Pub Date : 2024-10-12DOI: 10.1093/genetics/iyae165
Takahiro Sakamoto, James R Whiting, Samuel Yeaman
Locally adapted traits can exhibit a wide range of genetic architectures, from pronounced divergence at a few loci to small frequency divergence at many loci. The type of architecture that evolves depends strongly on the migration rate, as weakly selected loci experience swamping and do not make lasting contributions to divergence. Simulations from previous studies showed that even when mutations are strongly selected and should resist migration swamping, the architecture of adaptation can collapse and become transient at high mutation rates. Here, we use an analytical two-population model to study how this transition in genetic architecture depends upon population size, strength of selection, and parameters describing the mutation process. To do this, we develop a mathematical theory based on the diffusion approximation to predict the threshold mutation rate above which the transition occurs. We find that this performs well across a wide range of parameter space, based on comparisons with individual-based simulations. The threshold mutation rate depends most strongly on the average effect size of mutations, weakly on the strength of selection, and marginally on the population size. Across a wide range of the parameter space, we observe that the transition to a transient architecture occurs when the trait-wide mutation rate is 10-3-10-2, suggesting that this phenomenon is potentially relevant to complex traits with a large mutational target. On the other hand, based on the apparent stability of genetic architecture in many classic examples of local adaptation, our theory suggests that per-trait mutation rates are often relatively low.
{"title":"Mutation potentiates migration swamping in polygenic local adaptation.","authors":"Takahiro Sakamoto, James R Whiting, Samuel Yeaman","doi":"10.1093/genetics/iyae165","DOIUrl":"10.1093/genetics/iyae165","url":null,"abstract":"<p><p>Locally adapted traits can exhibit a wide range of genetic architectures, from pronounced divergence at a few loci to small frequency divergence at many loci. The type of architecture that evolves depends strongly on the migration rate, as weakly selected loci experience swamping and do not make lasting contributions to divergence. Simulations from previous studies showed that even when mutations are strongly selected and should resist migration swamping, the architecture of adaptation can collapse and become transient at high mutation rates. Here, we use an analytical two-population model to study how this transition in genetic architecture depends upon population size, strength of selection, and parameters describing the mutation process. To do this, we develop a mathematical theory based on the diffusion approximation to predict the threshold mutation rate above which the transition occurs. We find that this performs well across a wide range of parameter space, based on comparisons with individual-based simulations. The threshold mutation rate depends most strongly on the average effect size of mutations, weakly on the strength of selection, and marginally on the population size. Across a wide range of the parameter space, we observe that the transition to a transient architecture occurs when the trait-wide mutation rate is 10-3-10-2, suggesting that this phenomenon is potentially relevant to complex traits with a large mutational target. On the other hand, based on the apparent stability of genetic architecture in many classic examples of local adaptation, our theory suggests that per-trait mutation rates are often relatively low.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1093/genetics/iyae159
Mitchell J Feldmann, Dominique D A Pincot, Danelle K Seymour, Randi A Famula, Nicolás P Jiménez, Cindy M López, Glenn S Cole, Steven J Knapp
Heterosis was the catalyst for the domestication of cultivated strawberry (Fragaria × ananassa), an interspecific hybrid species that originated in the 1700s. The hybrid origin was discovered because the phenotypes of spontaneous hybrids transgressed those of their parent species. The transgressions included fruit yield increases and other genetic gains in the twentieth century that sparked the global expansion of strawberry production. The importance of heterosis to the agricultural success of the hybrid species, however, has remained a mystery. Here we show that heterosis has disappeared (become fixed) among improved hybrids within a population (the California population) that has been under long-term selection for increased fruit yield, weight, and firmness. We found that the highest yielding hybrids are among the most highly inbred (59-79%), which seems counterintuitive for a highly heterozygous, outbreeder carrying heavy genetic loads. Although faint remnants of heterosis were discovered, the between-parent allele frequency differences and dispersed favorable dominant alleles necessary for heterosis have decreased nearly genome-wide within the California population. Conversely, heterosis was prevalent and significant among wide hybrids, especially for fruit count, a significant driver of genetic gains for fruit yield. We attributed the disappearance (fixation) of heterosis within the California population to increased homozygosity of favorable dominant alleles and inbreeding associated with selection, random genetic drift, and selective sweeps. Despite historical inbreeding, the highest yielding hybrids reported to-date are estimated to be heterozygous for 20,370-44,280 of 97,000-108,000 genes in the octoploid genome, the equivalent of an entire diploid genome or more.
