首页 > 最新文献

Genetics最新文献

英文 中文
SKN-1 activation during infection of Caenorhabditis elegans requires CDC-48 and endoplasmic reticulum proteostasis. 秀丽隐杆线虫感染过程中的 SKN-1 激活需要 CDC-48 和 ER 蛋白稳态。
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae131
Carolaing Gabaldón, Ozgur Karakuzu, Danielle A Garsin

During challenge of Caenorhabditis elegans with human bacterial pathogens such as Pseudomonas aeruginosa and Enterococcus faecalis, the elicited host response can be damaging if not properly controlled. The activation of Nrf (nuclear factor erythroid-related factor)/CNC (Cap-n-collar) transcriptional regulators modulates the response by upregulating genes that neutralize damaging molecules and promote repair processes. Activation of the C. elegans Nrf ortholog, SKN-1, is tightly controlled by a myriad of regulatory mechanisms, but a central feature is an activating phosphorylation accomplished by the p38 mitogen-activated kinase (MAPK) cascade. In this work, loss of CDC-48, an AAA+ ATPase, was observed to severely compromise SKN-1 activation on pathogen and we sought to understand the mechanism. CDC-48 is part of the endoplasmic reticulum (ER)-associated degradation (ERAD) complex where it functions as a remodeling chaperone enabling the translocation of proteins from the ER to the cytoplasm for degradation by the proteosome. Interestingly, one of the proteins retrotranslocated by ERAD, a process necessary for its activation, is SKN-1A, the ER isoform of SKN-1. However, we discovered that SKN-1A is not activated by pathogen exposure in marked contrast to the cytoplasmic-associated isoform SKN-1C. Rather, loss of CDC-48 blocks the antioxidant response normally orchestrated by SKN-1C by strongly inducing the unfolded protein response (UPRER). The data are consistent with the model of these 2 pathways being mutually inhibitory and support the emerging paradigm in the field of coordinated cooperation between different stress responses.

当铜绿假单胞菌和粪肠球菌等人类细菌病原体挑战秀丽隐杆线虫时,如果控制不当,引起的宿主反应可能会造成损害。Nrf(核因子红细胞相关因子)/CNC(Cap-n-collar)转录调节因子通过上调中和损伤分子和促进修复过程的基因来调节这种反应。秀丽隐杆线虫 Nrf 同源物 SKN-1 的激活受到无数调控机制的严格控制,但其核心特征是由 p38 丝裂原活化激酶(MAPK)级联完成的激活磷酸化。在这项研究中,我们观察到,AAA+ ATP 酶 CDC-48 的缺失会严重影响 SKN-1 在病原体上的激活,因此我们试图了解其机制。CDC-48 是内质网(ER)-相关降解(ERAD)复合体的一部分,在该复合体中,它起着重塑伴侣的作用,能使蛋白质从ER转运到细胞质,由蛋白体降解。有趣的是,被ERAD逆转位的蛋白质之一是SKN-1A,即SKN-1的ER异构体。然而,我们发现 SKN-1A 并不因病原体暴露而被激活,这与细胞质相关异构体 SKN-1C 形成了鲜明对比。相反,CDC-48 的缺失通过强烈诱导未折叠蛋白反应(UPRER),阻止了通常由 SKN-1C 协调的抗氧化反应。这些数据与这两种途径相互抑制的模式一致,并支持不同应激反应之间协调合作的新兴范式。
{"title":"SKN-1 activation during infection of Caenorhabditis elegans requires CDC-48 and endoplasmic reticulum proteostasis.","authors":"Carolaing Gabaldón, Ozgur Karakuzu, Danielle A Garsin","doi":"10.1093/genetics/iyae131","DOIUrl":"10.1093/genetics/iyae131","url":null,"abstract":"<p><p>During challenge of Caenorhabditis elegans with human bacterial pathogens such as Pseudomonas aeruginosa and Enterococcus faecalis, the elicited host response can be damaging if not properly controlled. The activation of Nrf (nuclear factor erythroid-related factor)/CNC (Cap-n-collar) transcriptional regulators modulates the response by upregulating genes that neutralize damaging molecules and promote repair processes. Activation of the C. elegans Nrf ortholog, SKN-1, is tightly controlled by a myriad of regulatory mechanisms, but a central feature is an activating phosphorylation accomplished by the p38 mitogen-activated kinase (MAPK) cascade. In this work, loss of CDC-48, an AAA+ ATPase, was observed to severely compromise SKN-1 activation on pathogen and we sought to understand the mechanism. CDC-48 is part of the endoplasmic reticulum (ER)-associated degradation (ERAD) complex where it functions as a remodeling chaperone enabling the translocation of proteins from the ER to the cytoplasm for degradation by the proteosome. Interestingly, one of the proteins retrotranslocated by ERAD, a process necessary for its activation, is SKN-1A, the ER isoform of SKN-1. However, we discovered that SKN-1A is not activated by pathogen exposure in marked contrast to the cytoplasmic-associated isoform SKN-1C. Rather, loss of CDC-48 blocks the antioxidant response normally orchestrated by SKN-1C by strongly inducing the unfolded protein response (UPRER). The data are consistent with the model of these 2 pathways being mutually inhibitory and support the emerging paradigm in the field of coordinated cooperation between different stress responses.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep mutational scanning of CYP2C19 in human cells reveals a substrate specificity-abundance tradeoff. 人体细胞中 CYP2C19 的深度突变扫描揭示了底物特异性与丰度之间的权衡。
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae156
Gabriel E Boyle, Katherine A Sitko, Jared G Galloway, Hugh K Haddox, Aisha Haley Bianchi, Ajeya Dixon, Melinda K Wheelock, Allyssa J Vandi, Ziyu R Wang, Raine E S Thomson, Riddhiman K Garge, Allan E Rettie, Alan F Rubin, Renee C Geck, Elizabeth M J Gillam, William S DeWitt, Frederick A Matsen, Douglas M Fowler

