首页 > 最新文献

Genome Biology最新文献

英文 中文
ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. ACME 解离法:一种用于单细胞转录组学的多功能细胞固定-解离方法。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-04-08 DOI: 10.1186/s13059-021-02302-5
Helena García-Castro, Nathan J Kenny, Marta Iglesias, Patricia Álvarez-Campos, Vincent Mason, Anamaria Elek, Anna Schönauer, Victoria A Sleight, Jakke Neiro, Aziz Aboobaker, Jon Permanyer, Manuel Irimia, Arnau Sebé-Pedrós, Jordi Solana

Single-cell sequencing technologies are revolutionizing biology, but they are limited by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a dissociation approach for single-cell transcriptomics that simultaneously fixes cells. ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times, and are sortable and permeable. As a proof of principle, we provide single-cell transcriptomic data of different species, using both droplet-based and combinatorial barcoding single-cell methods. ACME uses affordable reagents, can be done in most laboratories and even in the field, and thus will accelerate our knowledge of cell types across the tree of life.

单细胞测序技术正在给生物学带来革命性的变化,但由于需要解离活体样本而受到限制。在这里,我们介绍一种用于单细胞转录组学的解离方法--ACME(ACetic-MEthanol),它能同时固定细胞。ACME 解离的细胞具有很高的 RNA 完整性,可以多次低温保存,而且可分选、可渗透。作为原理验证,我们使用基于液滴和组合条形码的单细胞方法,提供了不同物种的单细胞转录组数据。ACME 使用经济实惠的试剂,可在大多数实验室甚至野外进行,因此将加速我们对整个生命树的细胞类型的了解。
{"title":"ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics.","authors":"Helena García-Castro, Nathan J Kenny, Marta Iglesias, Patricia Álvarez-Campos, Vincent Mason, Anamaria Elek, Anna Schönauer, Victoria A Sleight, Jakke Neiro, Aziz Aboobaker, Jon Permanyer, Manuel Irimia, Arnau Sebé-Pedrós, Jordi Solana","doi":"10.1186/s13059-021-02302-5","DOIUrl":"10.1186/s13059-021-02302-5","url":null,"abstract":"<p><p>Single-cell sequencing technologies are revolutionizing biology, but they are limited by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a dissociation approach for single-cell transcriptomics that simultaneously fixes cells. ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times, and are sortable and permeable. As a proof of principle, we provide single-cell transcriptomic data of different species, using both droplet-based and combinatorial barcoding single-cell methods. ACME uses affordable reagents, can be done in most laboratories and even in the field, and thus will accelerate our knowledge of cell types across the tree of life.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"89"},"PeriodicalIF":12.3,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25578997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response to "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation". 对“产生条件小鼠等位基因的CRISPR-Cas9方法的可重复性:多中心评估”的回应。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-04-07 DOI: 10.1186/s13059-021-02312-3
Hui Yang, Haoyi Wang, Rudolf Jaenisch
{"title":"Response to \"Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation\".","authors":"Hui Yang,&nbsp;Haoyi Wang,&nbsp;Rudolf Jaenisch","doi":"10.1186/s13059-021-02312-3","DOIUrl":"https://doi.org/10.1186/s13059-021-02312-3","url":null,"abstract":"","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"98"},"PeriodicalIF":12.3,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02312-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25584562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads. PCIP-seq:整合病毒基因组及其插入位点的同时测序。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-04-06 DOI: 10.1186/s13059-021-02307-0
Maria Artesi, Vincent Hahaut, Basiel Cole, Laurens Lambrechts, Fereshteh Ashrafi, Ambroise Marçais, Olivier Hermine, Philip Griebel, Natasa Arsic, Frank van der Meer, Arsène Burny, Dominique Bron, Elettra Bianchi, Philippe Delvenne, Vincent Bours, Carole Charlier, Michel Georges, Linos Vandekerckhove, Anne Van den Broeke, Keith Durkin

The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.

