filled to over-filled foreland), as seen in the case example of the Alberta Foreland Basin. Our results indicate that grain size fining during low filling conditions (e.g. early stage as the basin is forming) can indicate the dominantly tectonic controlled parameter of the flux relative to underlying subsidence ratio (F ); whereas, any fining under high bypass conditions (e.g. late stage once the basin is overfilled) can indicate the climate controlled upstream vs downstream ratio (β).
摘要在地层记录中,粒度变化通常被解释为外部作用事件的特征。然而,目前还不能很好地解释自生过程(如河道流动性)如何影响河道系统内的粒度特征。在此,我们将基于溪流幂律但针对沉积进行了修改的景观演化模型(Yuan 等,2019 年)与 Fedele 和 Paola(2007 年)的自相似粒度模型扩展到多个维度(即沿动态演化的河道)相结合,研究自生过程在控制粒度细化中的相对重要性。我们首先展示了我们的新模型是如何在单一或混合河道中重现经典分析方法得出的结果的,即假设细化仅由沉降控制。然后,我们展示了当改变以下两个主要参数时,过去(仅由沉降和单一河道控制)的预测结果会出现偏差:首先是进入的沉积通量与综合沉降速率(F)之间的比率,该比率会随着系统旁路程度的增加而增加;其次是离开山体的排水量与沉降盆地内产生的排水量之间的比率(β),该比率控制着盆地地形的形状。我们证明存在两种情况,一种是 F 值低或 β 值高,晶粒细化受沉降控制;另一种是 F 值高、β 值低,晶粒细化受陡峭地形斜坡下的自生过程控制,沉积波在盆地中传播。将 LEM 与挠曲模型耦合可预测,在以 F 值逐渐增加(前陆充填不足到前陆充填过度)为特征的盆地中,粒度细化会从沉降演变为自生控制,这在阿尔伯塔前陆盆地的案例中可以看到。我们的研究结果表明,在低充盈条件下(如盆地形成的早期阶段)的粒度细化可以表明通量相对于基本沉降比(F)的参数主要受构造控制;而在高旁通条件下(如盆地过度充盈的晚期阶段)的任何细化可以表明受气候控制的上游与下游比(β)。
{"title":"Autogenic vs Subsidence Controls on Grain Size Fining through Multi-Channel Landscape Evolution Modelling","authors":"Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, Sebastien Castelltort","doi":"10.5194/egusphere-2024-351","DOIUrl":"https://doi.org/10.5194/egusphere-2024-351","url":null,"abstract":"<strong>Abstract.</strong> Within the stratigraphic record, changes in grain size are often interpreted as a signature of external forcing events. However, it is not yet well constrained how autogenic processes (such as channel mobility) influence grain size signatures within the fluvial system. Here, we combine a landscape evolution model based on the Stream Power Law but modified for sedimentation (Yuan et al., 2019) with an extension of the self-similar grain size model Fedele and Paola (2007) to multiple dimensions (i.e., along dynamically evolving river channels) to study the relative importance of autogenic processes in con- trolling grain size fining. We first show how our new model can reproduce the results obtained by classical analytical solutions assuming that fining is controlled by subsidence only, in a single or amalgamated channel. We then show that deviations from past (subsidence and single channel only) predictions arise when varying two main parameters: first the ratio between the incoming sediment flux and integrated subsidence rate (<em>F</em> ), which increases with the degree of bypass of the system; and second, the ratio of the discharge leaving the mountain to the discharge generated within the subsiding basin (<em>β</em>), which controls the shape of the topography of the basin. We demonstrate that there exists two regimes, one corresponding to low values of <em>F</em> or high values of <em>β</em>, where the grain size fining is controlled by subsidence, and one corresponding to high <em>F</em> and low <em>β</em> values, where grain size fining is controlled by autogenic processes under steep topographic slopes that propagate sedimentary waves through the basin. Coupling the LEM to a flexural model predicts that grain size fining evolves from subsidence to autogeniccontrol in basins characterized by a progressive increase of <em>F</em> (under-filled to over-filled foreland), as seen in the case example of the Alberta Foreland Basin. Our results indicate that grain size fining during low filling conditions (e.g. early stage as the basin is forming) can indicate the dominantly tectonic controlled parameter of the flux relative to underlying subsidence ratio (<em>F</em> ); whereas, any fining under high bypass conditions (e.g. late stage once the basin is overfilled) can indicate the climate controlled upstream vs downstream ratio (<em>β</em>).","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.5194/egusphere-2024-231
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, Michael Krautblatter
Abstract. The increasing hazard of major rock slope failures, exacerbated by climate change, underscores the importance of anticipating pre-failure process dynamics. While standard triggers are recognized for small rockfalls, few comprehensive driver quantifications exist for massive pre-failure rock slopes. Here we exploit >4 years multi-method high-resolution monitoring data from a well-prepared high-magnitude rock slope instability. To quantify and understand the effect of possible drivers – water from rain and snowmelt, internal rock fracturing and earthquakes – we correlate slope displacements with environmental data, local seismic recordings and earthquake catalogues. During the snowmelt phase, displacements are controlled by meltwater infiltration with high correlation and a time lag of 4–9 days. During the snow-free summer, rainfall drives