Pub Date : 2015-10-21DOI: 10.1186/s13059-015-0780-4
Oksung Chung, Seondeok Jin, Yun Sung Cho, Jeongheui Lim, Hyunho Kim, Sungwoong Jho, Hak-Min Kim, JeHoon Jun, HyeJin Lee, Alvin Chon, Junsu Ko, Jeremy Edwards, Jessica A Weber, Kyudong Han, Stephen J O'Brien, Andrea Manica, Jong Bhak, Woon Kee Paek
Background: The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging.
Results: We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene.
Conclusions: We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.
{"title":"The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures.","authors":"Oksung Chung, Seondeok Jin, Yun Sung Cho, Jeongheui Lim, Hyunho Kim, Sungwoong Jho, Hak-Min Kim, JeHoon Jun, HyeJin Lee, Alvin Chon, Junsu Ko, Jeremy Edwards, Jessica A Weber, Kyudong Han, Stephen J O'Brien, Andrea Manica, Jong Bhak, Woon Kee Paek","doi":"10.1186/s13059-015-0780-4","DOIUrl":"https://doi.org/10.1186/s13059-015-0780-4","url":null,"abstract":"<p><strong>Background: </strong>The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging.</p><p><strong>Results: </strong>We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene.</p><p><strong>Conclusions: </strong>We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"215"},"PeriodicalIF":12.3,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-015-0780-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34102743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-19DOI: 10.1186/s13059-015-0794-y
Gina M DeNicola, Florian A Karreth, David J Adams, Chi C Wong
The use of transposons as insertional mutagens to identify cancer genes in mice has generated a wealth of information over the past decade. Here, we discuss recent major advances in transposon-mediated insertional mutagenesis screens and compare this technology with other screening strategies.
{"title":"The utility of transposon mutagenesis for cancer studies in the era of genome editing.","authors":"Gina M DeNicola, Florian A Karreth, David J Adams, Chi C Wong","doi":"10.1186/s13059-015-0794-y","DOIUrl":"https://doi.org/10.1186/s13059-015-0794-y","url":null,"abstract":"<p><p>The use of transposons as insertional mutagens to identify cancer genes in mice has generated a wealth of information over the past decade. Here, we discuss recent major advances in transposon-mediated insertional mutagenesis screens and compare this technology with other screening strategies. </p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"229"},"PeriodicalIF":12.3,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-015-0794-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34167722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-19DOI: 10.1186/s13059-015-0788-9
Catarina A Marques, Nicholas J Dickens, Daniel Paape, Samantha J Campbell, Richard McCulloch
Background: DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania.
Results: Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins.
Conclusions: The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.
背景:DNA 复制始于确定的基因组位点,即起源。起源的使用似乎遵循迄今为止所研究的真核生物的共同规则:所有染色体都由多个起源复制,这些起源的点火效率各不相同,而且是从更大的潜在起源库中挑选出来的。为了弄清 DNA 复制的这些特征是否适用于所有真核生物,我们描述了利什曼原虫的全基因组起源图谱:利什曼原虫的原点图谱表明,与特征真核生物相比,原点的使用存在显著差异,因为每条染色体似乎都是从一个原点复制的。通过比较利什曼原虫的两个物种,我们发现有证据表明,面对进化过程中的染色体融合或裂变事件,这种起源的单一性得以保持。绘制利什曼原种的图谱表明,所有原种都能以相同的效率起火,而且原种占据的基因组位点与相关的非原种位点不同。最后,我们提供的证据表明,利什曼原虫的起源位置与布氏锥虫显示出惊人的一致性,尽管后者的寄生虫通过多个不同强度的起源复制染色体:结论:利什曼原虫是一种微生物真核生物,它的染色体复制只有一个起源,这对起源多重性和相关控制的进化具有重要意义,也可以解释利什曼原虫染色体结构中普遍存在的非整倍体现象。
{"title":"Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe.","authors":"Catarina A Marques, Nicholas J Dickens, Daniel Paape, Samantha J Campbell, Richard McCulloch","doi":"10.1186/s13059-015-0788-9","DOIUrl":"10.1186/s13059-015-0788-9","url":null,"abstract":"<p><strong>Background: </strong>DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania.</p><p><strong>Results: </strong>Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins.</p><p><strong>Conclusions: </strong>The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"230"},"PeriodicalIF":12.3,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34099797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-14DOI: 10.1186/s13059-015-0789-8
Jian Feng, Matthew Wilkinson, Xiaochuan Liu, Immanuel Purushothaman, Deveroux Ferguson, Vincent Vialou, Ian Maze, Ningyi Shao, Pamela Kennedy, JaWook Koo, Caroline Dias, Benjamin Laitman, Victoria Stockman, Quincey LaPlant, Michael E Cahill, Eric J Nestler, Li Shen
Pub Date : 2015-10-13DOI: 10.1186/s13059-015-0798-7
{"title":"Erratum to: Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases.","authors":"","doi":"10.1186/s13059-015-0798-7","DOIUrl":"https://doi.org/10.1186/s13059-015-0798-7","url":null,"abstract":"","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"226"},"PeriodicalIF":12.3,"publicationDate":"2015-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-015-0798-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34084806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-12DOI: 10.1186/s13059-015-0776-0
Gabriel Renaud, Viviane Slon, Ana T Duggan, Janet Kelso
Unlabelled: Ancient DNA is typically highly degraded with appreciable cytosine deamination, and contamination with present-day DNA often complicates the identification of endogenous molecules. Together, these factors impede accurate assembly of the endogenous ancient mitochondrial genome. We present schmutzi, an iterative approach to jointly estimate present-day human contamination in ancient human DNA datasets and reconstruct the endogenous mitochondrial genome. By using sequence deamination patterns and fragment length distributions, schmutzi accurately reconstructs the endogenous mitochondrial genome sequence even when contamination exceeds 50 %. Given sufficient coverage, schmutzi also produces reliable estimates of contamination across a range of contamination rates.
