Pub Date : 2025-01-08DOI: 10.1093/genetics/iyae174
Meera C Viswanathan, Debabrata Dutta, William A Kronert, Kripa Chitre, Raúl Padrón, Roger Craig, Sanford I Bernstein, Anthony Cammarato
Myosin storage myopathy (MSM) is a rare skeletal muscle disorder caused by mutations in the slow muscle/β-cardiac myosin heavy chain (MHC) gene. MSM missense mutations frequently disrupt the tail's stabilizing heptad repeat motif. Disease hallmarks include subsarcolemmal hyaline-like β-MHC aggregates, muscle weakness, and, occasionally, cardiomyopathy. We generated transgenic, heterozygous Drosophila to examine the dominant physiological and structural effects of the L1793P, R1845W, and E1883K MHC MSM mutations on diverse muscles. The MHC variants reduced lifespan and flight and jump abilities. Moreover, confocal and electron microscopy revealed that they provoked indirect flight muscle breaks and myofibrillar disarray/degeneration with filamentous inclusions. Incorporation of GFP-myosin enabled in situ determination of thick filament lengths, which were significantly reduced in all mutants. Semiautomated heartbeat analysis uncovered aberrant cardiac function, which worsened with age. Thus, our fly models phenocopied traits observed among MSM patients. We additionally mapped the mutations onto a recently determined, 6 Å resolution, cryo-EM structure of the human cardiac thick filament. The R1845W mutation replaces a basic arginine with a polar-neutral, bulkier tryptophan, while E1883K reverses charge at critical filament loci. Both would be expected to disrupt the core and the outer shell of the backbone structure. Replacing L1793 with a proline, a potent breaker of α-helices, could disturb the coiled-coil of the myosin rod and alter the tail-tail interactome. Hence, all mutations likely destabilize and weaken the filament backbone. This may trigger disease in humans, while potentially analogous perturbations are likely to yield the observed thick filament and muscle disruption in our fly models.
{"title":"Dominant myosin storage myopathy mutations disrupt striated muscles in Drosophila and the myosin tail-tail interactome of human cardiac thick filaments.","authors":"Meera C Viswanathan, Debabrata Dutta, William A Kronert, Kripa Chitre, Raúl Padrón, Roger Craig, Sanford I Bernstein, Anthony Cammarato","doi":"10.1093/genetics/iyae174","DOIUrl":"10.1093/genetics/iyae174","url":null,"abstract":"<p><p>Myosin storage myopathy (MSM) is a rare skeletal muscle disorder caused by mutations in the slow muscle/β-cardiac myosin heavy chain (MHC) gene. MSM missense mutations frequently disrupt the tail's stabilizing heptad repeat motif. Disease hallmarks include subsarcolemmal hyaline-like β-MHC aggregates, muscle weakness, and, occasionally, cardiomyopathy. We generated transgenic, heterozygous Drosophila to examine the dominant physiological and structural effects of the L1793P, R1845W, and E1883K MHC MSM mutations on diverse muscles. The MHC variants reduced lifespan and flight and jump abilities. Moreover, confocal and electron microscopy revealed that they provoked indirect flight muscle breaks and myofibrillar disarray/degeneration with filamentous inclusions. Incorporation of GFP-myosin enabled in situ determination of thick filament lengths, which were significantly reduced in all mutants. Semiautomated heartbeat analysis uncovered aberrant cardiac function, which worsened with age. Thus, our fly models phenocopied traits observed among MSM patients. We additionally mapped the mutations onto a recently determined, 6 Å resolution, cryo-EM structure of the human cardiac thick filament. The R1845W mutation replaces a basic arginine with a polar-neutral, bulkier tryptophan, while E1883K reverses charge at critical filament loci. Both would be expected to disrupt the core and the outer shell of the backbone structure. Replacing L1793 with a proline, a potent breaker of α-helices, could disturb the coiled-coil of the myosin rod and alter the tail-tail interactome. Hence, all mutations likely destabilize and weaken the filament backbone. This may trigger disease in humans, while potentially analogous perturbations are likely to yield the observed thick filament and muscle disruption in our fly models.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":"1-34"},"PeriodicalIF":3.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08DOI: 10.1093/genetics/iyae176
Jacqueline M Dresch, Luke L Nourie, Regan D Conrad, Lindsay T Carlson, Elizabeth I Tchantouridze, Biruck Tesfaye, Eleanor Verhagen, Mahima Gupta, Diego Borges-Rivera, Robert A Drewell
The Drosophila PAX6 homolog twin of eyeless (toy) sits at the pinnacle of the genetic pathway controlling eye development, the retinal determination network. Expression of toy in the embryo is first detectable at cellular blastoderm stage 5 in an anterior-dorsal band in the presumptive procephalic neuroectoderm, which gives rise to the primordia of the visual system and brain. Although several maternal and gap transcription factors that generate positional information in the embryo have been implicated in controlling toy, the regulation of toy expression in the early embryo is currently not well characterized. In this study, we adopt an integrated experimental approach utilizing bioinformatics, molecular genetic testing of putative enhancers in transgenic reporter gene assays and quantitative analysis of expression patterns in the early embryo, to identify 2 novel coacting enhancers at the toy gene. In addition, we apply mathematical modeling to dissect the regulatory landscape for toy. We demonstrate that relatively simple thermodynamic-based models, incorporating only 5 TF binding sites, can accurately predict gene expression from the 2 coacting enhancers and that the HUNCHBACK TF plays a critical regulatory role through a dual-modality function as an activator and repressor. Our analysis also reveals that the molecular architecture of the 2 enhancers is very different, indicating that the underlying regulatory logic they employ is distinct.