the system with a time lag of 1–16 h for up to several days without a minimum activation rain sum threshold. Detected rock fracturing, linked to temperature and freeze-thaw cycles, is predominantly surface-near and unrelated to displacement rates. A classic Newmark analysis of recent and historic earthquakes indicates a low potential for immediate triggering of a major failure at the case site, unless it is already very close to failure. Seismic topographic amplification of the peak ground velocity at the summit ranges from a factor of 2–11 and is spatially heterogeneous, indicating a high criticality of the slope. The presented methodological approach enables a comprehensive rockfall driver evaluation and indicates where future climatic changes, e.g. in precipitation intensity and frequency, may alter the preparation of major rock slope failures.
{"title":"How water, temperature and seismicity control the preparation of massive rock slope failure (Hochvogel, DE/AT)","authors":"Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, Michael Krautblatter","doi":"10.5194/egusphere-2024-231","DOIUrl":"https://doi.org/10.5194/egusphere-2024-231","url":null,"abstract":"<strong>Abstract.</strong> The increasing hazard of major rock slope failures, exacerbated by climate change, underscores the importance of anticipating pre-failure process dynamics. While standard triggers are recognized for small rockfalls, few comprehensive driver quantifications exist for massive pre-failure rock slopes. Here we exploit >4 years multi-method high-resolution monitoring data from a well-prepared high-magnitude rock slope instability. To quantify and understand the effect of possible drivers – water from rain and snowmelt, internal rock fracturing and earthquakes – we correlate slope displacements with environmental data, local seismic recordings and earthquake catalogues. During the snowmelt phase, displacements are controlled by meltwater infiltration with high correlation and a time lag of 4–9 days. During the snow-free summer, rainfall drives the system with a time lag of 1–16 h for up to several days without a minimum activation rain sum threshold. Detected rock fracturing, linked to temperature and freeze-thaw cycles, is predominantly surface-near and unrelated to displacement rates. A classic Newmark analysis of recent and historic earthquakes indicates a low potential for immediate triggering of a major failure at the case site, unless it is already very close to failure. Seismic topographic amplification of the peak ground velocity at the summit ranges from a factor of 2–11 and is spatially heterogeneous, indicating a high criticality of the slope. The presented methodological approach enables a comprehensive rockfall driver evaluation and indicates where future climatic changes, e.g. in precipitation intensity and frequency, may alter the preparation of major rock slope failures.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.5194/esurf-12-347-2024
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, Cécile Quantin
Abstract. The Huanghe (Yellow River), one of the largest turbid river systems in the world, has long been recognized as a major contributor of suspended particulate matter (SPM) to the ocean. However, over the last few decades, the SPM export flux of the Huanghe has decreased over 90 % due to the high management, impacting the global export of particulate organic carbon (POC). To better constrain sources and modes of transport of POC beyond the previously investigated transportation of POC near the channel surface, SPM samples were for the first time collected over a whole channel cross-section in the lower Huanghe. Riverine SPM samples were analyzed for particle size and major element contents, as well as for POC content and dual carbon isotopes (13C and 14C). Clear vertical and lateral heterogeneities of the physical and chemical properties of SPM are observed within the river cross-section. For instance, finer SPM carry more POC in general with higher 14C activity near the surface of the right bank. Notably, we discuss how bank erosion in the alluvial plain is likely to generate lateral heterogeneity in POC composition. The Huanghe POC is millennial-aged (4020 ± 500 radiocarbon years) and dominated by organic carbon (OC) from the biosphere, while the lithospheric fraction is ca. 12 %. The mobilization of aged and refractory OC, including radiocarbon-dead biospheric OC, from deeper soil horizons of the loess–paleosol sequence through erosion in the Chinese Loess Plateau is an important mechanism contributing to fluvial POC in the Huanghe drainage basin. Altogether, anthropogenic activities can drastically change the compositions and transport dynamics of fluvial POC, consequentially altering the feedback of the source-to-sink trajectory of a river system to regional and global carbon cycles.
