Pub Date : 2022-10-03DOI: 10.1186/s13059-022-02775-y
Eva Galle, Chee-Wai Wong, Adhideb Ghosh, Thibaut Desgeorges, Kate Melrose, Laura C Hinte, Daniel Castellano-Castillo, Magdalena Engl, Joao Agostinho de Sousa, Francisco Javier Ruiz-Ojeda, Katrien De Bock, Jonatan R Ruiz, Ferdinand von Meyenn
Background: Histone lactylation has been recently described as a novel histone post-translational modification linking cellular metabolism to epigenetic regulation.
Results: Given the expected relevance of this modification and current limited knowledge of its function, we generate genome-wide datasets of H3K18la distribution in various in vitro and in vivo samples, including mouse embryonic stem cells, macrophages, adipocytes, and mouse and human skeletal muscle. We compare them to profiles of well-established histone modifications and gene expression patterns. Supervised and unsupervised bioinformatics analysis shows that global H3K18la distribution resembles H3K27ac, although we also find notable differences. H3K18la marks active CpG island-containing promoters of highly expressed genes across most tissues assessed, including many housekeeping genes, and positively correlates with H3K27ac and H3K4me3 as well as with gene expression. In addition, H3K18la is enriched at active enhancers that lie in proximity to genes that are functionally important for the respective tissue.
Conclusions: Overall, our data suggests that H3K18la is not only a marker for active promoters, but also a mark of tissue specific active enhancers.
{"title":"H3K18 lactylation marks tissue-specific active enhancers.","authors":"Eva Galle, Chee-Wai Wong, Adhideb Ghosh, Thibaut Desgeorges, Kate Melrose, Laura C Hinte, Daniel Castellano-Castillo, Magdalena Engl, Joao Agostinho de Sousa, Francisco Javier Ruiz-Ojeda, Katrien De Bock, Jonatan R Ruiz, Ferdinand von Meyenn","doi":"10.1186/s13059-022-02775-y","DOIUrl":"https://doi.org/10.1186/s13059-022-02775-y","url":null,"abstract":"<p><strong>Background: </strong>Histone lactylation has been recently described as a novel histone post-translational modification linking cellular metabolism to epigenetic regulation.</p><p><strong>Results: </strong>Given the expected relevance of this modification and current limited knowledge of its function, we generate genome-wide datasets of H3K18la distribution in various in vitro and in vivo samples, including mouse embryonic stem cells, macrophages, adipocytes, and mouse and human skeletal muscle. We compare them to profiles of well-established histone modifications and gene expression patterns. Supervised and unsupervised bioinformatics analysis shows that global H3K18la distribution resembles H3K27ac, although we also find notable differences. H3K18la marks active CpG island-containing promoters of highly expressed genes across most tissues assessed, including many housekeeping genes, and positively correlates with H3K27ac and H3K4me3 as well as with gene expression. In addition, H3K18la is enriched at active enhancers that lie in proximity to genes that are functionally important for the respective tissue.</p><p><strong>Conclusions: </strong>Overall, our data suggests that H3K18la is not only a marker for active promoters, but also a mark of tissue specific active enhancers.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"207"},"PeriodicalIF":12.3,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33486751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-23DOI: 10.1186/s13059-022-02769-w
Deyan Wang, Yiling Li, Mengmeng Li, Wenlu Yang, Xinzhi Ma, Lei Zhang, Yubo Wang, Yanlin Feng, Yuanyuan Zhang, Ran Zhou, Brian J Sanderson, Ken Keefover-Ring, Tongming Yin, Lawrence B Smart, Stephen P DiFazio, Jianquan Liu, Matthew Olson, Tao Ma
Background: Salicaceae species have diverse sex determination systems and frequent sex chromosome turnovers. However, compared with poplars, the diversity of sex determination in willows is poorly understood, and little is known about the evolutionary forces driving their turnover. Here, we characterized the sex determination in two Salix species, S. chaenomeloides and S. arbutifolia, which have an XY system on chromosome 7 and 15, respectively.
Results: Based on the assemblies of their sex determination regions, we found that the sex determination mechanism of willows may have underlying similarities with poplars, both involving intact and/or partial homologs of a type A cytokinin response regulator (RR) gene. Comparative analyses suggested that at least two sex turnover events have occurred in Salix, one preserving the ancestral pattern of male heterogamety, and the other changing heterogametic sex from XY to ZW, which could be partly explained by the "deleterious mutation load" and "sexually antagonistic selection" theoretical models. We hypothesize that these repeated turnovers keep sex chromosomes of willow species in a perpetually young state, leading to limited degeneration.