{"title":"A Dominance Hypothesis Argument for Historical Genetic Gains and the Fixation of Heterosis in Octoploid Strawberry.","authors":"Mitchell J Feldmann, Dominique D A Pincot, Danelle K Seymour, Randi A Famula, Nicolás P Jiménez, Cindy M López, Glenn S Cole, Steven J Knapp","doi":"10.1093/genetics/iyae159","DOIUrl":"10.1093/genetics/iyae159","url":null,"abstract":"<p><p>Heterosis was the catalyst for the domestication of cultivated strawberry (Fragaria × ananassa), an interspecific hybrid species that originated in the 1700s. The hybrid origin was discovered because the phenotypes of spontaneous hybrids transgressed those of their parent species. The transgressions included fruit yield increases and other genetic gains in the twentieth century that sparked the global expansion of strawberry production. The importance of heterosis to the agricultural success of the hybrid species, however, has remained a mystery. Here we show that heterosis has disappeared (become fixed) among improved hybrids within a population (the California population) that has been under long-term selection for increased fruit yield, weight, and firmness. We found that the highest yielding hybrids are among the most highly inbred (59-79%), which seems counterintuitive for a highly heterozygous, outbreeder carrying heavy genetic loads. Although faint remnants of heterosis were discovered, the between-parent allele frequency differences and dispersed favorable dominant alleles necessary for heterosis have decreased nearly genome-wide within the California population. Conversely, heterosis was prevalent and significant among wide hybrids, especially for fruit count, a significant driver of genetic gains for fruit yield. We attributed the disappearance (fixation) of heterosis within the California population to increased homozygosity of favorable dominant alleles and inbreeding associated with selection, random genetic drift, and selective sweeps. Despite historical inbreeding, the highest yielding hybrids reported to-date are estimated to be heterozygous for 20,370-44,280 of 97,000-108,000 genes in the octoploid genome, the equivalent of an entire diploid genome or more.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631417/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1093/genetics/iyae163
Joseph V Geisberg, Zarmik Moqtaderi, Kevin Struhl
Expression of a typical yeast gene results in ∼50 3' mRNA isoforms that are distinguished by the locations of poly(A) sites within the 3' untranslated regions (3' UTRs). The location of poly(A) sites with respect to the translational termination codon varies considerably among genes, but whether this has any functional significance is poorly understood. Using hierarchical clustering of 3' UTRs, we identify eight classes of S. cerevisiae genes based on their poly(A) site locations. Genes involved in related biological functions (GO categories) are uniquely over-represented in six of these classes. Similar analysis of S. pombe genes reveals three classes of 3' UTRs, all of which show over-representation of functionally related genes. Remarkably, S. cerevisiae and S. pombe homologs share related patterns of poly(A) site locations. These observations suggest that the location of poly(A) sites within 3' UTRs has biological significance.