{"title":"Channel cross-section heterogeneity of particulate organic carbon transport in the Huanghe","authors":"Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, Cécile Quantin","doi":"10.5194/esurf-12-347-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-347-2024","url":null,"abstract":"Abstract. The Huanghe (Yellow River), one of the largest turbid river systems in the world, has long been recognized as a major contributor of suspended particulate matter (SPM) to the ocean. However, over the last few decades, the SPM export flux of the Huanghe has decreased over 90 % due to the high management, impacting the global export of particulate organic carbon (POC). To better constrain sources and modes of transport of POC beyond the previously investigated transportation of POC near the channel surface, SPM samples were for the first time collected over a whole channel cross-section in the lower Huanghe. Riverine SPM samples were analyzed for particle size and major element contents, as well as for POC content and dual carbon isotopes (13C and 14C). Clear vertical and lateral heterogeneities of the physical and chemical properties of SPM are observed within the river cross-section. For instance, finer SPM carry more POC in general with higher 14C activity near the surface of the right bank. Notably, we discuss how bank erosion in the alluvial plain is likely to generate lateral heterogeneity in POC composition. The Huanghe POC is millennial-aged (4020 ± 500 radiocarbon years) and dominated by organic carbon (OC) from the biosphere, while the lithospheric fraction is ca. 12 %. The mobilization of aged and refractory OC, including radiocarbon-dead biospheric OC, from deeper soil horizons of the loess–paleosol sequence through erosion in the Chinese Loess Plateau is an important mechanism contributing to fluvial POC in the Huanghe drainage basin. Altogether, anthropogenic activities can drastically change the compositions and transport dynamics of fluvial POC, consequentially altering the feedback of the source-to-sink trajectory of a river system to regional and global carbon cycles.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.5194/esurf-12-367-2024
Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, Jeremy G. Venditti
Abstract. The grain size 2 mm is the conventional border between sand and gravel. This size is used extensively, and generally without much physical justification, to discriminate between such features as sedimentary deposit type (clast-supported versus matrix-supported), river type (gravel bed versus sand bed), and sediment transport relation (gravel versus sand). Here we inquire as to whether this 2 mm boundary is simply a social construct upon which the research community has decided to agree or whether there is some underlying physics. We use dimensionless arguments to show the following for typical conditions on Earth, i.e., natural clasts (e.g., granitic or limestone) in 20 ∘C water. As grain size ranges from 1 to 5 mm (a narrow band including 2 mm), sediment suspension becomes vanishingly small at normal flood conditions in alluvial rivers. We refer to this range as pea gravel. We further show that bedload movement of a clast in the pea gravel range with, for example, a size of 4 mm moving over a bed of 0.4 mm particles has an enhanced relative mobility compared to a clast with a size of 40 mm moving over a bed of the same 4 mm particles. With this in mind, we use 2 mm here as shorthand for the narrow pea gravel range of 1–5 mm over which transport behavior is distinct from both coarser and finer material. The use of viscosity allows the delineation of a generalized dimensionless bed grain size discriminator between “sand-like” and “gravel-like” rivers. The discriminator is applicable to sediment transport on Titan (ice clasts in flowing methane/ethane liquid at reduced gravity) and Mars (mafic clasts in flowing water at reduced gravity), as well as Earth.