The cytochrome P450s enzyme family metabolizes ∼80% of small molecule drugs. Variants in cytochrome P450s can substantially alter drug metabolism, leading to improper dosing and severe adverse drug reactions. Due to low sequence conservation, predicting variant effects across cytochrome P450s is challenging. Even closely related cytochrome P450s like CYP2C9 and CYP2C19, which share 92% amino acid sequence identity, display distinct phenotypic properties. Using variant abundance by massively parallel sequencing, we measured the steady-state protein abundance of 7,660 single amino acid variants in CYP2C19 expressed in cultured human cells. Our findings confirmed critical positions and structural features essential for cytochrome P450 function, and revealed how variants at conserved positions influence abundance. We jointly analyzed 4,670 variants whose abundance was measured in both CYP2C19 and CYP2C9, finding that the homologs have different variant abundances in substrate recognition sites within the hydrophobic core. We also measured the abundance of all single and some multiple wild type amino acid exchanges between CYP2C19 and CYP2C9. While most exchanges had no effect, substitutions in substrate recognition site 4 reduced abundance in CYP2C19. Double and triple mutants showed distinct interactions, highlighting a region that points to differing thermodynamic properties between the 2 homologs. These positions are known contributors to substrate specificity, suggesting an evolutionary tradeoff between stability and enzymatic function. Finally, we analyzed 368 previously unannotated human variants, finding that 43% had decreased abundance. By comparing variant effects between these homologs, we uncovered regions underlying their functional differences, advancing our understanding of this versatile family of enzymes.