病毒基因组与宿主基因组的整合对受感染细胞的轨迹有重大影响。相关病毒基因组内的整合位置和变异可以影响感染细胞的克隆扩增和持久性。基于短读测序的方法可以识别病毒插入位点,但其内病毒基因组的序列尚不清楚。我们开发了PCIP-seq,这是一种利用长读数来识别插入位点并对其相关病毒基因组进行测序的方法。我们将该技术应用于外源性逆转录病毒HTLV-1、BLV和HIV-1、内源性逆转录病毒和人乳头瘤病毒。
{"title":"PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads.","authors":"Maria Artesi,&nbsp;Vincent Hahaut,&nbsp;Basiel Cole,&nbsp;Laurens Lambrechts,&nbsp;Fereshteh Ashrafi,&nbsp;Ambroise Marçais,&nbsp;Olivier Hermine,&nbsp;Philip Griebel,&nbsp;Natasa Arsic,&nbsp;Frank van der Meer,&nbsp;Arsène Burny,&nbsp;Dominique Bron,&nbsp;Elettra Bianchi,&nbsp;Philippe Delvenne,&nbsp;Vincent Bours,&nbsp;Carole Charlier,&nbsp;Michel Georges,&nbsp;Linos Vandekerckhove,&nbsp;Anne Van den Broeke,&nbsp;Keith Durkin","doi":"10.1186/s13059-021-02307-0","DOIUrl":"10.1186/s13059-021-02307-0","url":null,"abstract":"<p><p>The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"97"},"PeriodicalIF":12.3,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02307-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25565205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
MTSplice predicts effects of genetic variants on tissue-specific splicing. MTSplice 预测基因变异对组织特异性剪接的影响。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-03-31 DOI: 10.1186/s13059-021-02273-7
Jun Cheng, Muhammed Hasan Çelik, Anshul Kundaje, Julien Gagneur

We develop the free and open-source model Multi-tissue Splicing (MTSplice) to predict the effects of genetic variants on splicing of cassette exons in 56 human tissues. MTSplice combines MMSplice, which models constitutive regulatory sequences, with a new neural network that models tissue-specific regulatory sequences. MTSplice outperforms MMSplice on predicting tissue-specific variations associated with genetic variants in most tissues of the GTEx dataset, with largest improvements on brain tissues. Furthermore, MTSplice predicts that autism-associated de novo mutations are enriched for variants affecting splicing specifically in the brain. We foresee that MTSplice will aid interpreting variants associated with tissue-specific disorders.

我们开发了免费开源的多组织剪接(MTSplice)模型,用于预测基因变异对 56 种人体组织中盒式外显子剪接的影响。MTSplice 将模拟组成型调控序列的 MMSplice 与模拟组织特异性调控序列的新神经网络相结合。在预测 GTEx 数据集中大多数组织中与基因变异相关的组织特异性变异方面,MTSplice 优于 MMSplice,其中在脑组织方面的改进最大。此外,MTSplice 还能预测与自闭症相关的新突变富集于大脑中影响剪接的变异。我们预计,MTSplice 将有助于解释与特定组织疾病相关的变异。
{"title":"MTSplice predicts effects of genetic variants on tissue-specific splicing.","authors":"Jun Cheng, Muhammed Hasan Çelik, Anshul Kundaje, Julien Gagneur","doi":"10.1186/s13059-021-02273-7","DOIUrl":"10.1186/s13059-021-02273-7","url":null,"abstract":"<p><p>We develop the free and open-source model Multi-tissue Splicing (MTSplice) to predict the effects of genetic variants on splicing of cassette exons in 56 human tissues. MTSplice combines MMSplice, which models constitutive regulatory sequences, with a new neural network that models tissue-specific regulatory sequences. MTSplice outperforms MMSplice on predicting tissue-specific variations associated with genetic variants in most tissues of the GTEx dataset, with largest improvements on brain tissues. Furthermore, MTSplice predicts that autism-associated de novo mutations are enriched for variants affecting splicing specifically in the brain. We foresee that MTSplice will aid interpreting variants associated with tissue-specific disorders.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"94"},"PeriodicalIF":12.3,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25534806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. 同源抛光:一种通过同源抛光去除纳米孔测序系统误差的方法。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-03-31 DOI: 10.1186/s13059-021-02282-6
Yao-Ting Huang, Po-Yu Liu, Pei-Wen Shih

Nanopore sequencing has been widely used for the reconstruction of microbial genomes. Owing to higher error rates, errors on the genome are corrected via neural networks trained by Nanopore reads. However, the systematic errors usually remain uncorrected. This paper designs a model that is trained by homologous sequences for the correction of Nanopore systematic errors. The developed program, Homopolish, outperforms Medaka and HELEN in bacteria, viruses, fungi, and metagenomic datasets. When combined with Medaka/HELEN, the genome quality can exceed Q50 on R9.4 flow cells. We show that Nanopore-only sequencing can produce high-quality microbial genomes sufficient for downstream analysis.