{"title":"Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics","authors":"Gary Parker, Chenge An, Michael P. Lamb, Marcelo H. Garcia, Elizabeth H. Dingle, Jeremy G. Venditti","doi":"10.5194/esurf-12-367-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-367-2024","url":null,"abstract":"Abstract. The grain size 2 mm is the conventional border between sand and gravel. This size is used extensively, and generally without much physical justification, to discriminate between such features as sedimentary deposit type (clast-supported versus matrix-supported), river type (gravel bed versus sand bed), and sediment transport relation (gravel versus sand). Here we inquire as to whether this 2 mm boundary is simply a social construct upon which the research community has decided to agree or whether there is some underlying physics. We use dimensionless arguments to show the following for typical conditions on Earth, i.e., natural clasts (e.g., granitic or limestone) in 20 ∘C water. As grain size ranges from 1 to 5 mm (a narrow band including 2 mm), sediment suspension becomes vanishingly small at normal flood conditions in alluvial rivers. We refer to this range as pea gravel. We further show that bedload movement of a clast in the pea gravel range with, for example, a size of 4 mm moving over a bed of 0.4 mm particles has an enhanced relative mobility compared to a clast with a size of 40 mm moving over a bed of the same 4 mm particles. With this in mind, we use 2 mm here as shorthand for the narrow pea gravel range of 1–5 mm over which transport behavior is distinct from both coarser and finer material. The use of viscosity allows the delineation of a generalized dimensionless bed grain size discriminator between “sand-like” and “gravel-like” rivers. The discriminator is applicable to sediment transport on Titan (ice clasts in flowing methane/ethane liquid at reduced gravity) and Mars (mafic clasts in flowing water at reduced gravity), as well as Earth.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.5194/egusphere-2023-2568
An Li, Michelle Koutnik, Stephen Brough, Matteo Spagnolo, Iestyn Barr
Abstract. While glacial remnants in the form of viscous flow features in the mid-latitudes of Mars are considered to be cold-based in the present-day, an increasing amount of geomorphic evidence suggests that at least some flow features were previously wet-based or had a mixed thermal state (polythermal) at during their evolution. Many of the viscous flow features known as glacier-like forms have been observed to emerge from alcoves that appear similar to cirques on Earth. Terrestrial cirques are typically characterized by a concave basin connected to a steep backwall. Cirques are expected to form from depressions in mountainsides that fill with snow/ice and over time support active glaciers that deepen the depressions by wet-based glacial erosion. To assess which alcoves on Mars are most “cirque-like”, we mapped a population of ~2000 alcoves in Deuteronilus Mensae, a region in the mid-latitudes of Mars characterized by mesas encompassed by glacial remnants. Based on visual characteristics and morphometrics, we refined our dataset to 386 “cirque-like alcoves”, which is five times the amount of glacier-like forms in the region, and used this to assess the past extent and style of glaciation on Mars. Using high resolution imagery, we find geomorphic evidence for glacial occupation associated with the cirque-like alcoves, including crevasse-like features, surface lineations, polygonal terrain, and moraine-like ridges. We propose that the cirque-like alcoves with icy remnants similar to rock glaciers on Earth represent a late stage of glacier-like form evolution. We also outline stages of cirque-like alcove evolution, linking a potential early stage of cirque-like alcoves to gully activity. On a population-wide scale, the cirque-like alcoves have a south to southeastward aspect bias, which may indicate a requirement for increased insolation for melting to occur and a connection to gullies on Mars. While the alcoves also have similarities to other features such as landslide scarps and amphitheater-headed valleys, the cirque-like alcoves have unique morphologies and morphometrics that differentiate their origin. Assuming warm-based erosion rates, the cirque-like alcoves have timescales consistent with both glacier-like forms and other viscous flow features like lobate debris aprons, whereas cold-based erosion rates would only allow the older timescales of lobate debris aprons. We propose that based on the geomorphic features and southward aspect, cirque-like alcove formation is more consistent with warm-based glaciation.