{"title":"Location of polyadenylation sites within 3' untranslated regions is linked to biological function in yeast.","authors":"Joseph V Geisberg, Zarmik Moqtaderi, Kevin Struhl","doi":"10.1093/genetics/iyae163","DOIUrl":"10.1093/genetics/iyae163","url":null,"abstract":"<p><p>Expression of a typical yeast gene results in ∼50 3' mRNA isoforms that are distinguished by the locations of poly(A) sites within the 3' untranslated regions (3' UTRs). The location of poly(A) sites with respect to the translational termination codon varies considerably among genes, but whether this has any functional significance is poorly understood. Using hierarchical clustering of 3' UTRs, we identify eight classes of S. cerevisiae genes based on their poly(A) site locations. Genes involved in related biological functions (GO categories) are uniquely over-represented in six of these classes. Similar analysis of S. pombe genes reveals three classes of 3' UTRs, all of which show over-representation of functionally related genes. Remarkably, S. cerevisiae and S. pombe homologs share related patterns of poly(A) site locations. These observations suggest that the location of poly(A) sites within 3' UTRs has biological significance.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/genetics/iyae126
Wen Xi Cao, Daniel M Merritt, Karinna Pe, Michael Cesar, Oliver Hobert
One problem that has hampered the use of red fluorescent proteins in the fast-developing nematode Caenorhabditis elegans has been the substantial time delay in maturation of several generations of red fluorophores. The recently described mScarlet-I3 protein has properties that may overcome this limitation. We compare here the brightness and onset of expression of CRISPR/Cas9 genome-engineered mScarlet, mScarlet3, mScarlet-I3, and GFP reporter knock-ins. Comparing the onset and brightness of expression of reporter alleles of C. elegans golg-4, encoding a broadly expressed Golgi resident protein, we found that the onset of detection of mScarlet-I3 in the embryo is several hours earlier than older versions of mScarlet and comparable to GFP. These findings were further supported by comparing mScarlet-I3 and GFP reporter alleles for pks-1, a gene expressed in the CAN neuron and cells of the alimentary system, as well as reporter alleles for the pan-neuronal, nuclear marker unc-75. Hence, the relative properties of mScarlet-I3 and GFP do not depend on cellular or subcellular context. In all cases, mScarlet-I3 reporters also show improved signal-to-noise ratio compared to GFP.
{"title":"Comparative analysis of new mScarlet-based red fluorescent tags in Caenorhabditis elegans.","authors":"Wen Xi Cao, Daniel M Merritt, Karinna Pe, Michael Cesar, Oliver Hobert","doi":"10.1093/genetics/iyae126","DOIUrl":"10.1093/genetics/iyae126","url":null,"abstract":"<p><p>One problem that has hampered the use of red fluorescent proteins in the fast-developing nematode Caenorhabditis elegans has been the substantial time delay in maturation of several generations of red fluorophores. The recently described mScarlet-I3 protein has properties that may overcome this limitation. We compare here the brightness and onset of expression of CRISPR/Cas9 genome-engineered mScarlet, mScarlet3, mScarlet-I3, and GFP reporter knock-ins. Comparing the onset and brightness of expression of reporter alleles of C. elegans golg-4, encoding a broadly expressed Golgi resident protein, we found that the onset of detection of mScarlet-I3 in the embryo is several hours earlier than older versions of mScarlet and comparable to GFP. These findings were further supported by comparing mScarlet-I3 and GFP reporter alleles for pks-1, a gene expressed in the CAN neuron and cells of the alimentary system, as well as reporter alleles for the pan-neuronal, nuclear marker unc-75. Hence, the relative properties of mScarlet-I3 and GFP do not depend on cellular or subcellular context. In all cases, mScarlet-I3 reporters also show improved signal-to-noise ratio compared to GFP.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/genetics/iyae125
Jun Liu, Elsa Bonnard, Monika Scholz
Improved genetically encoded calcium indicators (GECIs) are essential for capturing intracellular dynamics of both muscle and neurons. A novel set of GECIs with ultrafast kinetics and high sensitivity was recently reported by Zhang et al. (2023). While these indicators, called jGCaMP8, were demonstrated to work in Drosophila and mice, data for Caenorhabditis elegans were not reported. Here, we present an optimized construct for C. elegans and use this to generate several strains expressing GCaMP8f (fast variant of the indicator). Utilizing the myo-2 promoter, we compare pharyngeal muscle activity measured with GCaMP7f and GCaMP8f and find that GCaMP8f is brighter upon binding to calcium, shows faster kinetics, and is not disruptive to the intrinsic contraction dynamics of the pharynx. Additionally, we validate its application for detecting neuronal activity in touch receptor neurons which reveals robust calcium transients even at small stimulus amplitudes. As such, we establish GCaMP8f as a potent tool for C. elegans research which is capable of extracting fast calcium dynamics at very low magnifications across multiple cell types.