细胞色素 P450s(CYPs)酶家族代谢 80% 的小分子药物。CYPs的变异可显著改变药物代谢,导致用药不当和严重的药物不良反应。由于序列保持率低,预测 CYPs 的变异效应具有挑战性。即使是像 CYP2C9 和 CYP2C19 这样氨基酸序列相同度高达 92% 的近缘 CYPs,也会表现出不同的表型特性。利用大规模平行测序变异丰度(VAMP-seq),我们测量了在培养人体细胞中表达的CYP2C19中7,660个单一氨基酸变异的稳态蛋白质丰度。我们的研究结果证实了 CYP 功能所必需的关键位置和结构特征,并揭示了保守位置上的变体是如何影响丰度的。我们联合分析了在 CYP2C19 和 CYP2C9 中同时测定丰度的 4,670 个变体,发现这两个同源物在疏水核心内底物识别位点的变体丰度不同。我们还测量了 CYP2C19 和 CYP2C9 之间所有单个和一些多个 WT 氨基酸交换的丰度。虽然大多数交换没有影响,但底物识别位点 4(SRS4)的置换降低了 CYP2C19 的丰度。双突变体和三突变体显示出不同的相互作用,突出了两个同源物之间热力学性质不同的区域。这些位置是已知的底物特异性的贡献者,表明稳定性和酶功能之间存在进化权衡。最后,我们分析了 368 个以前未注明的人类变体,发现 43% 的变体丰度降低。通过比较这些同源物之间的变异效应,我们发现了它们功能差异的基础区域,从而加深了我们对这个多用途酶家族的了解。
{"title":"Deep mutational scanning of CYP2C19 in human cells reveals a substrate specificity-abundance tradeoff.","authors":"Gabriel E Boyle, Katherine A Sitko, Jared G Galloway, Hugh K Haddox, Aisha Haley Bianchi, Ajeya Dixon, Melinda K Wheelock, Allyssa J Vandi, Ziyu R Wang, Raine E S Thomson, Riddhiman K Garge, Allan E Rettie, Alan F Rubin, Renee C Geck, Elizabeth M J Gillam, William S DeWitt, Frederick A Matsen, Douglas M Fowler","doi":"10.1093/genetics/iyae156","DOIUrl":"10.1093/genetics/iyae156","url":null,"abstract":"<p><p>The cytochrome P450s enzyme family metabolizes ∼80% of small molecule drugs. Variants in cytochrome P450s can substantially alter drug metabolism, leading to improper dosing and severe adverse drug reactions. Due to low sequence conservation, predicting variant effects across cytochrome P450s is challenging. Even closely related cytochrome P450s like CYP2C9 and CYP2C19, which share 92% amino acid sequence identity, display distinct phenotypic properties. Using variant abundance by massively parallel sequencing, we measured the steady-state protein abundance of 7,660 single amino acid variants in CYP2C19 expressed in cultured human cells. Our findings confirmed critical positions and structural features essential for cytochrome P450 function, and revealed how variants at conserved positions influence abundance. We jointly analyzed 4,670 variants whose abundance was measured in both CYP2C19 and CYP2C9, finding that the homologs have different variant abundances in substrate recognition sites within the hydrophobic core. We also measured the abundance of all single and some multiple wild type amino acid exchanges between CYP2C19 and CYP2C9. While most exchanges had no effect, substitutions in substrate recognition site 4 reduced abundance in CYP2C19. Double and triple mutants showed distinct interactions, highlighting a region that points to differing thermodynamic properties between the 2 homologs. These positions are known contributors to substrate specificity, suggesting an evolutionary tradeoff between stability and enzymatic function. Finally, we analyzed 368 previously unannotated human variants, finding that 43% had decreased abundance. By comparing variant effects between these homologs, we uncovered regions underlying their functional differences, advancing our understanding of this versatile family of enzymes.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence for a hydrogen sulfide-sensing E3 ligase in yeast. 酵母中硫化氢感应 E3 连接酶的证据
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae154
Zane Johnson, Yun Wang, Benjamin M Sutter, Benjamin P Tu

In yeast, control of sulfur amino acid metabolism relies upon Met4, a transcription factor that activates the expression of a network of enzymes responsible for the biosynthesis of cysteine and methionine. In times of sulfur abundance, the activity of Met4 is repressed via ubiquitination by the SCFMet30 E3 ubiquitin ligase, but the mechanism by which the F-box protein Met30 senses sulfur status to tune its E3 ligase activity remains unresolved. Herein, we show that Met30 responds to flux through the trans-sulfuration pathway to regulate the MET gene transcriptional program. In particular, Met30 is responsive to the biological gas hydrogen sulfide, which is sufficient to induce ubiquitination of Met4 in vivo. Additionally, we identify important cysteine residues in Met30's WD-40 repeat region that sense the availability of sulfur in the cell. Our findings reveal how SCFMet30 dynamically senses the flow of sulfur metabolites through the trans-sulfuration pathway to regulate the synthesis of these special amino acids.

