首页 > 最新文献

Genome Biology最新文献

英文 中文
Cell type determination for cardiac differentiation occurs soon after seeding of human-induced pluripotent stem cells. 人类诱导多能干细胞播种后,很快就会确定心脏分化的细胞类型。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-04-05 DOI: 10.1186/s13059-022-02654-6
Connie L Jiang, Yogesh Goyal, Naveen Jain, Qiaohong Wang, Rachel E Truitt, Allison J Coté, Benjamin Emert, Ian A Mellis, Karun Kiani, Wenli Yang, Rajan Jain, Arjun Raj

Background: Cardiac differentiation of human-induced pluripotent stem (hiPS) cells consistently produces a mixed population of cardiomyocytes and non-cardiac cell types, even when using well-characterized protocols. We sought to determine whether different cell types might result from intrinsic differences in hiPS cells prior to the onset of differentiation.

Results: By associating individual differentiated cells that share a common hiPS cell precursor, we tested whether expression variability is predetermined from the hiPS cell state. In a single experiment, cells that shared a progenitor were more transcriptionally similar to each other than to other cells in the differentiated population. However, when the same hiPS cells were differentiated in parallel, we did not observe high transcriptional similarity across differentiations. Additionally, we found that substantial cell death occurs during differentiation in a manner that suggested all cells were equally likely to survive or die, suggesting that there is no intrinsic selection bias for cells descended from particular hiPS cell progenitors. We thus wondered how cells grow spatially during differentiation, so we labeled cells by expression of marker genes and found that cells expressing the same marker tended to occur in patches. Our results suggest that cell type determination across multiple cell types, once initiated, is maintained in a cell-autonomous manner for multiple divisions.

Conclusions: Altogether, our results show that while substantial heterogeneity exists in the initial hiPS cell population, it is not responsible for the variability observed in differentiated outcomes; instead, factors specifying the various cell types likely act during a window that begins shortly after the seeding of hiPS cells for differentiation.

背景:人类诱导多能干细胞(hiPS)的心脏分化始终会产生心肌细胞和非心脏细胞类型的混合群体,即使在使用特征良好的方案时也是如此。我们试图确定不同的细胞类型是否可能源于hiPS细胞在开始分化前的内在差异:通过将具有共同 hiPS 细胞前体的单个分化细胞联系起来,我们测试了表达变异性是否是由 hiPS 细胞状态预先决定的。在一次实验中,与分化群体中的其他细胞相比,共享一个祖细胞的细胞在转录上更加相似。然而,当相同的 hiPS 细胞平行分化时,我们并没有观察到不同分化细胞之间的转录相似性很高。此外,我们还发现在分化过程中会出现大量的细胞死亡,这表明所有细胞存活或死亡的可能性都是相同的,这说明对于特定的 hiPS 细胞祖细胞所产生的细胞并不存在内在的选择偏差。因此,我们想知道细胞在分化过程中是如何在空间上生长的,所以我们用标记基因的表达来标记细胞,结果发现表达相同标记基因的细胞往往成片出现。我们的结果表明,多种细胞类型的细胞类型决定一旦启动,就会以细胞自主的方式维持多次分裂:总之,我们的研究结果表明,虽然初始 hiPS 细胞群中存在大量异质性,但这并不是分化结果中观察到的变异性的原因;相反,指定各种细胞类型的因素可能是在 hiPS 细胞播种分化后不久开始作用的一个窗口期。
{"title":"Cell type determination for cardiac differentiation occurs soon after seeding of human-induced pluripotent stem cells.","authors":"Connie L Jiang, Yogesh Goyal, Naveen Jain, Qiaohong Wang, Rachel E Truitt, Allison J Coté, Benjamin Emert, Ian A Mellis, Karun Kiani, Wenli Yang, Rajan Jain, Arjun Raj","doi":"10.1186/s13059-022-02654-6","DOIUrl":"10.1186/s13059-022-02654-6","url":null,"abstract":"<p><strong>Background: </strong>Cardiac differentiation of human-induced pluripotent stem (hiPS) cells consistently produces a mixed population of cardiomyocytes and non-cardiac cell types, even when using well-characterized protocols. We sought to determine whether different cell types might result from intrinsic differences in hiPS cells prior to the onset of differentiation.</p><p><strong>Results: </strong>By associating individual differentiated cells that share a common hiPS cell precursor, we tested whether expression variability is predetermined from the hiPS cell state. In a single experiment, cells that shared a progenitor were more transcriptionally similar to each other than to other cells in the differentiated population. However, when the same hiPS cells were differentiated in parallel, we did not observe high transcriptional similarity across differentiations. Additionally, we found that substantial cell death occurs during differentiation in a manner that suggested all cells were equally likely to survive or die, suggesting that there is no intrinsic selection bias for cells descended from particular hiPS cell progenitors. We thus wondered how cells grow spatially during differentiation, so we labeled cells by expression of marker genes and found that cells expressing the same marker tended to occur in patches. Our results suggest that cell type determination across multiple cell types, once initiated, is maintained in a cell-autonomous manner for multiple divisions.</p><p><strong>Conclusions: </strong>Altogether, our results show that while substantial heterogeneity exists in the initial hiPS cell population, it is not responsible for the variability observed in differentiated outcomes; instead, factors specifying the various cell types likely act during a window that begins shortly after the seeding of hiPS cells for differentiation.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"90"},"PeriodicalIF":12.3,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8985385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LAP2α preserves genome integrity through assisting RPA deposition on damaged chromatin. LAP2α 通过协助 RPA 在受损染色质上的沉积来维护基因组的完整性。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-02-28 DOI: 10.1186/s13059-022-02638-6
Kaiwen Bao, Qi Zhang, Shuai Liu, Nan Song, Qiushi Guo, Ling Liu, Shanshan Tian, Jihui Hao, Yi Zhu, Kai Zhang, Ding Ai, Jie Yang, Zhi Yao, Roland Foisner, Lei Shi

