Pub Date : 2022-08-29DOI: 10.1186/s13059-022-02735-6
Bryce Kille, Advait Balaji, Fritz J Sedlazeck, Michael Nute, Todd J Treangen
With the arrival of telomere-to-telomere (T2T) assemblies of the human genome comes the computational challenge of efficiently and accurately constructing multiple genome alignments at an unprecedented scale. By identifying nucleotides across genomes which share a common ancestor, multiple genome alignments commonly serve as the bedrock for comparative genomics studies. In this review, we provide an overview of the algorithmic template that most multiple genome alignment methods follow. We also discuss prospective areas of improvement of multiple genome alignment for keeping up with continuously arriving high-quality T2T assembled genomes and for unlocking clinically-relevant insights.
{"title":"Multiple genome alignment in the telomere-to-telomere assembly era.","authors":"Bryce Kille, Advait Balaji, Fritz J Sedlazeck, Michael Nute, Todd J Treangen","doi":"10.1186/s13059-022-02735-6","DOIUrl":"https://doi.org/10.1186/s13059-022-02735-6","url":null,"abstract":"<p><p>With the arrival of telomere-to-telomere (T2T) assemblies of the human genome comes the computational challenge of efficiently and accurately constructing multiple genome alignments at an unprecedented scale. By identifying nucleotides across genomes which share a common ancestor, multiple genome alignments commonly serve as the bedrock for comparative genomics studies. In this review, we provide an overview of the algorithmic template that most multiple genome alignment methods follow. We also discuss prospective areas of improvement of multiple genome alignment for keeping up with continuously arriving high-quality T2T assembled genomes and for unlocking clinically-relevant insights.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"182"},"PeriodicalIF":12.3,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33447714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-18DOI: 10.1186/s13059-022-02684-0
Peiyao Zhao, Jiaqiang Zhu, Ying Ma, Xiang Zhou
Background: Spatial transcriptomics are a set of new technologies that profile gene expression on tissues with spatial localization information. With technological advances, recent spatial transcriptomics data are often in the form of sparse counts with an excessive amount of zero values.
Results: We perform a comprehensive analysis on 20 spatial transcriptomics datasets collected from 11 distinct technologies to characterize the distributional properties of the expression count data and understand the statistical nature of the zero values. Across datasets, we show that a substantial fraction of genes displays overdispersion and/or zero inflation that cannot be accounted for by a Poisson model, with genes displaying overdispersion substantially overlapped with genes displaying zero inflation. In addition, we find that either the Poisson or the negative binomial model is sufficient for modeling the majority of genes across most spatial transcriptomics technologies. We further show major sources of overdispersion and zero inflation in spatial transcriptomics including gene expression heterogeneity across tissue locations and spatial distribution of cell types. In particular, when we focus on a relatively homogeneous set of tissue locations or control for cell type compositions, the number of detected overdispersed and/or zero-inflated genes is substantially reduced, and a simple Poisson model is often sufficient to fit the gene expression data there.
Conclusions: Our study provides the first comprehensive evidence that excessive zeros in spatial transcriptomics are not due to zero inflation, supporting the use of count models without a zero inflation component for modeling spatial transcriptomics.