{"title":"Cirque-like alcoves in the northern mid-latitudes of Mars as evidence of glacial erosion","authors":"An Li, Michelle Koutnik, Stephen Brough, Matteo Spagnolo, Iestyn Barr","doi":"10.5194/egusphere-2023-2568","DOIUrl":"https://doi.org/10.5194/egusphere-2023-2568","url":null,"abstract":"<strong>Abstract.</strong> While glacial remnants in the form of viscous flow features in the mid-latitudes of Mars are considered to be cold-based in the present-day, an increasing amount of geomorphic evidence suggests that at least some flow features were previously wet-based or had a mixed thermal state (polythermal) at during their evolution. Many of the viscous flow features known as glacier-like forms have been observed to emerge from alcoves that appear similar to cirques on Earth. Terrestrial cirques are typically characterized by a concave basin connected to a steep backwall. Cirques are expected to form from depressions in mountainsides that fill with snow/ice and over time support active glaciers that deepen the depressions by wet-based glacial erosion. To assess which alcoves on Mars are most “cirque-like”, we mapped a population of ~2000 alcoves in Deuteronilus Mensae, a region in the mid-latitudes of Mars characterized by mesas encompassed by glacial remnants. Based on visual characteristics and morphometrics, we refined our dataset to 386 “cirque-like alcoves”, which is five times the amount of glacier-like forms in the region, and used this to assess the past extent and style of glaciation on Mars. Using high resolution imagery, we find geomorphic evidence for glacial occupation associated with the cirque-like alcoves, including crevasse-like features, surface lineations, polygonal terrain, and moraine-like ridges. We propose that the cirque-like alcoves with icy remnants similar to rock glaciers on Earth represent a late stage of glacier-like form evolution. We also outline stages of cirque-like alcove evolution, linking a potential early stage of cirque-like alcoves to gully activity. On a population-wide scale, the cirque-like alcoves have a south to southeastward aspect bias, which may indicate a requirement for increased insolation for melting to occur and a connection to gullies on Mars. While the alcoves also have similarities to other features such as landslide scarps and amphitheater-headed valleys, the cirque-like alcoves have unique morphologies and morphometrics that differentiate their origin. Assuming warm-based erosion rates, the cirque-like alcoves have timescales consistent with both glacier-like forms and other viscous flow features like lobate debris aprons, whereas cold-based erosion rates would only allow the older timescales of lobate debris aprons. We propose that based on the geomorphic features and southward aspect, cirque-like alcove formation is more consistent with warm-based glaciation.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09DOI: 10.5194/esurf-12-321-2024
Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, Simone Bizzi
Abstract. The difficulties of measuring bedload transport in gravel-bed rivers have given rise to the morphological method wherein sediment transport can be inferred from changes in riverbed elevation and estimates of the distance traveled by sediment: its path length. Because current methods for estimating path length are time- and labor-intensive, we present a method to estimate a characteristic path length from repeat digital elevation models (DEMs of difference, i.e., DoDs). We propose an automated method to extract the spacing between erosional and depositional sites on the DoD by the application of variational mode decomposition (VMD), a signal processing method, to quantify the spacing as a proxy for path length. We developed this method using flume experiments where bed topography and sediment flux were measured and then applied it to published field data with physical path length measured from tracer measurements. Our sediment transport estimates were not significantly different than the measured sediment flux at lower discharges in the lab. However, we observed an underestimation of sediment flux at the higher discharges in the flume study. We interpret this as a limit of the method in confined settings, where sediment transport becomes decoupled from morphological changes. We also explore how the time between survey acquisitions, the morphological active width relative to the channel width, and DoD thresholding techniques affect the proposed method and the potential issues they pose for the morphological method in general.