Background: Single-stranded DNA (ssDNA) coated with replication protein A (RPA) acts as a key platform for the recruitment and exchange of genome maintenance factors in DNA damage response. Yet, how the formation of the ssDNA-RPA intermediate is regulated remains elusive.

Results: Here, we report that the lamin-associated protein LAP2α is physically associated with RPA, and LAP2α preferentially facilitates RPA deposition on damaged chromatin via physical contacts between LAP2α and RPA1. Importantly, LAP2α-promoted RPA binding to ssDNA plays a critical role in protection of replication forks, activation of ATR, and repair of damaged DNA. We further demonstrate that the preference of LAP2α-promoted RPA loading on damaged chromatin depends on poly ADP-ribose polymerase PARP1, but not poly(ADP-ribosyl)ation.

Conclusions: Our study provides mechanistic insight into RPA deposition in response to DNA damage and reveals a genome protection role of LAP2α.

背景:复制蛋白 A(RPA)包被的单链 DNA(ssDNA)是 DNA 损伤反应中基因组维持因子招募和交换的关键平台。然而,ssDNA-RPA中间体的形成是如何调控的仍不清楚:结果:我们在此报告了片层相关蛋白LAP2α与RPA的物理关联,LAP2α通过LAP2α和RPA1之间的物理接触优先促进RPA在受损染色质上的沉积。重要的是,LAP2α 促进 RPA 与 ssDNA 结合,在保护复制叉、激活 ATR 和修复受损 DNA 方面发挥了关键作用。我们进一步证明,LAP2α促进的RPA负载在受损染色质上的偏好取决于多聚ADP-核糖聚合酶PARP1,而不是多聚(ADP-核糖)结合:我们的研究从机理上揭示了DNA损伤时RPA的沉积,并揭示了LAP2α的基因组保护作用。
{"title":"LAP2α preserves genome integrity through assisting RPA deposition on damaged chromatin.","authors":"Kaiwen Bao, Qi Zhang, Shuai Liu, Nan Song, Qiushi Guo, Ling Liu, Shanshan Tian, Jihui Hao, Yi Zhu, Kai Zhang, Ding Ai, Jie Yang, Zhi Yao, Roland Foisner, Lei Shi","doi":"10.1186/s13059-022-02638-6","DOIUrl":"10.1186/s13059-022-02638-6","url":null,"abstract":"<p><strong>Background: </strong>Single-stranded DNA (ssDNA) coated with replication protein A (RPA) acts as a key platform for the recruitment and exchange of genome maintenance factors in DNA damage response. Yet, how the formation of the ssDNA-RPA intermediate is regulated remains elusive.</p><p><strong>Results: </strong>Here, we report that the lamin-associated protein LAP2α is physically associated with RPA, and LAP2α preferentially facilitates RPA deposition on damaged chromatin via physical contacts between LAP2α and RPA1. Importantly, LAP2α-promoted RPA binding to ssDNA plays a critical role in protection of replication forks, activation of ATR, and repair of damaged DNA. We further demonstrate that the preference of LAP2α-promoted RPA loading on damaged chromatin depends on poly ADP-ribose polymerase PARP1, but not poly(ADP-ribosyl)ation.</p><p><strong>Conclusions: </strong>Our study provides mechanistic insight into RPA deposition in response to DNA damage and reveals a genome protection role of LAP2α.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"64"},"PeriodicalIF":12.3,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication. 比较调控组学支持全基因组复制后对基因剂量的普遍选择。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-04-13 DOI: 10.1186/s13059-021-02323-0
Gareth B Gillard, Lars Grønvold, Line L Røsæg, Matilde Mengkrog Holen, Øystein Monsen, Ben F Koop, Eric B Rondeau, Manu Kumar Gundappa, John Mendoza, Daniel J Macqueen, Rori V Rohlfs, Simen R Sandve, Torgeir R Hvidsten