纳米孔测序已广泛应用于微生物基因组的重建。由于更高的错误率,基因组上的错误通过纳米孔读取训练的神经网络来纠正。然而,系统错误通常是不被纠正的。本文设计了一种基于同源序列训练的纳米孔系统误差校正模型。开发的程序Homopolish在细菌、病毒、真菌和宏基因组数据集上优于Medaka和HELEN。当与Medaka/HELEN组合时,R9.4流式细胞的基因组质量可超过Q50。我们表明,纳米孔测序可以产生高质量的微生物基因组,足以进行下游分析。
{"title":"Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing.","authors":"Yao-Ting Huang,&nbsp;Po-Yu Liu,&nbsp;Pei-Wen Shih","doi":"10.1186/s13059-021-02282-6","DOIUrl":"https://doi.org/10.1186/s13059-021-02282-6","url":null,"abstract":"<p><p>Nanopore sequencing has been widely used for the reconstruction of microbial genomes. Owing to higher error rates, errors on the genome are corrected via neural networks trained by Nanopore reads. However, the systematic errors usually remain uncorrected. This paper designs a model that is trained by homologous sequences for the correction of Nanopore systematic errors. The developed program, Homopolish, outperforms Medaka and HELEN in bacteria, viruses, fungi, and metagenomic datasets. When combined with Medaka/HELEN, the genome quality can exceed Q50 on R9.4 flow cells. We show that Nanopore-only sequencing can produce high-quality microbial genomes sufficient for downstream analysis.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"95"},"PeriodicalIF":12.3,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02282-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25535183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 64
Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. 利用 SIAMCAT 机器学习工具箱进行微生物组元分析和跨疾病比较。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-03-30 DOI: 10.1186/s13059-021-02306-1
Jakob Wirbel, Konrad Zych, Morgan Essex, Nicolai Karcher, Ece Kartal, Guillem Salazar, Peer Bork, Shinichi Sunagawa, Georg Zeller

The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .

人们越来越多地利用机器学习(ML)技术从人类微生物组中挖掘诊断和治疗生物标志物。然而,针对元基因组学的软件非常稀缺,过度乐观的评估和有限的跨研究泛化是普遍存在的问题。为了解决这些问题,我们开发了 SIAMCAT,这是一个用于基于 ML 的比较元基因组学的多功能 R 工具箱。我们在粪便元基因组研究(10803 个样本)的荟萃分析中展示了它的能力。当在不同研究之间进行简单移植时,ML 模型会失去准确性和疾病特异性,但这可以通过一种新颖的训练集增强策略来解决。这揭示了一些生物标志物具有疾病特异性,而另一些生物标志物则在多种疾病中共享。SIAMCAT 可从 siamcat.embl.de 免费获取。
{"title":"Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox.","authors":"Jakob Wirbel, Konrad Zych, Morgan Essex, Nicolai Karcher, Ece Kartal, Guillem Salazar, Peer Bork, Shinichi Sunagawa, Georg Zeller","doi":"10.1186/s13059-021-02306-1","DOIUrl":"10.1186/s13059-021-02306-1","url":null,"abstract":"<p><p>The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"93"},"PeriodicalIF":12.3,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25531630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive identification of somatic nucleotide variants in human brain tissue. 全面鉴定人类脑组织中的体细胞核苷酸变异。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-03-29 DOI: 10.1186/s13059-021-02285-3
Yifan Wang, Taejeong Bae, Jeremy Thorpe, Maxwell A Sherman, Attila G Jones, Sean Cho, Kenneth Daily, Yanmei Dou, Javier Ganz, Alon Galor, Irene Lobon, Reenal Pattni, Chaggai Rosenbluh, Simone Tomasi, Livia Tomasini, Xiaoxu Yang, Bo Zhou, Schahram Akbarian, Laurel L Ball, Sara Bizzotto, Sarah B Emery, Ryan Doan, Liana Fasching, Yeongjun Jang, David Juan, Esther Lizano, Lovelace J Luquette, John B Moldovan, Rujuta Narurkar, Matthew T Oetjens, Rachel E Rodin, Shobana Sekar, Joo Heon Shin, Eduardo Soriano, Richard E Straub, Weichen Zhou, Andrew Chess, Joseph G Gleeson, Tomas Marquès-Bonet, Peter J Park, Mette A Peters, Jonathan Pevsner, Christopher A Walsh, Daniel R Weinberger, Flora M Vaccarino, John V Moran, Alexander E Urban, Jeffrey M Kidd, Ryan E Mills, Alexej Abyzov

Background: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells.

Results: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees.

Conclusions: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.