{"title":"Adapting and optimizing GCaMP8f for use in Caenorhabditis elegans.","authors":"Jun Liu, Elsa Bonnard, Monika Scholz","doi":"10.1093/genetics/iyae125","DOIUrl":"10.1093/genetics/iyae125","url":null,"abstract":"<p><p>Improved genetically encoded calcium indicators (GECIs) are essential for capturing intracellular dynamics of both muscle and neurons. A novel set of GECIs with ultrafast kinetics and high sensitivity was recently reported by Zhang et al. (2023). While these indicators, called jGCaMP8, were demonstrated to work in Drosophila and mice, data for Caenorhabditis elegans were not reported. Here, we present an optimized construct for C. elegans and use this to generate several strains expressing GCaMP8f (fast variant of the indicator). Utilizing the myo-2 promoter, we compare pharyngeal muscle activity measured with GCaMP7f and GCaMP8f and find that GCaMP8f is brighter upon binding to calcium, shows faster kinetics, and is not disruptive to the intrinsic contraction dynamics of the pharynx. Additionally, we validate its application for detecting neuronal activity in touch receptor neurons which reveals robust calcium transients even at small stimulus amplitudes. As such, we establish GCaMP8f as a potent tool for C. elegans research which is capable of extracting fast calcium dynamics at very low magnifications across multiple cell types.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/genetics/iyae116
Richard J Poole, Nuria Flames, Luisa Cochella
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
{"title":"Neurogenesis in Caenorhabditis elegans.","authors":"Richard J Poole, Nuria Flames, Luisa Cochella","doi":"10.1093/genetics/iyae116","DOIUrl":"10.1093/genetics/iyae116","url":null,"abstract":"<p><p>Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/genetics/iyae127
Chitra Togra, Riya Dhage, Purusharth I Rajyaguru
Arginine-glycine-glycine motif proteins play a crucial role in determining mRNA fate. Suppressor of clathrin deficiency 6 (Scd6) is a conserved arginine-glycine-glycine motif containing ribonucleoprotein (RNP) condensate-resident, translation repressor, and decapping activator protein in Saccharomyces cerevisiae. Identifying protein factors that can modulate Scd6 function is critical to understanding the regulation of mRNA fate by Scd6. In this study, using an approach that combined mRNA tethering assay with flow cytometry, we screened 50 genes for their role in modulating the translation repression activity of Scd6. We identified 8 conserved modulators with human homologs. Of these, we further characterized in detail guanine nucleotide exchange factor Rho1 multicopy suppressor 2 (Rom2) and glycolytic enzyme triose phosphate dehydrogenase 3 (Tdh3), which, respectively, impede and promote translation repression activity of Scd6. Our study reveals that Rom2 negatively regulates the arginine methylation of Scd6 and antagonizes its localization to P-bodies. Tdh3, on the other hand, promotes Scd6 interaction with Hmt1, thereby promoting the arginine methylation of Scd6 and enhanced eIF4G1 interaction, which is known to promote its repression activity. Identifying these novel modulators provides exciting new insights into the role of a metabolic enzyme of the glycolytic pathway and guanine nucleotide exchange factor implicated in the cell wall integrity pathway in regulating Scd6 function and, thereby, cytoplasmic mRNA fate.