{"title":"Two coacting shadow enhancers regulate twin of eyeless expression during early Drosophila development.","authors":"Jacqueline M Dresch, Luke L Nourie, Regan D Conrad, Lindsay T Carlson, Elizabeth I Tchantouridze, Biruck Tesfaye, Eleanor Verhagen, Mahima Gupta, Diego Borges-Rivera, Robert A Drewell","doi":"10.1093/genetics/iyae176","DOIUrl":"10.1093/genetics/iyae176","url":null,"abstract":"<p><p>The Drosophila PAX6 homolog twin of eyeless (toy) sits at the pinnacle of the genetic pathway controlling eye development, the retinal determination network. Expression of toy in the embryo is first detectable at cellular blastoderm stage 5 in an anterior-dorsal band in the presumptive procephalic neuroectoderm, which gives rise to the primordia of the visual system and brain. Although several maternal and gap transcription factors that generate positional information in the embryo have been implicated in controlling toy, the regulation of toy expression in the early embryo is currently not well characterized. In this study, we adopt an integrated experimental approach utilizing bioinformatics, molecular genetic testing of putative enhancers in transgenic reporter gene assays and quantitative analysis of expression patterns in the early embryo, to identify 2 novel coacting enhancers at the toy gene. In addition, we apply mathematical modeling to dissect the regulatory landscape for toy. We demonstrate that relatively simple thermodynamic-based models, incorporating only 5 TF binding sites, can accurately predict gene expression from the 2 coacting enhancers and that the HUNCHBACK TF plays a critical regulatory role through a dual-modality function as an activator and repressor. Our analysis also reveals that the molecular architecture of the 2 enhancers is very different, indicating that the underlying regulatory logic they employ is distinct.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":"1-43"},"PeriodicalIF":3.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1093/genetics/iyaf001
Jodi Lew-Smith, Jonathan Binkley, Gavin Sherlock
The Candida Genome Database (CGD; www.candidagenome.org) is unique in being both a model organism database and a fungal pathogen database. As a fungal pathogen database, CGD hosts locus pages for five species of the best-studied pathogenic fungi in the Candida group. As a model organism database, the species Candida albicans serves as a model both for other Candida spp. and for non-Candida fungi that form biofilms and undergo routine morphogenic switching from the planktonic form to the filamentous form, which is not done by other model yeasts. As pathogenic Candida species have become increasingly drug resistant, the high lethality of invasive candidiasis in immunocompromised people is increasingly alarming. There is a pressing need for additional research into basic Candida biology, epidemiology and phylogeny, and potential new antifungals. CGD serves the needs of this diverse research community by curating the entire gene-based Candida experimental literature as it is published, extracting, organizing and standardizing gene annotations. Gene pages were added for the species Candida auris, recent outbreaks of which have been labeled an "urgent" threat. Most recently, we have begun linking clinical data on disease to relevant Literature Topics to improve searchability for clinical researchers. Because CGD curates for multiple species and most research focuses on aspects related to pathogenicity, we focus our curation efforts on assigning Literature Topic tags, collecting detailed mutant phenotype data, and assigning controlled Gene Ontology terms with accompanying evidence codes. Our Summary pages for each feature include the primary name and all aliases for that locus, a description of the gene and/or gene product, detailed ortholog information with links, a JBrowse window with a visual view of the gene on its chromosome, summarized phenotype, Gene Ontology, and sequence information, references cited on the summary page itself, and any locus notes. The database serves as a community hub, where we link to various types of reference material of relevance to Candida researchers, including colleague information, news, and notice of upcoming meetings. We routinely survey the community to learn how the field is evolving and how needs may have changed. For example, we asked our users which species we should next add to CGD and the clear answer was Candida tropicalis. A key future challenge is management of the flood of high-throughput expression data to make it as useful as possible to as many researchers as possible. The central challenge for any community database is to turn data into knowledge, which the community can access, use, and build upon.