Conclusions: Our findings further improve the evolutionary trajectory of sex chromosomes in Salicaceae species, explore the evolutionary forces driving the repeated turnovers of their sex chromosomes, and provide a valuable reference for the study of sex chromosomes in other species.
{"title":"Repeated turnovers keep sex chromosomes young in willows.","authors":"Deyan Wang, Yiling Li, Mengmeng Li, Wenlu Yang, Xinzhi Ma, Lei Zhang, Yubo Wang, Yanlin Feng, Yuanyuan Zhang, Ran Zhou, Brian J Sanderson, Ken Keefover-Ring, Tongming Yin, Lawrence B Smart, Stephen P DiFazio, Jianquan Liu, Matthew Olson, Tao Ma","doi":"10.1186/s13059-022-02769-w","DOIUrl":"https://doi.org/10.1186/s13059-022-02769-w","url":null,"abstract":"<p><strong>Background: </strong>Salicaceae species have diverse sex determination systems and frequent sex chromosome turnovers. However, compared with poplars, the diversity of sex determination in willows is poorly understood, and little is known about the evolutionary forces driving their turnover. Here, we characterized the sex determination in two Salix species, S. chaenomeloides and S. arbutifolia, which have an XY system on chromosome 7 and 15, respectively.</p><p><strong>Results: </strong>Based on the assemblies of their sex determination regions, we found that the sex determination mechanism of willows may have underlying similarities with poplars, both involving intact and/or partial homologs of a type A cytokinin response regulator (RR) gene. Comparative analyses suggested that at least two sex turnover events have occurred in Salix, one preserving the ancestral pattern of male heterogamety, and the other changing heterogametic sex from XY to ZW, which could be partly explained by the \"deleterious mutation load\" and \"sexually antagonistic selection\" theoretical models. We hypothesize that these repeated turnovers keep sex chromosomes of willow species in a perpetually young state, leading to limited degeneration.</p><p><strong>Conclusions: </strong>Our findings further improve the evolutionary trajectory of sex chromosomes in Salicaceae species, explore the evolutionary forces driving the repeated turnovers of their sex chromosomes, and provide a valuable reference for the study of sex chromosomes in other species.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"200"},"PeriodicalIF":12.3,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33479701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-12DOI: 10.1186/s13059-022-02759-y
Berta Duran-Arqué, Manuel Cañete, Chiara Lara Castellazzi, Anna Bartomeu, Anna Ferrer-Caelles, Oscar Reina, Adrià Caballé, Marina Gay, Gianluca Arauz-Garofalo, Eulalia Belloc, Raúl Mendez
Background: Vertebrate CPEB proteins bind mRNAs at cytoplasmic polyadenylation elements (CPEs) in their 3' UTRs, leading to cytoplasmic changes in their poly(A) tail lengths; this can promote translational repression or activation of the mRNA. However, neither the regulation nor the mechanisms of action of the CPEB family per se have been systematically addressed to date.
Results: Based on a comparative analysis of the four vertebrate CPEBs, we determine their differential regulation by phosphorylation, the composition and properties of their supramolecular assemblies, and their target mRNAs. We show that all four CPEBs are able to recruit the CCR4-NOT deadenylation complex to repress the translation. However, their regulation, mechanism of action, and target mRNAs define two subfamilies. Thus, CPEB1 forms ribonucleoprotein complexes that are remodeled upon a single phosphorylation event and are associated with mRNAs containing canonical CPEs. CPEB2-4 are regulated by multiple proline-directed phosphorylations that control their liquid-liquid phase separation. CPEB2-4 mRNA targets include CPEB1-bound transcripts, with canonical CPEs, but also a specific subset of mRNAs with non-canonical CPEs.
Conclusions: Altogether, these results show how, globally, the CPEB family of proteins is able to integrate cellular cues to generate a fine-tuned adaptive response in gene expression regulation through the coordinated actions of all four members.