在酵母中,硫氨基酸代谢的控制依赖于 Met4,它是一种转录因子,能激活负责半胱氨酸和蛋氨酸生物合成的酶网络的表达。在硫丰富的时期,Met4 的活性通过 SCFMet30 E3 泛素连接酶的泛素化被抑制,但 F-box 蛋白 Met30 通过感知硫的状态来调整其 E3 连接酶活性的机制仍未解决。在本文中,我们发现 Met30 可通过反式硫化途径对通量做出反应,从而调节 MET 基因转录程序。特别是,Met30 对生物气体硫化氢有反应,硫化氢足以在体内诱导 Met4 泛素化。此外,我们还在 Met30 的 WD-40 重复区域发现了重要的半胱氨酸残基,这些残基能感知细胞中硫的可用性。我们的发现揭示了 SCFMet30 如何动态地感知硫代谢物通过反式硫化途径的流动,从而调节这些特殊氨基酸的合成。
{"title":"Evidence for a hydrogen sulfide-sensing E3 ligase in yeast.","authors":"Zane Johnson, Yun Wang, Benjamin M Sutter, Benjamin P Tu","doi":"10.1093/genetics/iyae154","DOIUrl":"10.1093/genetics/iyae154","url":null,"abstract":"<p><p>In yeast, control of sulfur amino acid metabolism relies upon Met4, a transcription factor that activates the expression of a network of enzymes responsible for the biosynthesis of cysteine and methionine. In times of sulfur abundance, the activity of Met4 is repressed via ubiquitination by the SCFMet30 E3 ubiquitin ligase, but the mechanism by which the F-box protein Met30 senses sulfur status to tune its E3 ligase activity remains unresolved. Herein, we show that Met30 responds to flux through the trans-sulfuration pathway to regulate the MET gene transcriptional program. In particular, Met30 is responsive to the biological gas hydrogen sulfide, which is sufficient to induce ubiquitination of Met4 in vivo. Additionally, we identify important cysteine residues in Met30's WD-40 repeat region that sense the availability of sulfur in the cell. Our findings reveal how SCFMet30 dynamically senses the flow of sulfur metabolites through the trans-sulfuration pathway to regulate the synthesis of these special amino acids.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538405/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defects in the central metabolism prevent thymineless death in Escherichia coli, while still allowing significant protein synthesis. 大肠杆菌中枢代谢的缺陷可防止无甲状腺死亡,同时仍允许大量蛋白质合成。
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae142
Sharik R Khan, Andrei Kuzminov

Starvation of Escherichia coli thyA auxotrophs for the required thymine or thymidine leads to the cessation of DNA synthesis and, unexpectedly, to thymineless death (TLD). Previously, TLD-alleviating defects were identified by the candidate gene approach, for their contribution to replication initiation, fork repair, or SOS induction. However, no TLD-blocking mutations were ever found, suggesting a multifactorial nature of TLD. Since (until recently) no unbiased isolation of TLD suppressors was reported, we used enrichment after insertional mutagenesis to systematically isolate TLD suppressors. Our approach was validated by isolation of known TLD-alleviating mutants in recombinational repair. At the same time, and unexpectedly for the current TLD models, most of the isolated suppressors affected general metabolism, while the strongest suppressors impacted the central metabolism. Several temperature-sensitive (Ts) mutants in important/essential functions, like nadA, ribB, or coaA, almost completely suppressed TLD at 42°C. Since blocking protein synthesis completely by chloramphenicol prevents TLD, while reducing protein synthesis to 10% alleviates TLD only slightly, we measured the level of protein synthesis in these mutants at 42°C and found it to be 20-70% of the WT, not enough reduction to explain TLD prevention. We conclude that the isolated central metabolism mutants prevent TLD by affecting specific TLD-promoting functions.

大肠杆菌 thyA 辅助营养体缺乏所需的胸腺嘧啶或胸腺嘧啶会导致 DNA 合成停止,并意外地导致无胸腺死亡(TLD)。此前,通过候选基因方法发现了可缓解 TLD 的缺陷,因为它们有助于复制启动、叉修复或 SOS 诱导。然而,从未发现过阻断 TLD 的突变,这表明 TLD 具有多因素性质。由于(直到最近)还没有关于无偏见地分离 TLD 抑制基因的报道,我们采用了插入突变后富集的方法来系统地分离 TLD 抑制基因。我们的方法通过分离重组修复中已知的TLD抑制突变体得到了验证。与此同时,出乎目前 TLD 模型意料的是,大多数分离出的抑制因子影响了一般代谢,而最强的抑制因子影响了中枢代谢。一些具有重要/基本功能的温度敏感(Ts)突变体,如 nadA、ribB 或 coaA,在 42°C 时几乎完全抑制了 TLD。我们测量了这些突变体在 42°C 时的蛋白质合成水平,发现只有 WT 的 20-70%,不足以解释为什么 TLD 会被阻止。我们的结论是,分离出的中枢代谢突变体是通过影响特定的TLD促进功能来防止TLD的。
{"title":"Defects in the central metabolism prevent thymineless death in Escherichia coli, while still allowing significant protein synthesis.","authors":"Sharik R Khan, Andrei Kuzminov","doi":"10.1093/genetics/iyae142","DOIUrl":"10.1093/genetics/iyae142","url":null,"abstract":"<p><p>Starvation of Escherichia coli thyA auxotrophs for the required thymine or thymidine leads to the cessation of DNA synthesis and, unexpectedly, to thymineless death (TLD). Previously, TLD-alleviating defects were identified by the candidate gene approach, for their contribution to replication initiation, fork repair, or SOS induction. However, no TLD-blocking mutations were ever found, suggesting a multifactorial nature of TLD. Since (until recently) no unbiased isolation of TLD suppressors was reported, we used enrichment after insertional mutagenesis to systematically isolate TLD suppressors. Our approach was validated by isolation of known TLD-alleviating mutants in recombinational repair. At the same time, and unexpectedly for the current TLD models, most of the isolated suppressors affected general metabolism, while the strongest suppressors impacted the central metabolism. Several temperature-sensitive (Ts) mutants in important/essential functions, like nadA, ribB, or coaA, almost completely suppressed TLD at 42°C. Since blocking protein synthesis completely by chloramphenicol prevents TLD, while reducing protein synthesis to 10% alleviates TLD only slightly, we measured the level of protein synthesis in these mutants at 42°C and found it to be 20-70% of the WT, not enough reduction to explain TLD prevention. We conclude that the isolated central metabolism mutants prevent TLD by affecting specific TLD-promoting functions.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linkage equilibrium between rare mutations. 罕见突变之间的连锁平衡。
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae145
Anastasia S Lyulina, Zhiru Liu, Benjamin H Good