Background: Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap, we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene expression in duplicated genes (ohnologs) following the salmonid WGD 80-100 million years ago.

Results: We find rare cases of tissue-specific expression evolution but pervasive expression evolution affecting many tissues, reflecting strong selection on maintenance of genome stability following genome doubling. Ohnolog expression levels have evolved mostly asymmetrically, by diverting one ohnolog copy down a path towards lower expression and possible pseudogenization. Loss of expression in one ohnolog is significantly associated with transposable element insertions in promoters and likely driven by selection on gene dosage including selection on stoichiometric balance. We also find symmetric expression shifts, and these are associated with genes under strong evolutionary constraints such as ribosome subunit genes. This possibly reflects selection operating to achieve a gene dose reduction while avoiding accumulation of "toxic mutations". Mechanistically, ohnolog regulatory divergence is dictated by the number of bound transcription factors in promoters, with transposable elements being one likely source of novel binding sites driving tissue-specific gains in expression.

Conclusions: Our results imply pervasive adaptive expression evolution following WGD to overcome the immediate challenges posed by genome doubling and to exploit the long-term genetic opportunities for novel phenotype evolution.

背景:全基因组复制(WGD)事件在真核生物基因组进化中发挥了重要作用,但人们对这些极端事件在适应性基因组进化中的后果仍不甚了解。为了填补这一知识空白,我们利用一个比较系统发生学模型和来自七个物种的转录组数据,推断了 8000 万至 1 亿年前鲑鱼发生 WGD 后对重复基因(ohnologs)表达的选择:结果:我们发现组织特异性表达进化的情况很少,但影响许多组织的表达进化却很普遍,这反映了基因组加倍后对维持基因组稳定性的强烈选择。Ohnolog表达水平的进化大多是不对称的,即一个ohnolog拷贝向低表达和可能的假基因化方向发展。一个ohnolog的表达损失与启动子中的转座元件插入有很大关系,很可能是由基因剂量选择(包括化学平衡选择)驱动的。我们还发现了对称表达的变化,这些变化与受到强烈进化限制的基因有关,如核糖体亚基基因。这可能反映了在避免 "毒性突变 "积累的同时,为减少基因剂量而进行的选择操作。从机制上讲,ohnolog调控分化是由启动子中结合转录因子的数量决定的,转座元件可能是驱动组织特异性表达增益的新结合位点的来源之一:我们的研究结果表明,WGD 后普遍存在适应性表达进化,以克服基因组倍增带来的直接挑战,并利用长期遗传机会实现新型表型进化。
{"title":"Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication.","authors":"Gareth B Gillard, Lars Grønvold, Line L Røsæg, Matilde Mengkrog Holen, Øystein Monsen, Ben F Koop, Eric B Rondeau, Manu Kumar Gundappa, John Mendoza, Daniel J Macqueen, Rori V Rohlfs, Simen R Sandve, Torgeir R Hvidsten","doi":"10.1186/s13059-021-02323-0","DOIUrl":"10.1186/s13059-021-02323-0","url":null,"abstract":"<p><strong>Background: </strong>Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap, we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene expression in duplicated genes (ohnologs) following the salmonid WGD 80-100 million years ago.</p><p><strong>Results: </strong>We find rare cases of tissue-specific expression evolution but pervasive expression evolution affecting many tissues, reflecting strong selection on maintenance of genome stability following genome doubling. Ohnolog expression levels have evolved mostly asymmetrically, by diverting one ohnolog copy down a path towards lower expression and possible pseudogenization. Loss of expression in one ohnolog is significantly associated with transposable element insertions in promoters and likely driven by selection on gene dosage including selection on stoichiometric balance. We also find symmetric expression shifts, and these are associated with genes under strong evolutionary constraints such as ribosome subunit genes. This possibly reflects selection operating to achieve a gene dose reduction while avoiding accumulation of \"toxic mutations\". Mechanistically, ohnolog regulatory divergence is dictated by the number of bound transcription factors in promoters, with transposable elements being one likely source of novel binding sites driving tissue-specific gains in expression.</p><p><strong>Conclusions: </strong>Our results imply pervasive adaptive expression evolution following WGD to overcome the immediate challenges posed by genome doubling and to exploit the long-term genetic opportunities for novel phenotype evolution.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"103"},"PeriodicalIF":12.3,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25585826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity. PD-L1 lncRNA剪接异构体通过增强c-Myc的活性促进肺腺癌的进展。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-04-13 DOI: 10.1186/s13059-021-02331-0
Shuang Qu, Zichen Jiao, Geng Lu, Bing Yao, Ting Wang, Weiwei Rong, Jiahan Xu, Ting Fan, Xinlei Sun, Rong Yang, Jun Wang, Yongzhong Yao, Guifang Xu, Xin Yan, Tao Wang, Hongwei Liang, Ke Zen