摘要由于难以测量砾石床河流中的床面负荷迁移量,因此产生了一种形态学方法,即通过河床高程的变化和沉积物移动距离的估算(即路径长度)来推断沉积物的迁移量。由于目前估算路径长度的方法耗时耗力,我们提出了一种从重复数字高程模型(DEMs of difference,即 DoDs)中估算特征路径长度的方法。我们提出了一种自动方法,通过应用信号处理方法变异模态分解(VMD)来提取差异数字高程模型上侵蚀点和沉积点之间的间距,从而量化间距作为路径长度的替代值。我们利用测量床面地形和沉积通量的水槽实验开发了这一方法,然后将其应用于通过示踪测量测量物理路径长度的已公布实地数据。我们的沉积物输运估算值与实验室测量的较低排水量下的沉积物通量没有明显差异。不过,在水槽研究中,我们观察到较高排水量下的沉积物通量被低估了。我们将此解释为该方法在封闭环境中的局限性,在这种环境中,沉积物运移与形态变化脱钩。我们还探讨了勘测采集之间的时间间隔、形态活动宽度与河道宽度的相对关系以及 DoD 临界值技术对拟议方法的影响,以及它们对一般形态学方法造成的潜在问题。
{"title":"Path length and sediment transport estimation from DEMs of difference: a signal processing approach","authors":"Lindsay Marie Capito, Enrico Pandrin, Walter Bertoldi, Nicola Surian, Simone Bizzi","doi":"10.5194/esurf-12-321-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-321-2024","url":null,"abstract":"Abstract. The difficulties of measuring bedload transport in gravel-bed rivers have given rise to the morphological method wherein sediment transport can be inferred from changes in riverbed elevation and estimates of the distance traveled by sediment: its path length. Because current methods for estimating path length are time- and labor-intensive, we present a method to estimate a characteristic path length from repeat digital elevation models (DEMs of difference, i.e., DoDs). We propose an automated method to extract the spacing between erosional and depositional sites on the DoD by the application of variational mode decomposition (VMD), a signal processing method, to quantify the spacing as a proxy for path length. We developed this method using flume experiments where bed topography and sediment flux were measured and then applied it to published field data with physical path length measured from tracer measurements. Our sediment transport estimates were not significantly different than the measured sediment flux at lower discharges in the lab. However, we observed an underestimation of sediment flux at the higher discharges in the flume study. We interpret this as a limit of the method in confined settings, where sediment transport becomes decoupled from morphological changes. We also explore how the time between survey acquisitions, the morphological active width relative to the channel width, and DoD thresholding techniques affect the proposed method and the potential issues they pose for the morphological method in general.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.5194/egusphere-2024-71
Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, George E. Hilley
Abstract. Incision rates of major rivers may reflect the effects of drainage reorganization, hillslope processes, tectonic uplift, climate, the properties of rocks into which rivers incise, and other autogenic processes. On the Colorado Plateau, incision rates along the Colorado River have been interpreted as resulting from abrupt base-level changes produced by the integration of the Colorado River system. Specifically, the integration of the Colorado River in the location of Grand Canyon is thought to have created a knickpoint, enhanced by lithologic contrasts, which is retreating upstream. While evidence exists for a <1 Ma acceleration of incision on parts of the Colorado River, uncertainty about the processes reflected in shorter-term incision rates muddies comparison with longer-term averages. In this work, we combine a cosmogenic radionuclide depth profile exposure age and post-Infrared Infrared Stimulated Luminescence (p-IR IRSL) to date fluvial deposits adjacent to the San Juan River, a major tributary of the Colorado River, near Mexican Hat, Utah. The deposits, resting on a 32 m strath surface, are constrained to be ∼28–40 ka, suggesting an incision rate of 804–1151 m Myr-1, nearly an order of magnitude higher than the long-term rate of ∼140 m Myr-1 over the past ∼1.2 Ma. We observe fluvial deposits that were abandoned due to a bedrock meander cutoff, which partially explains our accelerated incision rate. We use a simple geometric model, informed by our field data, to demonstrate how planform river evolution may, in some circumstances, increase short-term incision rates, relative to long-term incision rates. These short-term rates may also reflect a combination of autocyclic and climatic processes, which limits their ability to resolve longer-term changes in incision rate that may be related to changes in base-level or tectonics.