{"title":"The Candida Genome Database: Annotation and Visualization Updates.","authors":"Jodi Lew-Smith, Jonathan Binkley, Gavin Sherlock","doi":"10.1093/genetics/iyaf001","DOIUrl":"10.1093/genetics/iyaf001","url":null,"abstract":"<p><p>The Candida Genome Database (CGD; www.candidagenome.org) is unique in being both a model organism database and a fungal pathogen database. As a fungal pathogen database, CGD hosts locus pages for five species of the best-studied pathogenic fungi in the Candida group. As a model organism database, the species Candida albicans serves as a model both for other Candida spp. and for non-Candida fungi that form biofilms and undergo routine morphogenic switching from the planktonic form to the filamentous form, which is not done by other model yeasts. As pathogenic Candida species have become increasingly drug resistant, the high lethality of invasive candidiasis in immunocompromised people is increasingly alarming. There is a pressing need for additional research into basic Candida biology, epidemiology and phylogeny, and potential new antifungals. CGD serves the needs of this diverse research community by curating the entire gene-based Candida experimental literature as it is published, extracting, organizing and standardizing gene annotations. Gene pages were added for the species Candida auris, recent outbreaks of which have been labeled an \"urgent\" threat. Most recently, we have begun linking clinical data on disease to relevant Literature Topics to improve searchability for clinical researchers. Because CGD curates for multiple species and most research focuses on aspects related to pathogenicity, we focus our curation efforts on assigning Literature Topic tags, collecting detailed mutant phenotype data, and assigning controlled Gene Ontology terms with accompanying evidence codes. Our Summary pages for each feature include the primary name and all aliases for that locus, a description of the gene and/or gene product, detailed ortholog information with links, a JBrowse window with a visual view of the gene on its chromosome, summarized phenotype, Gene Ontology, and sequence information, references cited on the summary page itself, and any locus notes. The database serves as a community hub, where we link to various types of reference material of relevance to Candida researchers, including colleague information, news, and notice of upcoming meetings. We routinely survey the community to learn how the field is evolving and how needs may have changed. For example, we asked our users which species we should next add to CGD and the clear answer was Candida tropicalis. A key future challenge is management of the flood of high-throughput expression data to make it as useful as possible to as many researchers as possible. The central challenge for any community database is to turn data into knowledge, which the community can access, use, and build upon.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/genetics/iyae220
Catherine H Kagemann, Jaclyn E Bubnell, Gabriela M Colocho, Daniela Arana, Charles F Aquadro
Wolbachia pipientis are maternally transmitted endosymbiotic bacteria commonly found in arthropods and nematodes. These bacteria manipulate reproduction of the host to increase their transmission using mechanisms, such as cytoplasmic incompatibility, that favor infected female offspring. The underlying mechanisms of reproductive manipulation by W. pipientis remain unresolved. Interestingly, W. pipientis infection partially rescues female fertility in flies containing hypomorphic mutations of bag of marbles (bam) in D. melanogaster, which plays a key role in germline stem cell (GSC) daughter differentiation. Using RNA-seq, we find W. pipientis infection in bam hypomorphic females results in differential expression of many of bam's genetic and physical interactors and enrichment of ubiquitination and histone lysine methylation genes. We find that W. pipientis also rescues the fertility and GSC functions of a subset of these genes when knocked down with RNAi in a wildtype bam genotype. Our results show that W. pipientis interacts with ubiquitination and histone lysine methylation genes which could be integral to the mechanism by which W. pipientis modulates GSC gene function.