Background: Although using a blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism and efficacy of such immune-checkpoint inhibition strategies in solid tumors remains unclear.

Results: Employing qRT-PCR, Sanger sequencing, and RNA BaseScope analysis, we show that human lung adenocarcinoma (LUAD) all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) by alternative splicing, regardless if the tumor is positive or negative for the protein PD-L1. Similar to PD-L1 mRNA, PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc promotes lung adenocarcinoma progression through directly binding to c-Myc and enhancing c-Myc transcriptional activity.

Conclusions: In summary, the PD-L1 gene can generate a long non-coding RNA through alternative splicing to promote lung adenocarcinoma progression by enhancing c-Myc activity. Our results argue in favor of investigating PD-L1-lnc depletion in combination with PD-L1 blockade in lung cancer therapy.

背景:尽管利用程序性死亡配体1(PD-L1)阻断增强T细胞免疫反应在肿瘤免疫疗法中大有可为,但免疫检查点抑制策略对实体瘤患者的作用有限。这种免疫检查点抑制策略在实体瘤中的机制和疗效仍不清楚:通过qRT-PCR、Sanger测序和RNA BaseScope分析,我们发现人类肺腺癌(LUAD)都会通过替代剪接产生一种PD-L1的长非编码RNA异构体(PD-L1-lnc),无论肿瘤的蛋白质PD-L1是阳性还是阴性。与 PD-L1 mRNA 相似,IFNγ 也会显著上调各种肺腺癌细胞中的 PD-L1-lnc。体外和体内研究都表明,PD-L1-lnc 会增加肺腺癌细胞的增殖和侵袭,但会减少其凋亡。从机制上讲,PD-L1-lnc通过直接与c-Myc结合并增强c-Myc的转录活性来促进肺腺癌的进展:总之,PD-L1基因可通过替代剪接产生长非编码RNA,通过增强c-Myc的活性来促进肺腺癌的进展。我们的研究结果支持将 PD-L1-lnc 缺失与 PD-L1 阻断联合应用于肺癌治疗。
{"title":"PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity.","authors":"Shuang Qu, Zichen Jiao, Geng Lu, Bing Yao, Ting Wang, Weiwei Rong, Jiahan Xu, Ting Fan, Xinlei Sun, Rong Yang, Jun Wang, Yongzhong Yao, Guifang Xu, Xin Yan, Tao Wang, Hongwei Liang, Ke Zen","doi":"10.1186/s13059-021-02331-0","DOIUrl":"10.1186/s13059-021-02331-0","url":null,"abstract":"<p><strong>Background: </strong>Although using a blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism and efficacy of such immune-checkpoint inhibition strategies in solid tumors remains unclear.</p><p><strong>Results: </strong>Employing qRT-PCR, Sanger sequencing, and RNA BaseScope analysis, we show that human lung adenocarcinoma (LUAD) all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) by alternative splicing, regardless if the tumor is positive or negative for the protein PD-L1. Similar to PD-L1 mRNA, PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc promotes lung adenocarcinoma progression through directly binding to c-Myc and enhancing c-Myc transcriptional activity.</p><p><strong>Conclusions: </strong>In summary, the PD-L1 gene can generate a long non-coding RNA through alternative splicing to promote lung adenocarcinoma progression by enhancing c-Myc activity. Our results argue in favor of investigating PD-L1-lnc depletion in combination with PD-L1 blockade in lung cancer therapy.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"104"},"PeriodicalIF":12.3,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25588666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational methods for chromosome-scale haplotype reconstruction. 染色体尺度单倍型重建的计算方法。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-04-12 DOI: 10.1186/s13059-021-02328-9
Shilpa Garg