{"title":"Comparative analyses of vertebrate CPEB proteins define two subfamilies with coordinated yet distinct functions in post-transcriptional gene regulation.","authors":"Berta Duran-Arqué, Manuel Cañete, Chiara Lara Castellazzi, Anna Bartomeu, Anna Ferrer-Caelles, Oscar Reina, Adrià Caballé, Marina Gay, Gianluca Arauz-Garofalo, Eulalia Belloc, Raúl Mendez","doi":"10.1186/s13059-022-02759-y","DOIUrl":"10.1186/s13059-022-02759-y","url":null,"abstract":"<p><strong>Background: </strong>Vertebrate CPEB proteins bind mRNAs at cytoplasmic polyadenylation elements (CPEs) in their 3' UTRs, leading to cytoplasmic changes in their poly(A) tail lengths; this can promote translational repression or activation of the mRNA. However, neither the regulation nor the mechanisms of action of the CPEB family per se have been systematically addressed to date.</p><p><strong>Results: </strong>Based on a comparative analysis of the four vertebrate CPEBs, we determine their differential regulation by phosphorylation, the composition and properties of their supramolecular assemblies, and their target mRNAs. We show that all four CPEBs are able to recruit the CCR4-NOT deadenylation complex to repress the translation. However, their regulation, mechanism of action, and target mRNAs define two subfamilies. Thus, CPEB1 forms ribonucleoprotein complexes that are remodeled upon a single phosphorylation event and are associated with mRNAs containing canonical CPEs. CPEB2-4 are regulated by multiple proline-directed phosphorylations that control their liquid-liquid phase separation. CPEB2-4 mRNA targets include CPEB1-bound transcripts, with canonical CPEs, but also a specific subset of mRNAs with non-canonical CPEs.</p><p><strong>Conclusions: </strong>Altogether, these results show how, globally, the CPEB family of proteins is able to integrate cellular cues to generate a fine-tuned adaptive response in gene expression regulation through the coordinated actions of all four members.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"192"},"PeriodicalIF":12.3,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33463627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-12DOI: 10.1186/s13059-022-02760-5
Fabian Poetz, Svetlana Lebedeva, Johanna Schott, Doris Lindner, Uwe Ohler, Georg Stoecklin
Background: Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation.
Results: Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex.
Conclusions: While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.
{"title":"Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation.","authors":"Fabian Poetz, Svetlana Lebedeva, Johanna Schott, Doris Lindner, Uwe Ohler, Georg Stoecklin","doi":"10.1186/s13059-022-02760-5","DOIUrl":"10.1186/s13059-022-02760-5","url":null,"abstract":"<p><strong>Background: </strong>Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation.</p><p><strong>Results: </strong>Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex.</p><p><strong>Conclusions: </strong>While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"193"},"PeriodicalIF":12.3,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33470614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-09DOI: 10.1186/s13059-022-02755-2
Klara Kuret, Aram Gustav Amalietti, D Marc Jones, Charlotte Capitanchik, Jernej Ule
Background: Crosslinking and immunoprecipitation (CLIP) is a method used to identify in vivo RNA-protein binding sites on a transcriptome-wide scale. With the increasing amounts of available data for RNA-binding proteins (RBPs), it is important to understand to what degree the enriched motifs specify the RNA-binding profiles of RBPs in cells.
Results: We develop positionally enriched k-mer analysis (PEKA), a computational tool for efficient analysis of enriched motifs from individual CLIP datasets, which minimizes the impact of technical and regional genomic biases by internal data normalization. We cross-validate PEKA with mCross and show that the use of input control for background correction is not required to yield high specificity of enriched motifs. We identify motif classes with common enrichment patterns across eCLIP datasets and across RNA regions, while also observing variations in the specificity and the extent of motif enrichment across eCLIP datasets, between variant CLIP protocols, and between CLIP and in vitro binding data. Thereby, we gain insights into the contributions of technical and regional genomic biases to the enriched motifs, and find how motif enrichment features relate to the domain composition and low-complexity regions of the studied proteins.
Conclusions: Our study provides insights into the overall contributions of regional binding preferences, protein domains, and low-complexity regions to the specificity of protein-RNA interactions, and shows the value of cross-motif and cross-RBP comparison for data interpretation. Our results are presented for exploratory analysis via an online platform in an RBP-centric and motif-centric manner ( https://imaps.goodwright.com/apps/peka/ ).