{"title":"Modeling zero inflation is not necessary for spatial transcriptomics.","authors":"Peiyao Zhao, Jiaqiang Zhu, Ying Ma, Xiang Zhou","doi":"10.1186/s13059-022-02684-0","DOIUrl":"https://doi.org/10.1186/s13059-022-02684-0","url":null,"abstract":"<p><strong>Background: </strong>Spatial transcriptomics are a set of new technologies that profile gene expression on tissues with spatial localization information. With technological advances, recent spatial transcriptomics data are often in the form of sparse counts with an excessive amount of zero values.</p><p><strong>Results: </strong>We perform a comprehensive analysis on 20 spatial transcriptomics datasets collected from 11 distinct technologies to characterize the distributional properties of the expression count data and understand the statistical nature of the zero values. Across datasets, we show that a substantial fraction of genes displays overdispersion and/or zero inflation that cannot be accounted for by a Poisson model, with genes displaying overdispersion substantially overlapped with genes displaying zero inflation. In addition, we find that either the Poisson or the negative binomial model is sufficient for modeling the majority of genes across most spatial transcriptomics technologies. We further show major sources of overdispersion and zero inflation in spatial transcriptomics including gene expression heterogeneity across tissue locations and spatial distribution of cell types. In particular, when we focus on a relatively homogeneous set of tissue locations or control for cell type compositions, the number of detected overdispersed and/or zero-inflated genes is substantially reduced, and a simple Poisson model is often sufficient to fit the gene expression data there.</p><p><strong>Conclusions: </strong>Our study provides the first comprehensive evidence that excessive zeros in spatial transcriptomics are not due to zero inflation, supporting the use of count models without a zero inflation component for modeling spatial transcriptomics.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"118"},"PeriodicalIF":12.3,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-05DOI: 10.1186/s13059-022-02654-6
Connie L Jiang, Yogesh Goyal, Naveen Jain, Qiaohong Wang, Rachel E Truitt, Allison J Coté, Benjamin Emert, Ian A Mellis, Karun Kiani, Wenli Yang, Rajan Jain, Arjun Raj
Background: Cardiac differentiation of human-induced pluripotent stem (hiPS) cells consistently produces a mixed population of cardiomyocytes and non-cardiac cell types, even when using well-characterized protocols. We sought to determine whether different cell types might result from intrinsic differences in hiPS cells prior to the onset of differentiation.
Results: By associating individual differentiated cells that share a common hiPS cell precursor, we tested whether expression variability is predetermined from the hiPS cell state. In a single experiment, cells that shared a progenitor were more transcriptionally similar to each other than to other cells in the differentiated population. However, when the same hiPS cells were differentiated in parallel, we did not observe high transcriptional similarity across differentiations. Additionally, we found that substantial cell death occurs during differentiation in a manner that suggested all cells were equally likely to survive or die, suggesting that there is no intrinsic selection bias for cells descended from particular hiPS cell progenitors. We thus wondered how cells grow spatially during differentiation, so we labeled cells by expression of marker genes and found that cells expressing the same marker tended to occur in patches. Our results suggest that cell type determination across multiple cell types, once initiated, is maintained in a cell-autonomous manner for multiple divisions.
Conclusions: Altogether, our results show that while substantial heterogeneity exists in the initial hiPS cell population, it is not responsible for the variability observed in differentiated outcomes; instead, factors specifying the various cell types likely act during a window that begins shortly after the seeding of hiPS cells for differentiation.
{"title":"Cell type determination for cardiac differentiation occurs soon after seeding of human-induced pluripotent stem cells.","authors":"Connie L Jiang, Yogesh Goyal, Naveen Jain, Qiaohong Wang, Rachel E Truitt, Allison J Coté, Benjamin Emert, Ian A Mellis, Karun Kiani, Wenli Yang, Rajan Jain, Arjun Raj","doi":"10.1186/s13059-022-02654-6","DOIUrl":"10.1186/s13059-022-02654-6","url":null,"abstract":"<p><strong>Background: </strong>Cardiac differentiation of human-induced pluripotent stem (hiPS) cells consistently produces a mixed population of cardiomyocytes and non-cardiac cell types, even when using well-characterized protocols. We sought to determine whether different cell types might result from intrinsic differences in hiPS cells prior to the onset of differentiation.