High-quality chromosome-scale haplotype sequences of diploid genomes, polyploid genomes, and metagenomes provide important insights into genetic variation associated with disease and biodiversity. However, whole-genome short read sequencing does not yield haplotype information spanning whole chromosomes directly. Computational assembly of shorter haplotype fragments is required for haplotype reconstruction, which can be challenging owing to limited fragment lengths and high haplotype and repeat variability across genomes. Recent advancements in long-read and chromosome-scale sequencing technologies, alongside computational innovations, are improving the reconstruction of haplotypes at the level of whole chromosomes. Here, we review recent and discuss methodological progress and perspectives in these areas.

二倍体基因组、多倍体基因组和宏基因组的高质量染色体尺度单倍型序列提供了与疾病和生物多样性相关的遗传变异的重要见解。然而,全基因组短读测序不能直接产生跨越整个染色体的单倍型信息。单倍型重建需要计算组装较短的单倍型片段,这可能具有挑战性,因为片段长度有限,单倍型和重复变异性高。随着计算技术的创新,长读和染色体尺度测序技术的最新进展正在改善整个染色体水平上的单倍型重建。在这里,我们回顾并讨论了这些领域的方法进展和观点。
{"title":"Computational methods for chromosome-scale haplotype reconstruction.","authors":"Shilpa Garg","doi":"10.1186/s13059-021-02328-9","DOIUrl":"https://doi.org/10.1186/s13059-021-02328-9","url":null,"abstract":"<p><p>High-quality chromosome-scale haplotype sequences of diploid genomes, polyploid genomes, and metagenomes provide important insights into genetic variation associated with disease and biodiversity. However, whole-genome short read sequencing does not yield haplotype information spanning whole chromosomes directly. Computational assembly of shorter haplotype fragments is required for haplotype reconstruction, which can be challenging owing to limited fragment lengths and high haplotype and repeat variability across genomes. Recent advancements in long-read and chromosome-scale sequencing technologies, alongside computational innovations, are improving the reconstruction of haplotypes at the level of whole chromosomes. Here, we review recent and discuss methodological progress and perspectives in these areas.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"101"},"PeriodicalIF":12.3,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02328-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25582794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. ACME 解离法:一种用于单细胞转录组学的多功能细胞固定-解离方法。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-04-08 DOI: 10.1186/s13059-021-02302-5
Helena García-Castro, Nathan J Kenny, Marta Iglesias, Patricia Álvarez-Campos, Vincent Mason, Anamaria Elek, Anna Schönauer, Victoria A Sleight, Jakke Neiro, Aziz Aboobaker, Jon Permanyer, Manuel Irimia, Arnau Sebé-Pedrós, Jordi Solana

Single-cell sequencing technologies are revolutionizing biology, but they are limited by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a dissociation approach for single-cell transcriptomics that simultaneously fixes cells. ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times, and are sortable and permeable. As a proof of principle, we provide single-cell transcriptomic data of different species, using both droplet-based and combinatorial barcoding single-cell methods. ACME uses affordable reagents, can be done in most laboratories and even in the field, and thus will accelerate our knowledge of cell types across the tree of life.