{"title":"Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA.","authors":"Gabriel Renaud, Viviane Slon, Ana T Duggan, Janet Kelso","doi":"10.1186/s13059-015-0776-0","DOIUrl":"https://doi.org/10.1186/s13059-015-0776-0","url":null,"abstract":"<p><strong>Unlabelled: </strong>Ancient DNA is typically highly degraded with appreciable cytosine deamination, and contamination with present-day DNA often complicates the identification of endogenous molecules. Together, these factors impede accurate assembly of the endogenous ancient mitochondrial genome. We present schmutzi, an iterative approach to jointly estimate present-day human contamination in ancient human DNA datasets and reconstruct the endogenous mitochondrial genome. By using sequence deamination patterns and fragment length distributions, schmutzi accurately reconstructs the endogenous mitochondrial genome sequence even when contamination exceeds 50 %. Given sufficient coverage, schmutzi also produces reliable estimates of contamination across a range of contamination rates.</p><p><strong>Availability: </strong>https://bioinf.eva.mpg.de/schmutzi/ license:GPLv3.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"224"},"PeriodicalIF":12.3,"publicationDate":"2015-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-015-0776-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34080304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-08DOI: 10.1186/s13059-015-0781-3
Xiaobei Zhou, Mark D Robinson
A response to 'Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data' by Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND and Betel D in Genome Biology, 2013, 14:R95.
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D .对“RNA-seq数据的差异基因表达分析方法的综合评价”的响应。
{"title":"Do count-based differential expression methods perform poorly when genes are expressed in only one condition?","authors":"Xiaobei Zhou, Mark D Robinson","doi":"10.1186/s13059-015-0781-3","DOIUrl":"https://doi.org/10.1186/s13059-015-0781-3","url":null,"abstract":"<p><p>A response to 'Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data' by Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND and Betel D in Genome Biology, 2013, 14:R95. </p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"222"},"PeriodicalIF":12.3,"publicationDate":"2015-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-015-0781-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34073017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-08DOI: 10.1186/s13059-015-0795-x
Evelien M Bunnik, Karine G Le Roch
During the asexual replication cycle of the malaria parasite Plasmodium falciparum, the RNA-binding protein PfAlba1 binds and stabilizes a subset of transcripts for translation at a later time point.Please see related Research article: http://www.genomebiology.com/2015/16/1/212.
{"title":"PfAlba1: master regulator of translation in the malaria parasite.","authors":"Evelien M Bunnik, Karine G Le Roch","doi":"10.1186/s13059-015-0795-x","DOIUrl":"https://doi.org/10.1186/s13059-015-0795-x","url":null,"abstract":"<p><p>During the asexual replication cycle of the malaria parasite Plasmodium falciparum, the RNA-binding protein PfAlba1 binds and stabilizes a subset of transcripts for translation at a later time point.Please see related Research article: http://www.genomebiology.com/2015/16/1/212. </p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"221"},"PeriodicalIF":12.3,"publicationDate":"2015-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-015-0795-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34073537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-08DOI: 10.1186/s13059-015-0782-2
Doron Betel, Nicholas D Socci, Raya Khanin, Christopher E Mason, Franck Rapaport
{"title":"Response to Zhou and Robinson.","authors":"Doron Betel, Nicholas D Socci, Raya Khanin, Christopher E Mason, Franck Rapaport","doi":"10.1186/s13059-015-0782-2","DOIUrl":"https://doi.org/10.1186/s13059-015-0782-2","url":null,"abstract":"","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"223"},"PeriodicalIF":12.3,"publicationDate":"2015-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-015-0782-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34140324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-07DOI: 10.1186/s13059-015-0783-1
Fabian Schmich, Ewa Szczurek, Saskia Kreibich, Sabrina Dilling, Daniel Andritschke, Alain Casanova, Shyan Huey Low, Simone Eicher, Simone Muntwiler, Mario Emmenlauer, Pauli Rämö, Raquel Conde-Alvarez, Christian von Mering, Wolf-Dietrich Hardt, Christoph Dehio, Niko Beerenwinkel
Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled, from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes. Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components of pathogen entry mechanisms and TGF-β signaling. gespeR is available as a Bioconductor R-package.
{"title":"gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens.","authors":"Fabian Schmich, Ewa Szczurek, Saskia Kreibich, Sabrina Dilling, Daniel Andritschke, Alain Casanova, Shyan Huey Low, Simone Eicher, Simone Muntwiler, Mario Emmenlauer, Pauli Rämö, Raquel Conde-Alvarez, Christian von Mering, Wolf-Dietrich Hardt, Christoph Dehio, Niko Beerenwinkel","doi":"10.1186/s13059-015-0783-1","DOIUrl":"https://doi.org/10.1186/s13059-015-0783-1","url":null,"abstract":"<p><p>Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled, from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes. Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components of pathogen entry mechanisms and TGF-β signaling. gespeR is available as a Bioconductor R-package. </p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"220"},"PeriodicalIF":12.3,"publicationDate":"2015-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-015-0783-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34069744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}