沃尔巴克氏体是一种母体传播的内共生细菌,常见于节肢动物和线虫。这些细菌利用细胞质不相容等有利于受感染的雌性后代的机制操纵宿主的繁殖以增加其传播。pipientis的生殖操纵的潜在机制尚不清楚。有趣的是,pipientis感染部分地挽救了含有黑腹金蝇(D. melanogaster)弹袋(bag of marbles, bam)亚形态突变的果蝇的雌性生育能力,该突变在种系干细胞(GSC)子细胞分化中起关键作用。利用RNA-seq技术,我们发现在bam的半胚雌性中,pipientis感染导致bam的许多遗传和物理相互作用因子的差异表达以及泛素化和组蛋白赖氨酸甲基化基因的富集。我们发现,当在野生型bam基因型中被RNAi敲除时,pipientis也可以挽救这些基因的一个子集的生育能力和GSC功能。我们的研究结果表明,pipientis与泛素化和组蛋白赖氨酸甲基化基因相互作用,这可能是pipientis调节GSC基因功能的机制的一部分。
{"title":"Wolbachia pipientis Modulates Germline Stem Cells and Gene Expression Associated with Ubiquitination and Histone Lysine Trimethylation to Rescue Fertility Defects in Drosophila.","authors":"Catherine H Kagemann, Jaclyn E Bubnell, Gabriela M Colocho, Daniela Arana, Charles F Aquadro","doi":"10.1093/genetics/iyae220","DOIUrl":"https://doi.org/10.1093/genetics/iyae220","url":null,"abstract":"<p><p>Wolbachia pipientis are maternally transmitted endosymbiotic bacteria commonly found in arthropods and nematodes. These bacteria manipulate reproduction of the host to increase their transmission using mechanisms, such as cytoplasmic incompatibility, that favor infected female offspring. The underlying mechanisms of reproductive manipulation by W. pipientis remain unresolved. Interestingly, W. pipientis infection partially rescues female fertility in flies containing hypomorphic mutations of bag of marbles (bam) in D. melanogaster, which plays a key role in germline stem cell (GSC) daughter differentiation. Using RNA-seq, we find W. pipientis infection in bam hypomorphic females results in differential expression of many of bam's genetic and physical interactors and enrichment of ubiquitination and histone lysine methylation genes. We find that W. pipientis also rescues the fertility and GSC functions of a subset of these genes when knocked down with RNAi in a wildtype bam genotype. Our results show that W. pipientis interacts with ubiquitination and histone lysine methylation genes which could be integral to the mechanism by which W. pipientis modulates GSC gene function.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142910964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/genetics/iyae219
Bibhu Simkhada, Nestor O Nazario-Yepiz, Patrick S Freymuth, Rachel A Lyman, Vijay Shankar, Kali Wiggins, Heather Flanagan-Steet, Amrita Basu, Ryan J Weiss, Robert R H Anholt, Trudy F C Mackay
Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare lysosomal storage disorder caused by defects in alpha-N-acetylglucosaminidase (NAGLU) and characterized by severe effects in the central nervous system. Mutations in NAGLU cause accumulation of partially degraded heparan sulfate in lysosomes. The consequences of these mutations on whole genome gene expression and their causal relationships to neural degeneration remain unknown. Here, we used the functional Drosophila melanogaster ortholog of NAGLU, Naglu, to develop a fly model for MPS IIIB induced by gene deletion (NagluKO), missense (NagluY160C), and nonsense (NagluW422X) mutations. We used the Drosophila activity monitoring system to analyze activity and sleep and found sex- and age-dependent hyperactivity and sleep defects in mutant flies. Fluorescence microscopy on mutant fly brains using Lysotracker dye revealed a significant increase in acidic compartments. Differentially expressed genes determined from RNA sequencing of fly brains are involved in biological processes that affect nervous system development. A genetic interaction network constructed using known interacting partners of these genes consists of two major subnetworks, one of which is enriched in genes associated with synaptic function and the other with neurodevelopmental processes. Our data indicate that lysosomal dysfunction arising from disruption of heparan sulfate breakdown has widespread effects on the steady state of intracellular vesicle transport, including vesicles associated with synaptic transmission. Evolutionary conservation of fundamental biological processes predicts that the Drosophila model of MPS IIIB can serve as an in vivo system for the future development of therapies for MPS IIIB and related disorders.