单细胞测序技术正在给生物学带来革命性的变化,但由于需要解离活体样本而受到限制。在这里,我们介绍一种用于单细胞转录组学的解离方法--ACME(ACetic-MEthanol),它能同时固定细胞。ACME 解离的细胞具有很高的 RNA 完整性,可以多次低温保存,而且可分选、可渗透。作为原理验证,我们使用基于液滴和组合条形码的单细胞方法,提供了不同物种的单细胞转录组数据。ACME 使用经济实惠的试剂,可在大多数实验室甚至野外进行,因此将加速我们对整个生命树的细胞类型的了解。
{"title":"ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics.","authors":"Helena García-Castro, Nathan J Kenny, Marta Iglesias, Patricia Álvarez-Campos, Vincent Mason, Anamaria Elek, Anna Schönauer, Victoria A Sleight, Jakke Neiro, Aziz Aboobaker, Jon Permanyer, Manuel Irimia, Arnau Sebé-Pedrós, Jordi Solana","doi":"10.1186/s13059-021-02302-5","DOIUrl":"10.1186/s13059-021-02302-5","url":null,"abstract":"<p><p>Single-cell sequencing technologies are revolutionizing biology, but they are limited by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a dissociation approach for single-cell transcriptomics that simultaneously fixes cells. ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times, and are sortable and permeable. As a proof of principle, we provide single-cell transcriptomic data of different species, using both droplet-based and combinatorial barcoding single-cell methods. ACME uses affordable reagents, can be done in most laboratories and even in the field, and thus will accelerate our knowledge of cell types across the tree of life.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"89"},"PeriodicalIF":12.3,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25578997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response to "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation". 对“产生条件小鼠等位基因的CRISPR-Cas9方法的可重复性:多中心评估”的回应。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-04-07 DOI: 10.1186/s13059-021-02312-3
Hui Yang, Haoyi Wang, Rudolf Jaenisch
{"title":"Response to \"Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation\".","authors":"Hui Yang,&nbsp;Haoyi Wang,&nbsp;Rudolf Jaenisch","doi":"10.1186/s13059-021-02312-3","DOIUrl":"https://doi.org/10.1186/s13059-021-02312-3","url":null,"abstract":"","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"98"},"PeriodicalIF":12.3,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02312-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25584562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads. PCIP-seq:整合病毒基因组及其插入位点的同时测序。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-04-06 DOI: 10.1186/s13059-021-02307-0
Maria Artesi, Vincent Hahaut, Basiel Cole, Laurens Lambrechts, Fereshteh Ashrafi, Ambroise Marçais, Olivier Hermine, Philip Griebel, Natasa Arsic, Frank van der Meer, Arsène Burny, Dominique Bron, Elettra Bianchi, Philippe Delvenne, Vincent Bours, Carole Charlier, Michel Georges, Linos Vandekerckhove, Anne Van den Broeke, Keith Durkin

The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.

病毒基因组与宿主基因组的整合对受感染细胞的轨迹有重大影响。相关病毒基因组内的整合位置和变异可以影响感染细胞的克隆扩增和持久性。基于短读测序的方法可以识别病毒插入位点,但其内病毒基因组的序列尚不清楚。我们开发了PCIP-seq,这是一种利用长读数来识别插入位点并对其相关病毒基因组进行测序的方法。我们将该技术应用于外源性逆转录病毒HTLV-1、BLV和HIV-1、内源性逆转录病毒和人乳头瘤病毒。
{"title":"PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads.","authors":"Maria Artesi,&nbsp;Vincent Hahaut,&nbsp;Basiel Cole,&nbsp;Laurens Lambrechts,&nbsp;Fereshteh Ashrafi,&nbsp;Ambroise Marçais,&nbsp;Olivier Hermine,&nbsp;Philip Griebel,&nbsp;Natasa Arsic,&nbsp;Frank van der Meer,&nbsp;Arsène Burny,&nbsp;Dominique Bron,&nbsp;Elettra Bianchi,&nbsp;Philippe Delvenne,&nbsp;Vincent Bours,&nbsp;Carole Charlier,&nbsp;Michel Georges,&nbsp;Linos Vandekerckhove,&nbsp;Anne Van den Broeke,&nbsp;Keith Durkin","doi":"10.1186/s13059-021-02307-0","DOIUrl":"10.1186/s13059-021-02307-0","url":null,"abstract":"<p><p>The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"97"},"PeriodicalIF":12.3,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02307-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25565205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
MTSplice predicts effects of genetic variants on tissue-specific splicing. MTSplice 预测基因变异对组织特异性剪接的影响。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-03-31 DOI: 10.1186/s13059-021-02273-7
Jun Cheng, Muhammed Hasan Çelik, Anshul Kundaje, Julien Gagneur

We develop the free and open-source model Multi-tissue Splicing (MTSplice) to predict the effects of genetic variants on splicing of cassette exons in 56 human tissues. MTSplice combines MMSplice, which models constitutive regulatory sequences, with a new neural network that models tissue-specific regulatory sequences. MTSplice outperforms MMSplice on predicting tissue-specific variations associated with genetic variants in most tissues of the GTEx dataset, with largest improvements on brain tissues. Furthermore, MTSplice predicts that autism-associated de novo mutations are enriched for variants affecting splicing specifically in the brain. We foresee that MTSplice will aid interpreting variants associated with tissue-specific disorders.