{"title":"Positional motif analysis reveals the extent of specificity of protein-RNA interactions observed by CLIP.","authors":"Klara Kuret, Aram Gustav Amalietti, D Marc Jones, Charlotte Capitanchik, Jernej Ule","doi":"10.1186/s13059-022-02755-2","DOIUrl":"10.1186/s13059-022-02755-2","url":null,"abstract":"<p><strong>Background: </strong>Crosslinking and immunoprecipitation (CLIP) is a method used to identify in vivo RNA-protein binding sites on a transcriptome-wide scale. With the increasing amounts of available data for RNA-binding proteins (RBPs), it is important to understand to what degree the enriched motifs specify the RNA-binding profiles of RBPs in cells.</p><p><strong>Results: </strong>We develop positionally enriched k-mer analysis (PEKA), a computational tool for efficient analysis of enriched motifs from individual CLIP datasets, which minimizes the impact of technical and regional genomic biases by internal data normalization. We cross-validate PEKA with mCross and show that the use of input control for background correction is not required to yield high specificity of enriched motifs. We identify motif classes with common enrichment patterns across eCLIP datasets and across RNA regions, while also observing variations in the specificity and the extent of motif enrichment across eCLIP datasets, between variant CLIP protocols, and between CLIP and in vitro binding data. Thereby, we gain insights into the contributions of technical and regional genomic biases to the enriched motifs, and find how motif enrichment features relate to the domain composition and low-complexity regions of the studied proteins.</p><p><strong>Conclusions: </strong>Our study provides insights into the overall contributions of regional binding preferences, protein domains, and low-complexity regions to the specificity of protein-RNA interactions, and shows the value of cross-motif and cross-RBP comparison for data interpretation. Our results are presented for exploratory analysis via an online platform in an RBP-centric and motif-centric manner ( https://imaps.goodwright.com/apps/peka/ ).</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"191"},"PeriodicalIF":12.3,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9461102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33460725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-08DOI: 10.1186/s13059-022-02743-6
Jamshed Khan, Marek Kokot, Sebastian Deorowicz, Rob Patro
The de Bruijn graph is a key data structure in modern computational genomics, and construction of its compacted variant resides upstream of many genomic analyses. As the quantity of genomic data grows rapidly, this often forms a computational bottleneck. We present Cuttlefish 2, significantly advancing the state-of-the-art for this problem. On a commodity server, it reduces the graph construction time for 661K bacterial genomes, of size 2.58Tbp, from 4.5 days to 17-23 h; and it constructs the graph for 1.52Tbp white spruce reads in approximately 10 h, while the closest competitor requires 54-58 h, using considerably more memory.
{"title":"Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2.","authors":"Jamshed Khan, Marek Kokot, Sebastian Deorowicz, Rob Patro","doi":"10.1186/s13059-022-02743-6","DOIUrl":"10.1186/s13059-022-02743-6","url":null,"abstract":"<p><p>The de Bruijn graph is a key data structure in modern computational genomics, and construction of its compacted variant resides upstream of many genomic analyses. As the quantity of genomic data grows rapidly, this often forms a computational bottleneck. We present Cuttlefish 2, significantly advancing the state-of-the-art for this problem. On a commodity server, it reduces the graph construction time for 661K bacterial genomes, of size 2.58Tbp, from 4.5 days to 17-23 h; and it constructs the graph for 1.52Tbp white spruce reads in approximately 10 h, while the closest competitor requires 54-58 h, using considerably more memory.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"190"},"PeriodicalIF":12.3,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33453631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-07DOI: 10.1186/s13059-022-02756-1
Ningyang Li, Xueyu Zhang, Xiudong Sun, Siyuan Zhu, Yi Cheng, Meng Liu, Song Gao, Jiangjiang Zhang, Yanzhou Wang, Xiai Yang, Jianrong Chen, Fu Li, Qiaoyun He, Zheng Zeng, Xiaoge Yuan, Zhiman Zhou, Longchuan Ma, Taotao Wang, Xiang Li, Hanqiang Liu, Yupeng Pan, Mengyan Zhou, Chunsheng Gao, Gang Zhou, Zhenlin Han, Shiqi Liu, Jianguang Su, Zhihui Cheng, Shilin Tian, Touming Liu
Background: Garlic is an entirely sterile crop with important value as a vegetable, condiment, and medicine. However, the evolutionary history of garlic remains largely unknown.