粘多糖病IIIB型(MPS IIIB)是由α - n -乙酰氨基葡萄糖酶(NAGLU)缺陷引起的一种罕见的溶酶体贮积障碍,其特点是严重影响中枢神经系统。NAGLU突变导致部分降解的硫酸肝素在溶酶体中积累。这些突变对全基因组基因表达的影响及其与神经变性的因果关系尚不清楚。在这里,我们使用功能性黑腹果蝇NAGLU, NAGLU的同源基因,建立了由基因缺失(NagluKO),错义(NagluY160C)和无义(NagluW422X)突变诱导的MPS IIIB的果蝇模型。我们使用果蝇活动监测系统来分析活动和睡眠,并在突变果蝇中发现了性别和年龄依赖的多动和睡眠缺陷。荧光显微镜对突变蝇的大脑使用溶踪染料显示酸性区室显著增加。从果蝇大脑的RNA测序中确定的差异表达基因参与了影响神经系统发育的生物过程。利用已知的这些基因的相互作用伙伴构建的遗传相互作用网络包括两个主要的子网络,其中一个富集与突触功能相关的基因,另一个富集与神经发育过程相关的基因。我们的数据表明,由硫酸肝素分解破坏引起的溶酶体功能障碍对细胞内囊泡运输的稳定状态有广泛的影响,包括与突触传递相关的囊泡。基础生物学过程的进化保守性预示着MPS IIIB的果蝇模型可以作为MPS IIIB及相关疾病治疗方法未来发展的体内系统。
{"title":"A Drosophila Model of Mucopolysaccharidosis IIIB.","authors":"Bibhu Simkhada, Nestor O Nazario-Yepiz, Patrick S Freymuth, Rachel A Lyman, Vijay Shankar, Kali Wiggins, Heather Flanagan-Steet, Amrita Basu, Ryan J Weiss, Robert R H Anholt, Trudy F C Mackay","doi":"10.1093/genetics/iyae219","DOIUrl":"https://doi.org/10.1093/genetics/iyae219","url":null,"abstract":"<p><p>Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare lysosomal storage disorder caused by defects in alpha-N-acetylglucosaminidase (NAGLU) and characterized by severe effects in the central nervous system. Mutations in NAGLU cause accumulation of partially degraded heparan sulfate in lysosomes. The consequences of these mutations on whole genome gene expression and their causal relationships to neural degeneration remain unknown. Here, we used the functional Drosophila melanogaster ortholog of NAGLU, Naglu, to develop a fly model for MPS IIIB induced by gene deletion (NagluKO), missense (NagluY160C), and nonsense (NagluW422X) mutations. We used the Drosophila activity monitoring system to analyze activity and sleep and found sex- and age-dependent hyperactivity and sleep defects in mutant flies. Fluorescence microscopy on mutant fly brains using Lysotracker dye revealed a significant increase in acidic compartments. Differentially expressed genes determined from RNA sequencing of fly brains are involved in biological processes that affect nervous system development. A genetic interaction network constructed using known interacting partners of these genes consists of two major subnetworks, one of which is enriched in genes associated with synaptic function and the other with neurodevelopmental processes. Our data indicate that lysosomal dysfunction arising from disruption of heparan sulfate breakdown has widespread effects on the steady state of intracellular vesicle transport, including vesicles associated with synaptic transmission. Evolutionary conservation of fundamental biological processes predicts that the Drosophila model of MPS IIIB can serve as an in vivo system for the future development of therapies for MPS IIIB and related disorders.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/genetics/iyae221
Soumita Paul, Subhadeep Das, Mayukh Banerjea, Shouvik Chaudhuri, Biswadip Das
In Saccharomyces cerevisiae, SKS1 mRNA encoding a glucose-sensing serine/threonine kinase belongs to "nucleus-retained" (NR) mRNAs representing a subset of otherwise normal transcripts, which exhibits slow nuclear export and excessively long nuclear dwell time. Nuclear retention of the SKS1 mRNA triggered by a 202 nt "export-retarding" nuclear zip code (NZ) element promotes its rapid degradation in the nucleus by the nuclear exosome/CTEXT. In this investigation, we demonstrate that Dbp2p, an ATP-dependent DEAD-box RNA helicase binds to SKS1 and other NR-mRNAs and thereby inhibits their export by antagonizing with the binding of the export factors Mex67p/Yra1p. Consistent with this observation, a significant portion of these NR-mRNAs were found to localize into the cytoplasm in a yeast strain carrying a deletion in the DBP2 gene with the concomitant enhancement of its steady-state level and stability. This observation supports the view that Dbp2p promotes the nuclear retention of NR-mRNAs to trigger their subsequent nuclear degradation. Further analysis revealed that Dbp2p-dependent nuclear retention of SKS1 mRNA is reversible, which plays a crucial role in the adaptability and viability of the yeast cells in low concentrations of glucose/nitrogen in the growth medium. At high nutrient levels when the function of Sks1p is not necessary, SKS1 mRNA is retained in the nucleus and degraded. In contrast, during low glucose/nitrogen levels when Sks1p is vital to respond to such situations, the nuclear retention of SKS1 mRNA is relieved to permit its increased nuclear export and translation leading to a huge burst of cytoplasmic Sks1p.