</p><p><strong>Results: </strong>By associating individual differentiated cells that share a common hiPS cell precursor, we tested whether expression variability is predetermined from the hiPS cell state. In a single experiment, cells that shared a progenitor were more transcriptionally similar to each other than to other cells in the differentiated population. However, when the same hiPS cells were differentiated in parallel, we did not observe high transcriptional similarity across differentiations. Additionally, we found that substantial cell death occurs during differentiation in a manner that suggested all cells were equally likely to survive or die, suggesting that there is no intrinsic selection bias for cells descended from particular hiPS cell progenitors. We thus wondered how cells grow spatially during differentiation, so we labeled cells by expression of marker genes and found that cells expressing the same marker tended to occur in patches. Our results suggest that cell type determination across multiple cell types, once initiated, is maintained in a cell-autonomous manner for multiple divisions.</p><p><strong>Conclusions: </strong>Altogether, our results show that while substantial heterogeneity exists in the initial hiPS cell population, it is not responsible for the variability observed in differentiated outcomes; instead, factors specifying the various cell types likely act during a window that begins shortly after the seeding of hiPS cells for differentiation.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"90"},"PeriodicalIF":12.3,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8985385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-28DOI: 10.1186/s13059-022-02638-6
Kaiwen Bao, Qi Zhang, Shuai Liu, Nan Song, Qiushi Guo, Ling Liu, Shanshan Tian, Jihui Hao, Yi Zhu, Kai Zhang, Ding Ai, Jie Yang, Zhi Yao, Roland Foisner, Lei Shi
Background: Single-stranded DNA (ssDNA) coated with replication protein A (RPA) acts as a key platform for the recruitment and exchange of genome maintenance factors in DNA damage response. Yet, how the formation of the ssDNA-RPA intermediate is regulated remains elusive.
Results: Here, we report that the lamin-associated protein LAP2α is physically associated with RPA, and LAP2α preferentially facilitates RPA deposition on damaged chromatin via physical contacts between LAP2α and RPA1. Importantly, LAP2α-promoted RPA binding to ssDNA plays a critical role in protection of replication forks, activation of ATR, and repair of damaged DNA. We further demonstrate that the preference of LAP2α-promoted RPA loading on damaged chromatin depends on poly ADP-ribose polymerase PARP1, but not poly(ADP-ribosyl)ation.
Conclusions: Our study provides mechanistic insight into RPA deposition in response to DNA damage and reveals a genome protection role of LAP2α.
背景:复制蛋白 A(RPA)包被的单链 DNA(ssDNA)是 DNA 损伤反应中基因组维持因子招募和交换的关键平台。然而,ssDNA-RPA中间体的形成是如何调控的仍不清楚:结果:我们在此报告了片层相关蛋白LAP2α与RPA的物理关联,LAP2α通过LAP2α和RPA1之间的物理接触优先促进RPA在受损染色质上的沉积。重要的是,LAP2α 促进 RPA 与 ssDNA 结合,在保护复制叉、激活 ATR 和修复受损 DNA 方面发挥了关键作用。我们进一步证明,LAP2α促进的RPA负载在受损染色质上的偏好取决于多聚ADP-核糖聚合酶PARP1,而不是多聚(ADP-核糖)结合:我们的研究从机理上揭示了DNA损伤时RPA的沉积,并揭示了LAP2α的基因组保护作用。
{"title":"LAP2α preserves genome integrity through assisting RPA deposition on damaged chromatin.","authors":"Kaiwen Bao, Qi Zhang, Shuai Liu, Nan Song, Qiushi Guo, Ling Liu, Shanshan Tian, Jihui Hao, Yi Zhu, Kai Zhang, Ding Ai, Jie Yang, Zhi Yao, Roland Foisner, Lei Shi","doi":"10.1186/s13059-022-02638-6","DOIUrl":"10.1186/s13059-022-02638-6","url":null,"abstract":"<p><strong>Background: </strong>Single-stranded DNA (ssDNA) coated with replication protein A (RPA) acts as a key platform for the recruitment and exchange of genome maintenance factors in DNA damage response. Yet, how the formation of the ssDNA-RPA intermediate is regulated remains elusive.</p><p><strong>Results: </strong>Here, we report that the lamin-associated protein LAP2α is physically associated with RPA, and LAP2α preferentially facilitates RPA deposition on damaged chromatin via physical contacts between LAP2α and RPA1. Importantly, LAP2α-promoted RPA binding to ssDNA plays a critical role in protection of replication forks, activation of ATR, and repair of damaged DNA. We further demonstrate that the preference of LAP2α-promoted RPA loading on damaged chromatin depends on poly ADP-ribose polymerase PARP1, but not poly(ADP-ribosyl)ation.</p><p><strong>Conclusions: </strong>Our study provides mechanistic insight into RPA deposition in response to DNA damage and reveals a genome protection role of LAP2α.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"64"},"PeriodicalIF":12.3,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-13DOI: 10.1186/s13059-021-02323-0
Gareth B Gillard, Lars Grønvold, Line L Røsæg, Matilde Mengkrog Holen, Øystein Monsen, Ben F Koop, Eric B Rondeau, Manu Kumar Gundappa, John Mendoza, Daniel J Macqueen, Rori V Rohlfs, Simen R Sandve, Torgeir R Hvidsten
Background: Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap, we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene expression in duplicated genes (ohnologs) following the salmonid WGD 80-100 million years ago.