Recombination breaks down genetic linkage by reshuffling existing variants onto new genetic backgrounds. These dynamics are traditionally quantified by examining the correlations between alleles, and how they decay as a function of the recombination rate. However, the magnitudes of these correlations are strongly influenced by other evolutionary forces like natural selection and genetic drift, making it difficult to tease out the effects of recombination. Here, we introduce a theoretical framework for analyzing an alternative family of statistics that measure the homoplasy produced by recombination. We derive analytical expressions that predict how these statistics depend on the rates of recombination and recurrent mutation, the strength of negative selection and genetic drift, and the present-day frequencies of the mutant alleles. We find that the degree of homoplasy can strongly depend on this frequency scale, which reflects the underlying timescales over which these mutations occurred. We show how these scaling properties can be used to isolate the effects of recombination and discuss their implications for the rates of horizontal gene transfer in bacteria.

重组将现有变体重新组合到新的遗传背景上,从而打破了遗传联系。传统上,人们通过研究等位基因之间的相关性以及它们如何随重组率的变化而衰减来量化这些动态变化。然而,这些相关性的大小受到自然选择和遗传漂变等其他进化力量的强烈影响,因此很难剔除重组的影响。在这里,我们引入了一个理论框架,用于分析衡量重组产生的同源性的另一种统计量。我们推导出分析表达式,预测这些统计量如何取决于重组和重复突变的速率、负选择和遗传漂变的强度以及突变等位基因的现今频率。我们发现,同源程度在很大程度上取决于这一频率尺度,它反映了这些突变发生的基本时间尺度。我们展示了如何利用这些比例特性来分离重组的影响,并讨论了它们对细菌中水平基因转移率的影响。
{"title":"Linkage equilibrium between rare mutations.","authors":"Anastasia S Lyulina, Zhiru Liu, Benjamin H Good","doi":"10.1093/genetics/iyae145","DOIUrl":"10.1093/genetics/iyae145","url":null,"abstract":"<p><p>Recombination breaks down genetic linkage by reshuffling existing variants onto new genetic backgrounds. These dynamics are traditionally quantified by examining the correlations between alleles, and how they decay as a function of the recombination rate. However, the magnitudes of these correlations are strongly influenced by other evolutionary forces like natural selection and genetic drift, making it difficult to tease out the effects of recombination. Here, we introduce a theoretical framework for analyzing an alternative family of statistics that measure the homoplasy produced by recombination. We derive analytical expressions that predict how these statistics depend on the rates of recombination and recurrent mutation, the strength of negative selection and genetic drift, and the present-day frequencies of the mutant alleles. We find that the degree of homoplasy can strongly depend on this frequency scale, which reflects the underlying timescales over which these mutations occurred. We show how these scaling properties can be used to isolate the effects of recombination and discuss their implications for the rates of horizontal gene transfer in bacteria.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the role of the spindle assembly checkpoint in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae. 重新审视纺锤体装配检查点在酿酒酵母染色体粗大重排形成过程中的作用
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae150
Yue Yao, Ziqing Yin, Fernando R Rosas Bringas, Jonathan Boudeman, Daniele Novarina, Michael Chang

Multiple pathways are known to suppress the formation of gross chromosomal rearrangements (GCRs), which can cause human diseases including cancer. In contrast, much less is known about pathways that promote their formation. The spindle assembly checkpoint (SAC), which ensures the proper separation of chromosomes during mitosis, has been reported to promote GCR, possibly by delaying mitosis to allow GCR-inducing DNA repair to occur. Here, we show that this conclusion is the result of an experimental artifact arising from the synthetic lethality caused by the disruption of the SAC and loss of the CIN8 gene, which is often lost in the genetic assay used to select for GCRs. After correcting for this artifact, we find no role of the SAC in promoting GCR.