Results: Here we report a comprehensive map of garlic genomic variation, consisting of amazingly 129.4 million variations. Evolutionary analysis indicates that the garlic population diverged at least 100,000 years ago, and the two groups cultivated in China were domesticated from two independent routes. Consequently, 15.0 and 17.5% of genes underwent an expression change in two cultivated groups, causing a reshaping of their transcriptomic architecture. Furthermore, we find independent domestication leads to few overlaps of deleterious substitutions in these two groups due to separate accumulation and selection-based removal. By analysis of selective sweeps, genome-wide trait associations and associated transcriptomic analysis, we uncover differential selections for the bulb traits in these two garlic groups during their domestication.
Conclusions: This study provides valuable resources for garlic genomics-based breeding, and comprehensive insights into the evolutionary history of this clonal-propagated crop.
{"title":"Genomic insights into the evolutionary history and diversification of bulb traits in garlic.","authors":"Ningyang Li, Xueyu Zhang, Xiudong Sun, Siyuan Zhu, Yi Cheng, Meng Liu, Song Gao, Jiangjiang Zhang, Yanzhou Wang, Xiai Yang, Jianrong Chen, Fu Li, Qiaoyun He, Zheng Zeng, Xiaoge Yuan, Zhiman Zhou, Longchuan Ma, Taotao Wang, Xiang Li, Hanqiang Liu, Yupeng Pan, Mengyan Zhou, Chunsheng Gao, Gang Zhou, Zhenlin Han, Shiqi Liu, Jianguang Su, Zhihui Cheng, Shilin Tian, Touming Liu","doi":"10.1186/s13059-022-02756-1","DOIUrl":"https://doi.org/10.1186/s13059-022-02756-1","url":null,"abstract":"<p><strong>Background: </strong>Garlic is an entirely sterile crop with important value as a vegetable, condiment, and medicine. However, the evolutionary history of garlic remains largely unknown.</p><p><strong>Results: </strong>Here we report a comprehensive map of garlic genomic variation, consisting of amazingly 129.4 million variations. Evolutionary analysis indicates that the garlic population diverged at least 100,000 years ago, and the two groups cultivated in China were domesticated from two independent routes. Consequently, 15.0 and 17.5% of genes underwent an expression change in two cultivated groups, causing a reshaping of their transcriptomic architecture. Furthermore, we find independent domestication leads to few overlaps of deleterious substitutions in these two groups due to separate accumulation and selection-based removal. By analysis of selective sweeps, genome-wide trait associations and associated transcriptomic analysis, we uncover differential selections for the bulb traits in these two garlic groups during their domestication.</p><p><strong>Conclusions: </strong>This study provides valuable resources for garlic genomics-based breeding, and comprehensive insights into the evolutionary history of this clonal-propagated crop.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"188"},"PeriodicalIF":12.3,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33448119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-29DOI: 10.1186/s13059-022-02750-7
Camille Fonouni-Farde, Aurélie Christ, Thomas Blein, María Florencia Legascue, Lucía Ferrero, Michaël Moison, Leandro Lucero, Juan Sebastián Ramírez-Prado, David Latrasse, Daniel Gonzalez, Moussa Benhamed, Leandro Quadrana, Martin Crespi, Federico Ariel
Background: RNA-DNA hybrid (R-loop)-associated long noncoding RNAs (lncRNAs), including the Arabidopsis lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO), are emerging as important regulators of three-dimensional chromatin conformation and gene transcriptional activity.
Results: Here, we show that in addition to the PRC1-component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), APOLO interacts with the methylcytosine-binding protein VARIANT IN METHYLATION 1 (VIM1), a conserved homolog of the mammalian DNA methylation regulator UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1). The APOLO-VIM1-LHP1 complex directly regulates the transcription of the auxin biosynthesis gene YUCCA2 by dynamically determining DNA methylation and H3K27me3 deposition over its promoter during the plant thermomorphogenic response. Strikingly, we demonstrate that the lncRNA UHRF1 Protein Associated Transcript (UPAT), a direct interactor of UHRF1 in humans, can be recognized by VIM1 and LHP1 in plant cells, despite the lack of sequence homology between UPAT and APOLO. In addition, we show that increased levels of APOLO or UPAT hamper VIM1 and LHP1 binding to YUCCA2 promoter and globally alter the Arabidopsis transcriptome in a similar manner.