Results: We find rare cases of tissue-specific expression evolution but pervasive expression evolution affecting many tissues, reflecting strong selection on maintenance of genome stability following genome doubling. Ohnolog expression levels have evolved mostly asymmetrically, by diverting one ohnolog copy down a path towards lower expression and possible pseudogenization. Loss of expression in one ohnolog is significantly associated with transposable element insertions in promoters and likely driven by selection on gene dosage including selection on stoichiometric balance. We also find symmetric expression shifts, and these are associated with genes under strong evolutionary constraints such as ribosome subunit genes. This possibly reflects selection operating to achieve a gene dose reduction while avoiding accumulation of "toxic mutations". Mechanistically, ohnolog regulatory divergence is dictated by the number of bound transcription factors in promoters, with transposable elements being one likely source of novel binding sites driving tissue-specific gains in expression.
Conclusions: Our results imply pervasive adaptive expression evolution following WGD to overcome the immediate challenges posed by genome doubling and to exploit the long-term genetic opportunities for novel phenotype evolution.
{"title":"Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication.","authors":"Gareth B Gillard, Lars Grønvold, Line L Røsæg, Matilde Mengkrog Holen, Øystein Monsen, Ben F Koop, Eric B Rondeau, Manu Kumar Gundappa, John Mendoza, Daniel J Macqueen, Rori V Rohlfs, Simen R Sandve, Torgeir R Hvidsten","doi":"10.1186/s13059-021-02323-0","DOIUrl":"10.1186/s13059-021-02323-0","url":null,"abstract":"<p><strong>Background: </strong>Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap, we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene expression in duplicated genes (ohnologs) following the salmonid WGD 80-100 million years ago.</p><p><strong>Results: </strong>We find rare cases of tissue-specific expression evolution but pervasive expression evolution affecting many tissues, reflecting strong selection on maintenance of genome stability following genome doubling. Ohnolog expression levels have evolved mostly asymmetrically, by diverting one ohnolog copy down a path towards lower expression and possible pseudogenization. Loss of expression in one ohnolog is significantly associated with transposable element insertions in promoters and likely driven by selection on gene dosage including selection on stoichiometric balance. We also find symmetric expression shifts, and these are associated with genes under strong evolutionary constraints such as ribosome subunit genes. This possibly reflects selection operating to achieve a gene dose reduction while avoiding accumulation of \"toxic mutations\". Mechanistically, ohnolog regulatory divergence is dictated by the number of bound transcription factors in promoters, with transposable elements being one likely source of novel binding sites driving tissue-specific gains in expression.</p><p><strong>Conclusions: </strong>Our results imply pervasive adaptive expression evolution following WGD to overcome the immediate challenges posed by genome doubling and to exploit the long-term genetic opportunities for novel phenotype evolution.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"103"},"PeriodicalIF":12.3,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25585826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-13DOI: 10.1186/s13059-021-02331-0
Shuang Qu, Zichen Jiao, Geng Lu, Bing Yao, Ting Wang, Weiwei Rong, Jiahan Xu, Ting Fan, Xinlei Sun, Rong Yang, Jun Wang, Yongzhong Yao, Guifang Xu, Xin Yan, Tao Wang, Hongwei Liang, Ke Zen
Background: Although using a blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism and efficacy of such immune-checkpoint inhibition strategies in solid tumors remains unclear.