已知有多种途径可抑制染色体大重排(GCR)的形成,而染色体大重排可导致包括癌症在内的人类疾病。相比之下,人们对促进染色体重排形成的途径却知之甚少。纺锤体装配检查点(SAC)可确保染色体在有丝分裂过程中正确分离,有报道称其可能通过延迟有丝分裂以允许GCR诱导的DNA修复发生,从而促进GCR的形成。在这里,我们证明了这一结论是由于 SAC 的破坏和 CIN8 基因的缺失导致的合成致死率所造成的实验假象,而 CIN8 基因在用于选择 GCR 的基因测定中经常会丢失。在纠正了这一假象之后,我们发现 SAC 在促进 GCR 方面没有任何作用。
{"title":"Revisiting the role of the spindle assembly checkpoint in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae.","authors":"Yue Yao, Ziqing Yin, Fernando R Rosas Bringas, Jonathan Boudeman, Daniele Novarina, Michael Chang","doi":"10.1093/genetics/iyae150","DOIUrl":"10.1093/genetics/iyae150","url":null,"abstract":"<p><p>Multiple pathways are known to suppress the formation of gross chromosomal rearrangements (GCRs), which can cause human diseases including cancer. In contrast, much less is known about pathways that promote their formation. The spindle assembly checkpoint (SAC), which ensures the proper separation of chromosomes during mitosis, has been reported to promote GCR, possibly by delaying mitosis to allow GCR-inducing DNA repair to occur. Here, we show that this conclusion is the result of an experimental artifact arising from the synthetic lethality caused by the disruption of the SAC and loss of the CIN8 gene, which is often lost in the genetic assay used to select for GCRs. After correcting for this artifact, we find no role of the SAC in promoting GCR.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic background affects the strength of crossover interference in house mice. 遗传背景会影响家鼠交叉干扰的强度。
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae146
Andrew P Morgan, Bret A Payseur

Meiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference. Although interference has been observed in many taxa, the factors that influence the strength of interference are not well understood. We used house mice (Mus musculus), a well-established model system for understanding recombination, to study the effects of genetics and age on recombination rate and interference in the male germline. We analyzed crossover positions in 503 progeny from reciprocal F1 hybrids between inbred strains representing the three major subspecies of house mice. Consistent with previous studies, autosomal alleles from M. m. musculus tend to increase recombination rate, while inheriting a M. m. musculus X chromosome decreases recombination rate. Old males transmit an average of 0.6 more crossovers per meiosis (5.0%) than young males, though the effect varies across genetic backgrounds. We show that the strength of crossover interference depends on genotype, providing a rare demonstration that interference evolves over short timescales. Differences between reciprocal F1s suggest that X-linked factors modulate the strength of interference. Our findings motivate additional comparisons of interference among recently diverged species and further examination of the role of paternal age in determining the number and positioning of crossovers.