{"title":"The ATP-dependent DEAD-box RNA Helicase Dbp2 regulates the glucose/nitrogen stress response in baker's yeast by modulating reversible nuclear retention and decay of SKS1 mRNA.","authors":"Soumita Paul, Subhadeep Das, Mayukh Banerjea, Shouvik Chaudhuri, Biswadip Das","doi":"10.1093/genetics/iyae221","DOIUrl":"https://doi.org/10.1093/genetics/iyae221","url":null,"abstract":"<p><p>In Saccharomyces cerevisiae, SKS1 mRNA encoding a glucose-sensing serine/threonine kinase belongs to \"nucleus-retained\" (NR) mRNAs representing a subset of otherwise normal transcripts, which exhibits slow nuclear export and excessively long nuclear dwell time. Nuclear retention of the SKS1 mRNA triggered by a 202 nt \"export-retarding\" nuclear zip code (NZ) element promotes its rapid degradation in the nucleus by the nuclear exosome/CTEXT. In this investigation, we demonstrate that Dbp2p, an ATP-dependent DEAD-box RNA helicase binds to SKS1 and other NR-mRNAs and thereby inhibits their export by antagonizing with the binding of the export factors Mex67p/Yra1p. Consistent with this observation, a significant portion of these NR-mRNAs were found to localize into the cytoplasm in a yeast strain carrying a deletion in the DBP2 gene with the concomitant enhancement of its steady-state level and stability. This observation supports the view that Dbp2p promotes the nuclear retention of NR-mRNAs to trigger their subsequent nuclear degradation. Further analysis revealed that Dbp2p-dependent nuclear retention of SKS1 mRNA is reversible, which plays a crucial role in the adaptability and viability of the yeast cells in low concentrations of glucose/nitrogen in the growth medium. At high nutrient levels when the function of Sks1p is not necessary, SKS1 mRNA is retained in the nucleus and degraded. In contrast, during low glucose/nitrogen levels when Sks1p is vital to respond to such situations, the nuclear retention of SKS1 mRNA is relieved to permit its increased nuclear export and translation leading to a huge burst of cytoplasmic Sks1p.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142910963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1093/genetics/iyae216
Shae M Milne, Philip T Edeen, David S Fay
Membrane trafficking is a conserved process required for import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine (PS) flippase that promotes the asymmetric distribution of PS on the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a PS sensor, we found that TAT-1 was required for the normal localization of PS at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with these data, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology (EH) domain-containing protein, EHD1. TAT-1, PS biosynthesis, and the PS-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did inhibition of PS biosynthesis. We propose that TAT-1 flippase activity, in conjunction with RFIP-2, promotes the recruitment of RME-1 to apical recycling endosomes and that inhibition of TAT-1-RFIP-2-RME-1 can compensate for a reduction in NEKL activities.
{"title":"TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans.","authors":"Shae M Milne, Philip T Edeen, David S Fay","doi":"10.1093/genetics/iyae216","DOIUrl":"10.1093/genetics/iyae216","url":null,"abstract":"<p><p>Membrane trafficking is a conserved process required for import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine (PS) flippase that promotes the asymmetric distribution of PS on the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a PS sensor, we found that TAT-1 was required for the normal localization of PS at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with these data, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology (EH) domain-containing protein, EHD1. TAT-1, PS biosynthesis, and the PS-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did inhibition of PS biosynthesis. We propose that TAT-1 flippase activity, in conjunction with RFIP-2, promotes the recruitment of RME-1 to apical recycling endosomes and that inhibition of TAT-1-RFIP-2-RME-1 can compensate for a reduction in NEKL activities.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-22DOI: 10.1093/genetics/iyae214
Mizuki Kurashina, Andrew W Snow, Kota Mizumoto
Visualizing the subcellular localization of presynaptic proteins with fluorescent proteins is a powerful tool to dissect the genetic and molecular mechanisms underlying synapse formation and patterning in live animals. Here, we utilize split green and red fluorescent proteins to visualize the localization of endogenously expressed presynaptic proteins at a single neuron resolution in Caenorhabditis elegans. By using CRISPR/Cas9 genome editing, we generated a collection of C. elegans strains in which endogenously expressed presynaptic proteins (RAB-3/Rab3, SNG-1/Synaptogyrin, CLA-1/Piccolo, SYD-2/Liprin-α, UNC-10/RIM, RIMB-1/RIM-BP, and ELKS-1/ELKS) are tagged with tandem repeats of GFP11 and/or wrmScarlet11. We show that the expression of GFP1-10 and wrmScarlet1-10 under neuron-specific promoters can robustly label presynaptic proteins in different neuron types. We believe that the combination of our knock-in strains and GFP1-10 and wrmScarlet1-10 plasmids is a versatile modular system useful for neuroscientists to examine the localization of endogenous presynaptic proteins in any neuron type in C. elegans.