Results: Employing qRT-PCR, Sanger sequencing, and RNA BaseScope analysis, we show that human lung adenocarcinoma (LUAD) all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) by alternative splicing, regardless if the tumor is positive or negative for the protein PD-L1. Similar to PD-L1 mRNA, PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc promotes lung adenocarcinoma progression through directly binding to c-Myc and enhancing c-Myc transcriptional activity.
Conclusions: In summary, the PD-L1 gene can generate a long non-coding RNA through alternative splicing to promote lung adenocarcinoma progression by enhancing c-Myc activity. Our results argue in favor of investigating PD-L1-lnc depletion in combination with PD-L1 blockade in lung cancer therapy.
{"title":"PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity.","authors":"Shuang Qu, Zichen Jiao, Geng Lu, Bing Yao, Ting Wang, Weiwei Rong, Jiahan Xu, Ting Fan, Xinlei Sun, Rong Yang, Jun Wang, Yongzhong Yao, Guifang Xu, Xin Yan, Tao Wang, Hongwei Liang, Ke Zen","doi":"10.1186/s13059-021-02331-0","DOIUrl":"10.1186/s13059-021-02331-0","url":null,"abstract":"<p><strong>Background: </strong>Although using a blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism and efficacy of such immune-checkpoint inhibition strategies in solid tumors remains unclear.</p><p><strong>Results: </strong>Employing qRT-PCR, Sanger sequencing, and RNA BaseScope analysis, we show that human lung adenocarcinoma (LUAD) all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) by alternative splicing, regardless if the tumor is positive or negative for the protein PD-L1. Similar to PD-L1 mRNA, PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc promotes lung adenocarcinoma progression through directly binding to c-Myc and enhancing c-Myc transcriptional activity.</p><p><strong>Conclusions: </strong>In summary, the PD-L1 gene can generate a long non-coding RNA through alternative splicing to promote lung adenocarcinoma progression by enhancing c-Myc activity. Our results argue in favor of investigating PD-L1-lnc depletion in combination with PD-L1 blockade in lung cancer therapy.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"104"},"PeriodicalIF":12.3,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25588666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-12DOI: 10.1186/s13059-021-02328-9
Shilpa Garg
High-quality chromosome-scale haplotype sequences of diploid genomes, polyploid genomes, and metagenomes provide important insights into genetic variation associated with disease and biodiversity. However, whole-genome short read sequencing does not yield haplotype information spanning whole chromosomes directly. Computational assembly of shorter haplotype fragments is required for haplotype reconstruction, which can be challenging owing to limited fragment lengths and high haplotype and repeat variability across genomes. Recent advancements in long-read and chromosome-scale sequencing technologies, alongside computational innovations, are improving the reconstruction of haplotypes at the level of whole chromosomes. Here, we review recent and discuss methodological progress and perspectives in these areas.