摘要主要河流的切入率可能反映了排水系统重组、山坡过程、构造隆起、气候、河流切入岩石的特性以及其他自生过程的影响。在科罗拉多高原,科罗拉多河沿岸的切入率被解释为科罗拉多河水系整合所产生的突然基底变化所致。具体来说,科罗拉多河在大峡谷位置的汇合被认为形成了一个因岩性对比而增强的节理点,该节理点正在向上游后退。虽然有证据表明科罗拉多河的部分河段在 1 亿年前加速了侵蚀,但短期侵蚀速率所反映的过程的不确定性使得与长期平均侵蚀速率的比较变得模糊不清。在这项研究中,我们结合了宇宙放射性核素深度剖面暴露年龄和后红外激发发光法(p-IR IRSL),对犹他州墨西哥帽附近科罗拉多河主要支流圣胡安河附近的河流沉积物进行了年代测定。这些沉积物位于 32 米长的地层表面,年代为 28-40 ka,表明侵蚀速率为 804-1151 m Myr-1,比过去 1.2 Ma 的长期侵蚀速率 140 m Myr-1 高出近一个数量级。我们观察到由于基岩河曲断裂而被遗弃的河道沉积,这部分解释了我们的加速侵蚀速率。我们利用一个简单的几何模型,并结合我们的实地数据,证明了在某些情况下,相对于长期侵蚀速率,平面河流的演化可能会增加短期侵蚀速率。这些短期速率也可能反映了自循环和气候过程的综合作用,这限制了它们解决可能与基底或构造变化有关的长期侵蚀速率变化的能力。
{"title":"The impact of bedrock meander cutoffs on 50 ka-year-scale incision rates, San Juan River, Utah","authors":"Aaron T. Steelquist, Gustav B. Seixas, Mary L. Gillam, Sourav Saha, Seulgi Moon, George E. Hilley","doi":"10.5194/egusphere-2024-71","DOIUrl":"https://doi.org/10.5194/egusphere-2024-71","url":null,"abstract":"<strong>Abstract.</strong> Incision rates of major rivers may reflect the effects of drainage reorganization, hillslope processes, tectonic uplift, climate, the properties of rocks into which rivers incise, and other autogenic processes. On the Colorado Plateau, incision rates along the Colorado River have been interpreted as resulting from abrupt base-level changes produced by the integration of the Colorado River system. Specifically, the integration of the Colorado River in the location of Grand Canyon is thought to have created a knickpoint, enhanced by lithologic contrasts, which is retreating upstream. While evidence exists for a <1 Ma acceleration of incision on parts of the Colorado River, uncertainty about the processes reflected in shorter-term incision rates muddies comparison with longer-term averages. In this work, we combine a cosmogenic radionuclide depth profile exposure age and post-Infrared Infrared Stimulated Luminescence (p-IR IRSL) to date fluvial deposits adjacent to the San Juan River, a major tributary of the Colorado River, near Mexican Hat, Utah. The deposits, resting on a 32 m strath surface, are constrained to be ∼28–40 ka, suggesting an incision rate of 804–1151 m Myr<sup>-1</sup>, nearly an order of magnitude higher than the long-term rate of ∼140 m Myr<sup>-1</sup> over the past ∼1.2 Ma. We observe fluvial deposits that were abandoned due to a bedrock meander cutoff, which partially explains our accelerated incision rate. We use a simple geometric model, informed by our field data, to demonstrate how planform river evolution may, in some circumstances, increase short-term incision rates, relative to long-term incision rates. These short-term rates may also reflect a combination of autocyclic and climatic processes, which limits their ability to resolve longer-term changes in incision rate that may be related to changes in base-level or tectonics.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.5194/egusphere-2024-160
Caroline Fenske, Jean Braun, François Guillocheau, Cécile Robin
Abstract. Duricrusts are hard elemental layers forming in climatically contrasted environments. Ferricretes (or iron duricrusts) are a type of duricrust, made of indurated iron layers. They form in tropical to semi-arid environments, but can be currently observed all around the world, in areas such as Africa, South America, India, and Australia. In most cases, they cap hills and appear to protect softer layers beneath. Two hypotheses have been proposed for the formation of duricrusts, i.e., the hydrological or horizontal model where the enrichment in the hardening element (iron for ferricretes) is the product of leaching and precipitation through the beating of the water table during contrasted seasonal cycles, and the laterisation or vertical model, where the formation of iron duricrusts is the final stage of laterisation. In this article, we present the first numerical model for the formation of iron duricrusts based on the hydrological hypothesis. The model is an extension to an existing regolith formation model where the position of the water table is used to predict the formation of a hardened layer at a rate set by a characteristic time scale τ and over a depth set by the beating range of the water table, λ. Hardening causes a decrease in surface erodibility, which we introduce in the model as a dimensionless factor κ that multiplies the surface transport coefficient of the model. Using the model we show under which circumstances duricrusts form by introducing two dimensionless numbers that combine the model parameters (λ and τ) as well as parameters representing external forcing like precipitation rate and uplift rate. We demonstrate that by using model parameter values obtained by independent constraints from field observations, hydrology and geochronology, the model predictions reproduce the observed conditions for duricrust formation. We also show that there exists a strong feedback from duricrust formation on the shape of the regolith and the position of the water table. Finally we demonstrate that the commonly accepted view that, because they are commonly found at the top of hills, duricrusts protect elements of the landscape is most likely an over-interpretation and that caution must be taken before using duricrusts as markers of uplift and/or base level falls.