{"title":"A modular system to label endogenous presynaptic proteins using split fluorophores in C. elegans.","authors":"Mizuki Kurashina, Andrew W Snow, Kota Mizumoto","doi":"10.1093/genetics/iyae214","DOIUrl":"https://doi.org/10.1093/genetics/iyae214","url":null,"abstract":"<p><p>Visualizing the subcellular localization of presynaptic proteins with fluorescent proteins is a powerful tool to dissect the genetic and molecular mechanisms underlying synapse formation and patterning in live animals. Here, we utilize split green and red fluorescent proteins to visualize the localization of endogenously expressed presynaptic proteins at a single neuron resolution in Caenorhabditis elegans. By using CRISPR/Cas9 genome editing, we generated a collection of C. elegans strains in which endogenously expressed presynaptic proteins (RAB-3/Rab3, SNG-1/Synaptogyrin, CLA-1/Piccolo, SYD-2/Liprin-α, UNC-10/RIM, RIMB-1/RIM-BP, and ELKS-1/ELKS) are tagged with tandem repeats of GFP11 and/or wrmScarlet11. We show that the expression of GFP1-10 and wrmScarlet1-10 under neuron-specific promoters can robustly label presynaptic proteins in different neuron types. We believe that the combination of our knock-in strains and GFP1-10 and wrmScarlet1-10 plasmids is a versatile modular system useful for neuroscientists to examine the localization of endogenous presynaptic proteins in any neuron type in C. elegans.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-21DOI: 10.1093/genetics/iyae213
Latarsha Porcher, Sriram Vijayraghavan, Yashvi Patel, Samuel Becker, Thomas Blouin, James McCollum, Piotr A Mieczkowski, Natalie Saini
Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers. Moreover, a mutation signature specific to acetaldehyde exposure is widespread in alcohol and smoking-associated cancers. However, the pathways that repair acetaldehyde-induced DNA damage and thus prevent mutagenesis are vaguely understood. Here, we used Saccharomyces cerevisiae to delete genes in each of the major DNA repair pathways to identify those that alter acetaldehyde-induced mutagenesis. We observed that loss of functional nucleotide excision repair (NER) had the largest effect on acetaldehyde mutagenesis. In addition, base excision repair (BER), as well as DNA protein crosslink (DPC) repair pathways were involved in modulating acetaldehyde mutagenesis, while mismatch repair (MMR), homologous recombination (HR) and post replication repair are dispensable for acetaldehyde mutagenesis. Acetaldehyde-induced mutations in an NER-deficient (Δrad1) background were dependent on translesion synthesis as well as DNA inter-strand crosslink (ICL) repair. Moreover, whole genome sequencing of the mutated isolates demonstrated an increase in C→A changes coupled with an enrichment of gCn→A changes which is diagnostic of acetaldehyde exposure in yeast and in human cancers. Finally, downregulation of the leading strand replicative polymerase Pol epsilon, but not the lagging strand polymerase, resulted in increased acetaldehyde mutagenesis, indicating that lesions are likely formed on the leading strand. Our findings demonstrate that multiple DNA repair pathways coordinate to prevent acetaldehyde-induced mutagenesis.