{"title":"Tdh3 and Rom2 are functional modulators of a conserved condensate-resident RNA-binding protein, Scd6, in Saccharomyces cerevisiae.","authors":"Chitra Togra, Riya Dhage, Purusharth I Rajyaguru","doi":"10.1093/genetics/iyae127","DOIUrl":"10.1093/genetics/iyae127","url":null,"abstract":"<p><p>Arginine-glycine-glycine motif proteins play a crucial role in determining mRNA fate. Suppressor of clathrin deficiency 6 (Scd6) is a conserved arginine-glycine-glycine motif containing ribonucleoprotein (RNP) condensate-resident, translation repressor, and decapping activator protein in Saccharomyces cerevisiae. Identifying protein factors that can modulate Scd6 function is critical to understanding the regulation of mRNA fate by Scd6. In this study, using an approach that combined mRNA tethering assay with flow cytometry, we screened 50 genes for their role in modulating the translation repression activity of Scd6. We identified 8 conserved modulators with human homologs. Of these, we further characterized in detail guanine nucleotide exchange factor Rho1 multicopy suppressor 2 (Rom2) and glycolytic enzyme triose phosphate dehydrogenase 3 (Tdh3), which, respectively, impede and promote translation repression activity of Scd6. Our study reveals that Rom2 negatively regulates the arginine methylation of Scd6 and antagonizes its localization to P-bodies. Tdh3, on the other hand, promotes Scd6 interaction with Hmt1, thereby promoting the arginine methylation of Scd6 and enhanced eIF4G1 interaction, which is known to promote its repression activity. Identifying these novel modulators provides exciting new insights into the role of a metabolic enzyme of the glycolytic pathway and guanine nucleotide exchange factor implicated in the cell wall integrity pathway in regulating Scd6 function and, thereby, cytoplasmic mRNA fate.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/genetics/iyae136
Timothy A Crombie, Moein Rajaei, Ayush Shekhar Saxena, Lindsay M Johnson, Sayran Saber, Robyn E Tanny, José Miguel Ponciano, Erik C Andersen, Juannan Zhou, Charles F Baer
The distribution of fitness effects of new mutations plays a central role in evolutionary biology. Estimates of the distribution of fitness effect from experimental mutation accumulation lines are compromised by the complete linkage disequilibrium between mutations in different lines. To reduce the linkage disequilibrium, we constructed 2 sets of recombinant inbred lines from a cross of 2 Caenorhabditis elegans mutation accumulation lines. One set of lines ("RIAILs") was intercrossed for 10 generations prior to 10 generations of selfing; the second set of lines ("RILs") omitted the intercrossing. Residual linkage disequilibrium in the RIAILs is much less than in the RILs, which affects the inferred distribution of fitness effect when the sets of lines are analyzed separately. The best-fit model estimated from all lines (RIAILs + RILs) infers a large fraction of mutations with positive effects (∼40%); models that constrain mutations to have negative effects fit much worse. The conclusion is the same using only the RILs. For the RIAILs, however, models that constrain mutations to have negative effects fit nearly as well as models that allow positive effects. When mutations in high linkage disequilibrium are pooled into haplotypes, the inferred distribution of fitness effect becomes increasingly negative-skewed and leptokurtic. We conclude that the conventional wisdom-most mutations have effects near 0, a handful of mutations have effects that are substantially negative, and mutations with positive effects are very rare-is likely correct, and that unless it can be shown otherwise, estimates of the distribution of fitness effect that infer a substantial fraction of mutations with positive effects are likely confounded by linkage disequilibrium.