Conclusions: Collectively, our results uncover a new mechanism in which a plant lncRNA coordinates Polycomb action and DNA methylation through the interaction with VIM1, and indicates that evolutionary unrelated lncRNAs with potentially conserved structures may exert similar functions by interacting with homolog partners.
背景:RNA-DNA杂交(R-loop)相关的长链非编码rna (lncRNAs),包括拟南芥lncRNA生长素调控的启动子LOOP (APOLO),正在成为三维染色质构象和基因转录活性的重要调节因子。结果:在这里,我们发现除了prc1组分LIKE异染色质蛋白1 (LHP1)外,APOLO还与甲基胞嘧啶结合蛋白VARIANT in METHYLATION 1 (VIM1)相互作用,VIM1是哺乳动物DNA甲基化调节因子UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1)的保守同源物。APOLO-VIM1-LHP1复合体在植物热形态响应过程中,通过动态决定DNA甲基化和H3K27me3在启动子上的沉积,直接调节生长素生物合成基因YUCCA2的转录。引人注目的是,我们证明了lncRNA UHRF1蛋白相关转录本(UPAT)是人类UHRF1的直接相互作用物,可以被植物细胞中的VIM1和LHP1识别,尽管UPAT和APOLO之间缺乏序列同源性。此外,我们发现APOLO或UPAT水平的增加阻碍了VIM1和LHP1与YUCCA2启动子的结合,并以类似的方式改变了拟南芥转录组。总之,我们的研究结果揭示了植物lncRNA通过与VIM1的相互作用协调Polycomb作用和DNA甲基化的新机制,并表明具有潜在保守结构的进化无关的lncRNA可能通过与同源伴侣的相互作用发挥类似的功能。
{"title":"The Arabidopsis APOLO and human UPAT sequence-unrelated long noncoding RNAs can modulate DNA and histone methylation machineries in plants.","authors":"Camille Fonouni-Farde, Aurélie Christ, Thomas Blein, María Florencia Legascue, Lucía Ferrero, Michaël Moison, Leandro Lucero, Juan Sebastián Ramírez-Prado, David Latrasse, Daniel Gonzalez, Moussa Benhamed, Leandro Quadrana, Martin Crespi, Federico Ariel","doi":"10.1186/s13059-022-02750-7","DOIUrl":"10.1186/s13059-022-02750-7","url":null,"abstract":"<p><strong>Background: </strong>RNA-DNA hybrid (R-loop)-associated long noncoding RNAs (lncRNAs), including the Arabidopsis lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO), are emerging as important regulators of three-dimensional chromatin conformation and gene transcriptional activity.</p><p><strong>Results: </strong>Here, we show that in addition to the PRC1-component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), APOLO interacts with the methylcytosine-binding protein VARIANT IN METHYLATION 1 (VIM1), a conserved homolog of the mammalian DNA methylation regulator UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1). The APOLO-VIM1-LHP1 complex directly regulates the transcription of the auxin biosynthesis gene YUCCA2 by dynamically determining DNA methylation and H3K27me3 deposition over its promoter during the plant thermomorphogenic response. Strikingly, we demonstrate that the lncRNA UHRF1 Protein Associated Transcript (UPAT), a direct interactor of UHRF1 in humans, can be recognized by VIM1 and LHP1 in plant cells, despite the lack of sequence homology between UPAT and APOLO. In addition, we show that increased levels of APOLO or UPAT hamper VIM1 and LHP1 binding to YUCCA2 promoter and globally alter the Arabidopsis transcriptome in a similar manner.</p><p><strong>Conclusions: </strong>Collectively, our results uncover a new mechanism in which a plant lncRNA coordinates Polycomb action and DNA methylation through the interaction with VIM1, and indicates that evolutionary unrelated lncRNAs with potentially conserved structures may exert similar functions by interacting with homolog partners.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"181"},"PeriodicalIF":12.3,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9422110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33446687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-29DOI: 10.1186/s13059-022-02735-6
Bryce Kille, Advait Balaji, Fritz J Sedlazeck, Michael Nute, Todd J Treangen
With the arrival of telomere-to-telomere (T2T) assemblies of the human genome comes the computational challenge of efficiently and accurately constructing multiple genome alignments at an unprecedented scale. By identifying nucleotides across genomes which share a common ancestor, multiple genome alignments commonly serve as the bedrock for comparative genomics studies. In this review, we provide an overview of the algorithmic template that most multiple genome alignment methods follow. We also discuss prospective areas of improvement of multiple genome alignment for keeping up with continuously arriving high-quality T2T assembled genomes and for unlocking clinically-relevant insights.