{"title":"Multiple DNA repair pathways prevent acetaldehyde-induced mutagenesis in yeast.","authors":"Latarsha Porcher, Sriram Vijayraghavan, Yashvi Patel, Samuel Becker, Thomas Blouin, James McCollum, Piotr A Mieczkowski, Natalie Saini","doi":"10.1093/genetics/iyae213","DOIUrl":"10.1093/genetics/iyae213","url":null,"abstract":"<p><p>Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers. Moreover, a mutation signature specific to acetaldehyde exposure is widespread in alcohol and smoking-associated cancers. However, the pathways that repair acetaldehyde-induced DNA damage and thus prevent mutagenesis are vaguely understood. Here, we used Saccharomyces cerevisiae to delete genes in each of the major DNA repair pathways to identify those that alter acetaldehyde-induced mutagenesis. We observed that loss of functional nucleotide excision repair (NER) had the largest effect on acetaldehyde mutagenesis. In addition, base excision repair (BER), as well as DNA protein crosslink (DPC) repair pathways were involved in modulating acetaldehyde mutagenesis, while mismatch repair (MMR), homologous recombination (HR) and post replication repair are dispensable for acetaldehyde mutagenesis. Acetaldehyde-induced mutations in an NER-deficient (Δrad1) background were dependent on translesion synthesis as well as DNA inter-strand crosslink (ICL) repair. Moreover, whole genome sequencing of the mutated isolates demonstrated an increase in C→A changes coupled with an enrichment of gCn→A changes which is diagnostic of acetaldehyde exposure in yeast and in human cancers. Finally, downregulation of the leading strand replicative polymerase Pol epsilon, but not the lagging strand polymerase, resulted in increased acetaldehyde mutagenesis, indicating that lesions are likely formed on the leading strand. Our findings demonstrate that multiple DNA repair pathways coordinate to prevent acetaldehyde-induced mutagenesis.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142873069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-20DOI: 10.1093/genetics/iyae189
Marcos Francisco Perez
Transcription factors (TFs) play a pivotal role in orchestrating critical intricate patterns of gene regulation. Although gene expression is complex, differential expression of hundreds of genes is often due to regulation by just a handful of TFs. Despite extensive efforts to elucidate TF-target regulatory relationships in Caenorhabditis elegans, existing experimental datasets cover distinct subsets of TFs and leave data integration challenging. Here, I introduce CelEst, a unified gene regulatory network designed to estimate the activity of 487 distinct C. elegans TFs-∼58% of the total-from gene expression data. To integrate data from ChIP-seq, DNA-binding motifs, and eY1H screens, optimal processing of each data type was benchmarked against a set of TF perturbation RNA-seq experiments. Moreover, I showcase how leveraging TF motif conservation in target promoters across genomes of related species can distinguish highly informative interactions, a strategy which can be applied to many model organisms. Integrated analyses of data from commonly studied conditions including heat shock, bacterial infection, and sex differences validates CelEst's performance and highlights overlooked TFs that likely play major roles in coordinating the transcriptional response to these conditions. CelEst can infer TF activity on a standard laptop computer within minutes. Furthermore, an R Shiny app with a step-by-step guide is provided for the community to perform rapid analysis with minimal coding required. I anticipate that widespread adoption of CelEsT will significantly enhance the interpretive power of transcriptomic experiments, both present and retrospective, thereby advancing our understanding of gene regulation in C. elegans and beyond.
{"title":"CelEst: a unified gene regulatory network for estimating transcription factor activities in C. elegans.","authors":"Marcos Francisco Perez","doi":"10.1093/genetics/iyae189","DOIUrl":"https://doi.org/10.1093/genetics/iyae189","url":null,"abstract":"<p><p>Transcription factors (TFs) play a pivotal role in orchestrating critical intricate patterns of gene regulation. Although gene expression is complex, differential expression of hundreds of genes is often due to regulation by just a handful of TFs. Despite extensive efforts to elucidate TF-target regulatory relationships in Caenorhabditis elegans, existing experimental datasets cover distinct subsets of TFs and leave data integration challenging. Here, I introduce CelEst, a unified gene regulatory network designed to estimate the activity of 487 distinct C. elegans TFs-∼58% of the total-from gene expression data. To integrate data from ChIP-seq, DNA-binding motifs, and eY1H screens, optimal processing of each data type was benchmarked against a set of TF perturbation RNA-seq experiments. Moreover, I showcase how leveraging TF motif conservation in target promoters across genomes of related species can distinguish highly informative interactions, a strategy which can be applied to many model organisms. Integrated analyses of data from commonly studied conditions including heat shock, bacterial infection, and sex differences validates CelEst's performance and highlights overlooked TFs that likely play major roles in coordinating the transcriptional response to these conditions. CelEst can infer TF activity on a standard laptop computer within minutes. Furthermore, an R Shiny app with a step-by-step guide is provided for the community to perform rapid analysis with minimal coding required. I anticipate that widespread adoption of CelEsT will significantly enhance the interpretive power of transcriptomic experiments, both present and retrospective, thereby advancing our understanding of gene regulation in C. elegans and beyond.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}