{"title":"Direct inference of the distribution of fitness effects of spontaneous mutations from recombinant inbred Caenorhabditis elegans mutation accumulation lines.","authors":"Timothy A Crombie, Moein Rajaei, Ayush Shekhar Saxena, Lindsay M Johnson, Sayran Saber, Robyn E Tanny, José Miguel Ponciano, Erik C Andersen, Juannan Zhou, Charles F Baer","doi":"10.1093/genetics/iyae136","DOIUrl":"10.1093/genetics/iyae136","url":null,"abstract":"<p><p>The distribution of fitness effects of new mutations plays a central role in evolutionary biology. Estimates of the distribution of fitness effect from experimental mutation accumulation lines are compromised by the complete linkage disequilibrium between mutations in different lines. To reduce the linkage disequilibrium, we constructed 2 sets of recombinant inbred lines from a cross of 2 Caenorhabditis elegans mutation accumulation lines. One set of lines (\"RIAILs\") was intercrossed for 10 generations prior to 10 generations of selfing; the second set of lines (\"RILs\") omitted the intercrossing. Residual linkage disequilibrium in the RIAILs is much less than in the RILs, which affects the inferred distribution of fitness effect when the sets of lines are analyzed separately. The best-fit model estimated from all lines (RIAILs + RILs) infers a large fraction of mutations with positive effects (∼40%); models that constrain mutations to have negative effects fit much worse. The conclusion is the same using only the RILs. For the RIAILs, however, models that constrain mutations to have negative effects fit nearly as well as models that allow positive effects. When mutations in high linkage disequilibrium are pooled into haplotypes, the inferred distribution of fitness effect becomes increasingly negative-skewed and leptokurtic. We conclude that the conventional wisdom-most mutations have effects near 0, a handful of mutations have effects that are substantially negative, and mutations with positive effects are very rare-is likely correct, and that unless it can be shown otherwise, estimates of the distribution of fitness effect that infer a substantial fraction of mutations with positive effects are likely confounded by linkage disequilibrium.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/genetics/iyae134
José-Angel Oteo, Gonzalo Oteo-García
We present a geometry-based interpretation of the f-statistics framework, commonly used in population genetics to estimate phylogenetic relationships from genomic data. The focus is on the determination of the mixing coefficients in population admixture events subject to post-admixture drift. The interpretation takes advantage of the high dimension of the dataset and analyzes the problem as a dimensional reduction issue. We show that it is possible to think of the f-statistics technique as an implicit transformation of the genomic data from a phase space into a subspace where the mapped data structure is more similar to the ancestral admixture configuration. The 2-way mixing coefficient is, as a matter of fact, carried out implicitly in this subspace. In addition, we propose the admixture test to be evaluated in the subspace because the comparison with the conventional one provides an important assessment of the admixture model. The overarching geometric framework provides slightly more general formulas than the f-formalism by using a different rationale as a starting point. Explicitly addressed are 2- and 3-way admixtures. The mixture proportions are provided by suitable linear fits, in 2 or 3 dimensions, that can be easily visualized. The difficulties encountered with introgression and gene flow are also addressed. The developments and findings are illustrated with numerical simulations and real-world cases.
我们介绍了基于几何学的 f 统计框架的解释,该框架常用于群体遗传学,通过基因组数据估计系统发育关系。重点是确定受混杂后漂移影响的种群混杂事件中的混杂系数。解释利用了数据集的高维度,并将问题作为降维问题进行分析。我们证明,可以将 f 统计技术视为基因组数据从相空间到子空间的隐式转换,在子空间中,映射的数据结构与祖先的混杂配置更为相似。事实上,双向混合系数就是在这个子空间中隐含进行的。此外,我们还建议在该子空间中评估掺杂检验,因为与传统检验的比较可对掺杂模型进行重要评估。总体几何框架以不同的原理为出发点,提供了比 f 形式主义更通用的公式。明确涉及的是双向和三向混合物。混合物的比例由合适的线性拟合提供,可以是二维的,也可以是三维的,易于可视化。此外,还讨论了在引入和基因流方面遇到的困难。研究的进展和发现通过数值模拟和实际案例进行了说明。