{"title":"A numerical model for duricrust formation by water table fluctuations","authors":"Caroline Fenske, Jean Braun, François Guillocheau, Cécile Robin","doi":"10.5194/egusphere-2024-160","DOIUrl":"https://doi.org/10.5194/egusphere-2024-160","url":null,"abstract":"<strong>Abstract.</strong> Duricrusts are hard elemental layers forming in climatically contrasted environments. Ferricretes (or iron duricrusts) are a type of duricrust, made of indurated iron layers. They form in tropical to semi-arid environments, but can be currently observed all around the world, in areas such as Africa, South America, India, and Australia. In most cases, they cap hills and appear to protect softer layers beneath. Two hypotheses have been proposed for the formation of duricrusts, i.e., the hydrological or horizontal model where the enrichment in the hardening element (iron for ferricretes) is the product of leaching and precipitation through the beating of the water table during contrasted seasonal cycles, and the laterisation or vertical model, where the formation of iron duricrusts is the final stage of laterisation. In this article, we present the first numerical model for the formation of iron duricrusts based on the hydrological hypothesis. The model is an extension to an existing regolith formation model where the position of the water table is used to predict the formation of a hardened layer at a rate set by a characteristic time scale τ and over a depth set by the beating range of the water table, λ. Hardening causes a decrease in surface erodibility, which we introduce in the model as a dimensionless factor κ that multiplies the surface transport coefficient of the model. Using the model we show under which circumstances duricrusts form by introducing two dimensionless numbers that combine the model parameters (λ and τ) as well as parameters representing external forcing like precipitation rate and uplift rate. We demonstrate that by using model parameter values obtained by independent constraints from field observations, hydrology and geochronology, the model predictions reproduce the observed conditions for duricrust formation. We also show that there exists a strong feedback from duricrust formation on the shape of the regolith and the position of the water table. Finally we demonstrate that the commonly accepted view that, because they are commonly found at the top of hills, duricrusts protect elements of the landscape is most likely an over-interpretation and that caution must be taken before using duricrusts as markers of uplift and/or base level falls.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.5194/esurf-12-301-2024
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, Louis Moresi
Abstract. The interplay between climate-forced sea level change, erosional and depositional processes, and flexural isostasy in deep time on passive margin deltas remains poorly understood. We performed a series of conceptual simulations to investigate flexural isostatic responses to high-frequency fluctuations in water and sediment load associated with climatically driven sea level changes. We model a large drainage basin that discharges to a continental margin and produces a large deltaic depocenter, then prescribe synthetic and climatic-driven sea level curves of different frequencies to assess flexural response. Results show that flexural isostatic responses are bidirectional over 100–1000 kyr timescales and are in sync with the magnitude, frequency, and direction of sea level fluctuations and that isostatic adjustments play an important role in driving along-strike and cross-shelf river mouth migration and sediment accumulation. Our findings demonstrate that climate-forced sea level changes produce a feedback mechanism that results in self-sustaining creation of accommodation into which sediment is deposited and plays a major role in delta morphology and stratigraphic architecture.
{"title":"Flexural isostatic response of continental-scale deltas to climatically driven sea level changes","authors":"Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, Louis Moresi","doi":"10.5194/esurf-12-301-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-301-2024","url":null,"abstract":"Abstract. The interplay between climate-forced sea level change, erosional and depositional processes, and flexural isostasy in deep time on passive margin deltas remains poorly understood. We performed a series of conceptual simulations to investigate flexural isostatic responses to high-frequency fluctuations in water and sediment load associated with climatically driven sea level changes. We model a large drainage basin that discharges to a continental margin and produces a large deltaic depocenter, then prescribe synthetic and climatic-driven sea level curves of different frequencies to assess flexural response. Results show that flexural isostatic responses are bidirectional over 100–1000 kyr timescales and are in sync with the magnitude, frequency, and direction of sea level fluctuations and that isostatic adjustments play an important role in driving along-strike and cross-shelf river mouth migration and sediment accumulation. Our findings demonstrate that climate-forced sea level changes produce a feedback mechanism that results in self-sustaining creation of accommodation into which sediment is deposited and plays a major role in delta morphology and stratigraphic architecture.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}