背景:在 DNA 复制、DNA 修复和其他细胞过程中发生的合子后突变会导致体细胞嵌合。体细胞嵌合是包括癌症在内的多种疾病的既定病因。然而,检测非癌症体细胞组织DNA中的镶嵌变异是一项重大挑战,尤其是当变异只存在于一小部分细胞中时:在此,脑体细胞镶嵌网络开展了一项协调的多机构研究,以检验现有方法在DNA混合实验中检测模拟体细胞单核苷酸变异(SNV)的能力,从一个神经畸形个体的背外侧前额叶皮层、其他脑区、硬脑膜和硬脑膜成纤维细胞中生成多个重复的全基因组测序数据,设计发现体细胞SNV的策略,并应用各种方法验证体细胞SNV。通过这些努力,我们鉴定出了 43 个真正的体细胞 SNV,其变异等位基因分数从 ~ 0.005 到 ~ 0.28 不等。在这些结果的指导下,我们设计了从人类基因组可访问部分的 250× 全基因组测序数据中调用镶嵌 SNV 的最佳方法,其特异性和灵敏度达到了 90%。最后,我们证明了对来自单个个体的多个批量 DNA 样本进行分析可以重建早期发育细胞系树:本研究为检测非癌症组织中的体细胞SNV提供了一套统一的最佳方法。这些数据和方法可供科学界免费使用,可作为评估体细胞SNV对神经精神疾病影响的指南。
{"title":"Comprehensive identification of somatic nucleotide variants in human brain tissue.","authors":"Yifan Wang, Taejeong Bae, Jeremy Thorpe, Maxwell A Sherman, Attila G Jones, Sean Cho, Kenneth Daily, Yanmei Dou, Javier Ganz, Alon Galor, Irene Lobon, Reenal Pattni, Chaggai Rosenbluh, Simone Tomasi, Livia Tomasini, Xiaoxu Yang, Bo Zhou, Schahram Akbarian, Laurel L Ball, Sara Bizzotto, Sarah B Emery, Ryan Doan, Liana Fasching, Yeongjun Jang, David Juan, Esther Lizano, Lovelace J Luquette, John B Moldovan, Rujuta Narurkar, Matthew T Oetjens, Rachel E Rodin, Shobana Sekar, Joo Heon Shin, Eduardo Soriano, Richard E Straub, Weichen Zhou, Andrew Chess, Joseph G Gleeson, Tomas Marquès-Bonet, Peter J Park, Mette A Peters, Jonathan Pevsner, Christopher A Walsh, Daniel R Weinberger, Flora M Vaccarino, John V Moran, Alexander E Urban, Jeffrey M Kidd, Ryan E Mills, Alexej Abyzov","doi":"10.1186/s13059-021-02285-3","DOIUrl":"10.1186/s13059-021-02285-3","url":null,"abstract":"<p><strong>Background: </strong>Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells.</p><p><strong>Results: </strong>Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees.</p><p><strong>Conclusions: </strong>This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"92"},"PeriodicalIF":12.3,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25539414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing genomics to understand and respond to global climate change. 利用基因组学来理解和应对全球气候变化。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-03-29 DOI: 10.1186/s13059-021-02317-y
Justin Borevitz
{"title":"Utilizing genomics to understand and respond to global climate change.","authors":"Justin Borevitz","doi":"10.1186/s13059-021-02317-y","DOIUrl":"https://doi.org/10.1186/s13059-021-02317-y","url":null,"abstract":"","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"91"},"PeriodicalIF":12.3,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02317-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25542602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Author Correction: CRISPRi enables isoform-specific loss-of-function screens and identification of gastric cancer-specific isoform dependencies. 作者更正:CRISPRi实现了特异亚型功能缺失筛查和胃癌特异亚型依赖性鉴定。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-03-25 DOI: 10.1186/s13059-021-02314-1
Rebecca Davies, Ling Liu, Sheng Taotao, Natasha Tuano, Richa Chaturvedi, Kie Kyon Huang, Catherine Itman, Amit Mandoli, Aditi Qamra, Changyuan Hu, David Powell, Roger J Daly, Patrick Tan, Joseph Rosenbluh
{"title":"Author Correction: CRISPRi enables isoform-specific loss-of-function screens and identification of gastric cancer-specific isoform dependencies.","authors":"Rebecca Davies,&nbsp;Ling Liu,&nbsp;Sheng Taotao,&nbsp;Natasha Tuano,&nbsp;Richa Chaturvedi,&nbsp;Kie Kyon Huang,&nbsp;Catherine Itman,&nbsp;Amit Mandoli,&nbsp;Aditi Qamra,&nbsp;Changyuan Hu,&nbsp;David Powell,&nbsp;Roger J Daly,&nbsp;Patrick Tan,&nbsp;Joseph Rosenbluh","doi":"10.1186/s13059-021-02314-1","DOIUrl":"https://doi.org/10.1186/s13059-021-02314-1","url":null,"abstract":"","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"88"},"PeriodicalIF":12.3,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13059-021-02314-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25516105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the cartography of the cancer ecosystem. 揭开癌症生态系统的神秘面纱。
IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2021-03-24 DOI: 10.1186/s13059-021-02310-5
Roy Rabbie, Doreen Lau, Richard M White, David J Adams
{"title":"Unraveling the cartography of the cancer ecosystem.","authors":"Roy Rabbie, Doreen Lau, Richard M White, David J Adams","doi":"10.1186/s13059-021-02310-5","DOIUrl":"10.1186/s13059-021-02310-5","url":null,"abstract":"","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"87"},"PeriodicalIF":12.3,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25513299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genome Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1