{"title":"The geometry of admixture in population genetics: the blessing of dimensionality.","authors":"José-Angel Oteo, Gonzalo Oteo-García","doi":"10.1093/genetics/iyae134","DOIUrl":"10.1093/genetics/iyae134","url":null,"abstract":"<p><p>We present a geometry-based interpretation of the f-statistics framework, commonly used in population genetics to estimate phylogenetic relationships from genomic data. The focus is on the determination of the mixing coefficients in population admixture events subject to post-admixture drift. The interpretation takes advantage of the high dimension of the dataset and analyzes the problem as a dimensional reduction issue. We show that it is possible to think of the f-statistics technique as an implicit transformation of the genomic data from a phase space into a subspace where the mapped data structure is more similar to the ancestral admixture configuration. The 2-way mixing coefficient is, as a matter of fact, carried out implicitly in this subspace. In addition, we propose the admixture test to be evaluated in the subspace because the comparison with the conventional one provides an important assessment of the admixture model. The overarching geometric framework provides slightly more general formulas than the f-formalism by using a different rationale as a starting point. Explicitly addressed are 2- and 3-way admixtures. The mixture proportions are provided by suitable linear fits, in 2 or 3 dimensions, that can be easily visualized. The difficulties encountered with introgression and gene flow are also addressed. The developments and findings are illustrated with numerical simulations and real-world cases.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/genetics/iyae130
Ana Maria Vallés, Thomas Rubin, Nicolas Macaisne, Laurine Dal Toe, Anahi Molla-Herman, Christophe Antoniewski, Jean-René Huynh
Germline cells produce gametes, which are specialized cells essential for sexual reproduction. Germline cells first amplify through several rounds of mitosis before switching to the meiotic program, which requires specific sets of proteins for DNA recombination, chromosome pairing, and segregation. Surprisingly, we previously found that some proteins of the synaptonemal complex, a prophase I meiotic structure, are already expressed and required in the mitotic region of Drosophila females. Here, to assess if additional meiotic genes were expressed earlier than expected, we isolated mitotic and meiotic cell populations to compare their RNA content. Our transcriptomic analysis reveals that all known meiosis I genes are already expressed in the mitotic region; however, only some of them are translated. As a case study, we focused on mei-W68, the Drosophila homolog of Spo11, to assess its expression at both the mRNA and protein levels and used different mutant alleles to assay for a premeiotic function. We could not detect any functional role for Mei-W68 during homologous chromosome pairing in dividing germ cells. Our study paves the way for further functional analysis of meiotic genes expressed in the mitotic region.
生殖细胞产生配子,配子是有性生殖所必需的特化细胞。生殖细胞首先经过几轮有丝分裂扩增,然后转入减数分裂程序,该程序需要特定的蛋白质来进行DNA重组、染色体配对和分离。令人惊讶的是,我们之前发现,减数分裂前期结构--突触复合体的一些蛋白质已经在雌果蝇的有丝分裂区表达和需要。在这里,为了评估是否有更多的减数分裂基因比预期的更早表达,我们分离了有丝分裂细胞群和减数分裂细胞群,以比较它们的 RNA 含量。我们的转录组分析表明,所有已知的减数分裂 I 基因都已在有丝分裂区表达,但只有部分基因被翻译。作为一个案例研究,我们重点研究了果蝇 Spo11 的同源物 mei-W68,以评估其在 mRNA 和蛋白质水平上的表达情况,并使用不同的突变等位基因来检测其减数分裂前的功能。我们无法检测到Mei-W68在分裂生殖细胞中同源染色体配对过程中的任何功能作用。我们的研究为进一步分析在有丝分裂区表达的减数分裂基因铺平了道路。
{"title":"Transcriptomic analysis of meiotic genes during the mitosis-to-meiosis transition in Drosophila females.","authors":"Ana Maria Vallés, Thomas Rubin, Nicolas Macaisne, Laurine Dal Toe, Anahi Molla-Herman, Christophe Antoniewski, Jean-René Huynh","doi":"10.1093/genetics/iyae130","DOIUrl":"10.1093/genetics/iyae130","url":null,"abstract":"<p><p>Germline cells produce gametes, which are specialized cells essential for sexual reproduction. Germline cells first amplify through several rounds of mitosis before switching to the meiotic program, which requires specific sets of proteins for DNA recombination, chromosome pairing, and segregation. Surprisingly, we previously found that some proteins of the synaptonemal complex, a prophase I meiotic structure, are already expressed and required in the mitotic region of Drosophila females. Here, to assess if additional meiotic genes were expressed earlier than expected, we isolated mitotic and meiotic cell populations to compare their RNA content. Our transcriptomic analysis reveals that all known meiosis I genes are already expressed in the mitotic region; however, only some of them are translated. As a case study, we focused on mei-W68, the Drosophila homolog of Spo11, to assess its expression at both the mRNA and protein levels and used different mutant alleles to assay for a premeiotic function. We could not detect any functional role for Mei-W68 during homologous chromosome pairing in dividing germ cells. Our study paves the way for further functional analysis of meiotic genes expressed in the mitotic region.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}