{"title":"Multiple genome alignment in the telomere-to-telomere assembly era.","authors":"Bryce Kille, Advait Balaji, Fritz J Sedlazeck, Michael Nute, Todd J Treangen","doi":"10.1186/s13059-022-02735-6","DOIUrl":"https://doi.org/10.1186/s13059-022-02735-6","url":null,"abstract":"<p><p>With the arrival of telomere-to-telomere (T2T) assemblies of the human genome comes the computational challenge of efficiently and accurately constructing multiple genome alignments at an unprecedented scale. By identifying nucleotides across genomes which share a common ancestor, multiple genome alignments commonly serve as the bedrock for comparative genomics studies. In this review, we provide an overview of the algorithmic template that most multiple genome alignment methods follow. We also discuss prospective areas of improvement of multiple genome alignment for keeping up with continuously arriving high-quality T2T assembled genomes and for unlocking clinically-relevant insights.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"182"},"PeriodicalIF":12.3,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33447714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-18DOI: 10.1186/s13059-022-02684-0
Peiyao Zhao, Jiaqiang Zhu, Ying Ma, Xiang Zhou
Background: Spatial transcriptomics are a set of new technologies that profile gene expression on tissues with spatial localization information. With technological advances, recent spatial transcriptomics data are often in the form of sparse counts with an excessive amount of zero values.
Results: We perform a comprehensive analysis on 20 spatial transcriptomics datasets collected from 11 distinct technologies to characterize the distributional properties of the expression count data and understand the statistical nature of the zero values. Across datasets, we show that a substantial fraction of genes displays overdispersion and/or zero inflation that cannot be accounted for by a Poisson model, with genes displaying overdispersion substantially overlapped with genes displaying zero inflation. In addition, we find that either the Poisson or the negative binomial model is sufficient for modeling the majority of genes across most spatial transcriptomics technologies. We further show major sources of overdispersion and zero inflation in spatial transcriptomics including gene expression heterogeneity across tissue locations and spatial distribution of cell types. In particular, when we focus on a relatively homogeneous set of tissue locations or control for cell type compositions, the number of detected overdispersed and/or zero-inflated genes is substantially reduced, and a simple Poisson model is often sufficient to fit the gene expression data there.
Conclusions: Our study provides the first comprehensive evidence that excessive zeros in spatial transcriptomics are not due to zero inflation, supporting the use of count models without a zero inflation component for modeling spatial transcriptomics.
{"title":"Modeling zero inflation is not necessary for spatial transcriptomics.","authors":"Peiyao Zhao, Jiaqiang Zhu, Ying Ma, Xiang Zhou","doi":"10.1186/s13059-022-02684-0","DOIUrl":"https://doi.org/10.1186/s13059-022-02684-0","url":null,"abstract":"<p><strong>Background: </strong>Spatial transcriptomics are a set of new technologies that profile gene expression on tissues with spatial localization information. With technological advances, recent spatial transcriptomics data are often in the form of sparse counts with an excessive amount of zero values.</p><p><strong>Results: </strong>We perform a comprehensive analysis on 20 spatial transcriptomics datasets collected from 11 distinct technologies to characterize the distributional properties of the expression count data and understand the statistical nature of the zero values. Across datasets, we show that a substantial fraction of genes displays overdispersion and/or zero inflation that cannot be accounted for by a Poisson model, with genes displaying overdispersion substantially overlapped with genes displaying zero inflation. In addition, we find that either the Poisson or the negative binomial model is sufficient for modeling the majority of genes across most spatial transcriptomics technologies. We further show major sources of overdispersion and zero inflation in spatial transcriptomics including gene expression heterogeneity across tissue locations and spatial distribution of cell types. In particular, when we focus on a relatively homogeneous set of tissue locations or control for cell type compositions, the number of detected overdispersed and/or zero-inflated genes is substantially reduced, and a simple Poisson model is often sufficient to fit the gene expression data there.</p><p><strong>Conclusions: </strong>Our study provides the first comprehensive evidence that excessive zeros in spatial transcriptomics are not due to zero inflation, supporting the use of count models without a zero inflation component for modeling spatial transcriptomics.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"118"},"PeriodicalIF":12.3,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}