在大多数有性生殖的生物中,减数分裂重组是染色体忠实分离的必要条件,并决定了种群中遗传变异的分布。在物种内部和物种之间,交叉的总体比率和空间分布都各不相同。同一染色体上相邻交叉点的间隔往往比预期的要均匀,这种现象被称为交叉干扰。虽然在许多类群中都观察到了干扰现象,但对影响干扰强度的因素却不甚了解。我们利用家鼠(Mus musculus)这一了解重组的成熟模型系统,研究了遗传和年龄对雄性生殖系重组率和干扰的影响。我们分析了代表三个主要家鼠亚种的近交系互交 F1 杂交产生的 503 个后代的交叉位置。与之前的研究一致,来自家鼠的常染色体等位基因往往会增加重组率,而遗传家鼠X染色体则会降低重组率。与年轻雄性相比,老年雄性在每次减数分裂中平均多传递 0.6 个交叉基因(5.0%),但这一效应在不同的遗传背景下有所不同。我们的研究表明,交叉干扰的强度取决于基因型,这罕见地证明了干扰会在短时间内演变。互交 F1 之间的差异表明,X 连锁因素会调节干扰的强度。我们的发现促使我们对最近分化的物种之间的干扰进行更多的比较,并进一步研究父系年龄在决定交叉的数量和定位方面的作用。
{"title":"Genetic background affects the strength of crossover interference in house mice.","authors":"Andrew P Morgan, Bret A Payseur","doi":"10.1093/genetics/iyae146","DOIUrl":"10.1093/genetics/iyae146","url":null,"abstract":"<p><p>Meiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference. Although interference has been observed in many taxa, the factors that influence the strength of interference are not well understood. We used house mice (Mus musculus), a well-established model system for understanding recombination, to study the effects of genetics and age on recombination rate and interference in the male germline. We analyzed crossover positions in 503 progeny from reciprocal F1 hybrids between inbred strains representing the three major subspecies of house mice. Consistent with previous studies, autosomal alleles from M. m. musculus tend to increase recombination rate, while inheriting a M. m. musculus X chromosome decreases recombination rate. Old males transmit an average of 0.6 more crossovers per meiosis (5.0%) than young males, though the effect varies across genetic backgrounds. We show that the strength of crossover interference depends on genotype, providing a rare demonstration that interference evolves over short timescales. Differences between reciprocal F1s suggest that X-linked factors modulate the strength of interference. Our findings motivate additional comparisons of interference among recently diverged species and further examination of the role of paternal age in determining the number and positioning of crossovers.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. 秀丽隐杆线虫的神经肽信号网络:从结构到行为。
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae141
Jan Watteyne, Aleksandra Chudinova, Lidia Ripoll-Sánchez, William R Schafer, Isabel Beets

Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.

神经肽是控制所有动物神经元活动和行为的丰富信号分子。草履虫具有定义明确和结构紧凑的神经系统,因此一直是研究神经肽信号网络如何组织以及这些神经化学物质如何调控行为的主要模式生物之一。我们在此回顾了近期的研究工作,这些工作通过绘制 elegans 神经系统中神经肽通路的进化保护、分子表达、受体配体相互作用以及全系统组织结构图,拓展了我们对 elegans 神经肽信号网络的理解。我们还描述了体内神经肽信号传导研究中发现的神经肽能回路模式和肽能传导时空范围的一般见解。目前正在努力绘制其他生物的肽信号网络图,而 elegans 的神经肽能连接组可以作为一个原型,在生物体水平上进一步了解这些网络的组织和信号动态。
{"title":"Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior.","authors":"Jan Watteyne, Aleksandra Chudinova, Lidia Ripoll-Sánchez, William R Schafer, Isabel Beets","doi":"10.1093/genetics/iyae141","DOIUrl":"10.1093/genetics/iyae141","url":null,"abstract":"<p><p>Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp decline in male fertility in F2 hybrids of the female-heterogametic silk moth Bombyx. 雌雄异株丝蛾 F2 代杂交种雄性繁殖力急剧下降
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae149
Kana Matsukawa, Yasuko Kato, Aya Yoshida, Hisaka Onishi, Sachiko Nakano, Masanobu Itoh, Toshiyuki Takano-Shimizu-Kouno

Sexual selection drives rapid evolution of morphological, physiological, and behavioral traits, especially in males, and it may also drive the rapid evolution of hybrid male sterility. Indeed, the faster male theory of speciation was once viewed as a major cause of Haldane's rule in male-heterogametic XY taxa, but is increasingly being replaced by the genetic conflict hypothesis partly because it cannot explain the faster evolution of hybrid female sterility in female-heterogametic ZW taxa. The theory nonetheless predicts that there should be more genes for hybrid male sterility than for hybrid female sterility even in such taxa, but this remains untested. Thus, finding evidence for the faster male theory of reproductive isolation beyond the F1 generation in ZW systems still represents a challenge to studying the impact of sexual selection. In this study, we examined F2 hybrids between the domesticated silkworm Bombyx mori and the wild silk moth Bombyx mandarina, which have ZW sex determination. We found that although only females showed reduced fertility in the F1 generation, the F2 hybrid males had a significant reduction in fertility compared with the parental and F1 males. Importantly, 27% of the F2 males and 15% of the F2 females were completely sterile, suggesting the presence of recessive incompatibilities causing male sterility in female-heterogametic taxa.