我们开发了免费开源的多组织剪接(MTSplice)模型,用于预测基因变异对 56 种人体组织中盒式外显子剪接的影响。MTSplice 将模拟组成型调控序列的 MMSplice 与模拟组织特异性调控序列的新神经网络相结合。在预测 GTEx 数据集中大多数组织中与基因变异相关的组织特异性变异方面,MTSplice 优于 MMSplice,其中在脑组织方面的改进最大。此外,MTSplice 还能预测与自闭症相关的新突变富集于大脑中影响剪接的变异。我们预计,MTSplice 将有助于解释与特定组织疾病相关的变异。
{"title":"MTSplice predicts effects of genetic variants on tissue-specific splicing.","authors":"Jun Cheng, Muhammed Hasan Çelik, Anshul Kundaje, Julien Gagneur","doi":"10.1186/s13059-021-02273-7","DOIUrl":"10.1186/s13059-021-02273-7","url":null,"abstract":"<p><p>We develop the free and open-source model Multi-tissue Splicing (MTSplice) to predict the effects of genetic variants on splicing of cassette exons in 56 human tissues. MTSplice combines MMSplice, which models constitutive regulatory sequences, with a new neural network that models tissue-specific regulatory sequences. MTSplice outperforms MMSplice on predicting tissue-specific variations associated with genetic variants in most tissues of the GTEx dataset, with largest improvements on brain tissues. Furthermore, MTSplice predicts that autism-associated de novo mutations are enriched for variants affecting splicing specifically in the brain. We foresee that MTSplice will aid interpreting variants associated with tissue-specific disorders.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"94"},"PeriodicalIF":12.3,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25534806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. 同源抛光:一种通过同源抛光去除纳米孔测序系统误差的方法。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-03-31 DOI: 10.1186/s13059-021-02282-6
Yao-Ting Huang, Po-Yu Liu, Pei-Wen Shih

Nanopore sequencing has been widely used for the reconstruction of microbial genomes. Owing to higher error rates, errors on the genome are corrected via neural networks trained by Nanopore reads. However, the systematic errors usually remain uncorrected. This paper designs a model that is trained by homologous sequences for the correction of Nanopore systematic errors. The developed program, Homopolish, outperforms Medaka and HELEN in bacteria, viruses, fungi, and metagenomic datasets. When combined with Medaka/HELEN, the genome quality can exceed Q50 on R9.4 flow cells. We show that Nanopore-only sequencing can produce high-quality microbial genomes sufficient for downstream analysis.

纳米孔测序已广泛应用于微生物基因组的重建。由于更高的错误率,基因组上的错误通过纳米孔读取训练的神经网络来纠正。然而,系统错误通常是不被纠正的。本文设计了一种基于同源序列训练的纳米孔系统误差校正模型。开发的程序Homopolish在细菌、病毒、真菌和宏基因组数据集上优于Medaka和HELEN。当与Medaka/HELEN组合时,R9.4流式细胞的基因组质量可超过Q50。我们表明,纳米孔测序可以产生高质量的微生物基因组,足以进行下游分析。
{"title":"Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing.","authors":"Yao-Ting Huang,&nbsp;Po-Yu Liu,&nbsp;Pei-Wen Shih","doi":"10.1186/s13059-021-02282-6","DOIUrl":"https://doi.org/10.1186/s13059-021-02282-6","url":null,"abstract":"<p><p>Nanopore sequencing has been widely used for the reconstruction of microbial genomes. Owing to higher error rates, errors on the genome are corrected via neural networks trained by Nanopore reads. However, the systematic errors usually remain uncorrected. This paper designs a model that is trained by homologous sequences for the correction of Nanopore systematic errors. The developed program, Homopolish, outperforms Medaka and HELEN in bacteria, viruses, fungi, and metagenomic datasets. When combined with Medaka/HELEN, the genome quality can exceed Q50 on R9.4 flow cells. We show that Nanopore-only sequencing can produce high-quality microbial genomes sufficient for downstream analysis.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"95"},"PeriodicalIF":12.3,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02282-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25535183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 64
期刊
Genome Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1