{"title":"Computational methods for chromosome-scale haplotype reconstruction.","authors":"Shilpa Garg","doi":"10.1186/s13059-021-02328-9","DOIUrl":"https://doi.org/10.1186/s13059-021-02328-9","url":null,"abstract":"<p><p>High-quality chromosome-scale haplotype sequences of diploid genomes, polyploid genomes, and metagenomes provide important insights into genetic variation associated with disease and biodiversity. However, whole-genome short read sequencing does not yield haplotype information spanning whole chromosomes directly. Computational assembly of shorter haplotype fragments is required for haplotype reconstruction, which can be challenging owing to limited fragment lengths and high haplotype and repeat variability across genomes. Recent advancements in long-read and chromosome-scale sequencing technologies, alongside computational innovations, are improving the reconstruction of haplotypes at the level of whole chromosomes. Here, we review recent and discuss methodological progress and perspectives in these areas.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"101"},"PeriodicalIF":12.3,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02328-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25582794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-08DOI: 10.1186/s13059-021-02302-5
Helena García-Castro, Nathan J Kenny, Marta Iglesias, Patricia Álvarez-Campos, Vincent Mason, Anamaria Elek, Anna Schönauer, Victoria A Sleight, Jakke Neiro, Aziz Aboobaker, Jon Permanyer, Manuel Irimia, Arnau Sebé-Pedrós, Jordi Solana
Single-cell sequencing technologies are revolutionizing biology, but they are limited by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a dissociation approach for single-cell transcriptomics that simultaneously fixes cells. ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times, and are sortable and permeable. As a proof of principle, we provide single-cell transcriptomic data of different species, using both droplet-based and combinatorial barcoding single-cell methods. ACME uses affordable reagents, can be done in most laboratories and even in the field, and thus will accelerate our knowledge of cell types across the tree of life.
{"title":"ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics.","authors":"Helena García-Castro, Nathan J Kenny, Marta Iglesias, Patricia Álvarez-Campos, Vincent Mason, Anamaria Elek, Anna Schönauer, Victoria A Sleight, Jakke Neiro, Aziz Aboobaker, Jon Permanyer, Manuel Irimia, Arnau Sebé-Pedrós, Jordi Solana","doi":"10.1186/s13059-021-02302-5","DOIUrl":"10.1186/s13059-021-02302-5","url":null,"abstract":"<p><p>Single-cell sequencing technologies are revolutionizing biology, but they are limited by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a dissociation approach for single-cell transcriptomics that simultaneously fixes cells. ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times, and are sortable and permeable. As a proof of principle, we provide single-cell transcriptomic data of different species, using both droplet-based and combinatorial barcoding single-cell methods. ACME uses affordable reagents, can be done in most laboratories and even in the field, and thus will accelerate our knowledge of cell types across the tree of life.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"89"},"PeriodicalIF":12.3,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25578997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-07DOI: 10.1186/s13059-021-02312-3
Hui Yang, Haoyi Wang, Rudolf Jaenisch
{"title":"Response to \"Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation\".","authors":"Hui Yang, Haoyi Wang, Rudolf Jaenisch","doi":"10.1186/s13059-021-02312-3","DOIUrl":"https://doi.org/10.1186/s13059-021-02312-3","url":null,"abstract":"","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"98"},"PeriodicalIF":12.3,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02312-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25584562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-06DOI: 10.1186/s13059-021-02307-0
Maria Artesi, Vincent Hahaut, Basiel Cole, Laurens Lambrechts, Fereshteh Ashrafi, Ambroise Marçais, Olivier Hermine, Philip Griebel, Natasa Arsic, Frank van der Meer, Arsène Burny, Dominique Bron, Elettra Bianchi, Philippe Delvenne, Vincent Bours, Carole Charlier, Michel Georges, Linos Vandekerckhove, Anne Van den Broeke, Keith Durkin
The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.
{"title":"PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads.","authors":"Maria Artesi, Vincent Hahaut, Basiel Cole, Laurens Lambrechts, Fereshteh Ashrafi, Ambroise Marçais, Olivier Hermine, Philip Griebel, Natasa Arsic, Frank van der Meer, Arsène Burny, Dominique Bron, Elettra Bianchi, Philippe Delvenne, Vincent Bours, Carole Charlier, Michel Georges, Linos Vandekerckhove, Anne Van den Broeke, Keith Durkin","doi":"10.1186/s13059-021-02307-0","DOIUrl":"10.1186/s13059-021-02307-0","url":null,"abstract":"<p><p>The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"97"},"PeriodicalIF":12.3,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02307-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25565205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}