性选择推动了形态、生理和行为特征的快速进化,尤其是雄性特征的快速进化,也可能推动了杂交雄性不育的快速进化。事实上,更快的雄性物种进化理论曾一度被认为是导致雄性异花授粉 XY 类群中霍尔丹规则的主要原因,但现在正逐渐被遗传冲突假说所取代,部分原因是该假说无法解释雌性异花授粉 ZW 类群中杂交雌性不育的更快进化。不过,该理论预测,即使在这类类群中,杂交雄性不育的基因也应多于杂交雌性不育的基因,但这一预测仍未得到验证。因此,在 ZW 系统中寻找 F1 代以外更快雄性生殖隔离理论的证据,仍然是研究性选择影响的一个挑战。在这项研究中,我们考察了驯化家蚕 Bombyx mori 和野生丝蛾 Bombyx mandarina 的 F2 杂交种,它们都具有 ZW 性别决定。我们发现,虽然 F1 代中只有雌性繁殖力下降,但与亲本和 F1 代雄性相比,F2 代杂交雄性繁殖力显著下降。重要的是,27%的F2雄性和15%的F2雌性完全不育,这表明在雌雄异交类群中存在导致雄性不育的隐性不相容性。
{"title":"Sharp decline in male fertility in F2 hybrids of the female-heterogametic silk moth Bombyx.","authors":"Kana Matsukawa, Yasuko Kato, Aya Yoshida, Hisaka Onishi, Sachiko Nakano, Masanobu Itoh, Toshiyuki Takano-Shimizu-Kouno","doi":"10.1093/genetics/iyae149","DOIUrl":"10.1093/genetics/iyae149","url":null,"abstract":"<p><p>Sexual selection drives rapid evolution of morphological, physiological, and behavioral traits, especially in males, and it may also drive the rapid evolution of hybrid male sterility. Indeed, the faster male theory of speciation was once viewed as a major cause of Haldane's rule in male-heterogametic XY taxa, but is increasingly being replaced by the genetic conflict hypothesis partly because it cannot explain the faster evolution of hybrid female sterility in female-heterogametic ZW taxa. The theory nonetheless predicts that there should be more genes for hybrid male sterility than for hybrid female sterility even in such taxa, but this remains untested. Thus, finding evidence for the faster male theory of reproductive isolation beyond the F1 generation in ZW systems still represents a challenge to studying the impact of sexual selection. In this study, we examined F2 hybrids between the domesticated silkworm Bombyx mori and the wild silk moth Bombyx mandarina, which have ZW sex determination. We found that although only females showed reduced fertility in the F1 generation, the F2 hybrid males had a significant reduction in fertility compared with the parental and F1 males. Importantly, 27% of the F2 males and 15% of the F2 females were completely sterile, suggesting the presence of recessive incompatibilities causing male sterility in female-heterogametic taxa.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. 秀丽隐杆线虫的生活史:从分子遗传学到进化生态学。
IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Pub Date : 2024-11-06 DOI: 10.1093/genetics/iyae151
Christian Braendle, Annalise Paaby

Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.

生命史是由反映适应性关键要素的特征定义的,特别是与繁殖和生存有关的特征。生命史研究试图揭示这些特征之间的关系,并了解生命史策略是如何进化以最大限度地提高适应性的。因此,生命史研究将性状决定的遗传和发育机制研究与达尔文适应性的进化和生态学背景相结合。作为分子和发育遗传学的主要模式生物,秀丽隐杆线虫(Caenorhabditis elegans)在表征生命史相关过程(包括发育时间和可塑性、生殖行为、性别决定、应激耐受性和衰老)方面具有无与伦比的优势。在最近对自然种群和生态学研究的基础上,结合 elegans 的历史研究优势和对性状变异的新认识,现在它已成为生命史研究中一个独特的有价值的模型。在本综述中,我们将总结秀丽隐杆线虫及相关物种对生命史及其进化的贡献。我们首先回顾了秀丽隐杆线虫生命史的主要特征,重点是其独特的繁殖策略和显著的生命周期可塑性。接下来,我们将探讨生活史特征的种内变异及其潜在的遗传结构。最后,我们将概述 elegans 是如何指导 Caenorhabditis 属以及更广泛的线虫门对主要生活史转变的研究的。虽然秀丽隐杆线虫在生命史研究中相对较新,但通过利用其独特的生物学特征,我们已经取得了重大进展,将其确立为一个高度跨学科的生命史研究系统。
{"title":"Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology.","authors":"Christian Braendle, Annalise Paaby","doi":"10.1093/genetics/iyae151","DOIUrl":"10.1093/genetics/iyae151","url":null,"abstract":"<p><p>Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1