首页 > 最新文献

Frontiers of Earth Science最新文献

英文 中文
Dramatic sediment load changes and sedimentation characteristics upstream of the Three Gorges Dam due to the large reservoirs construction 大型水库建设导致三峡大坝上游泥沙量剧烈变化和泥沙沉积特征
IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-07-04 DOI: 10.1007/s11707-022-1081-3
Jie Liu, Wenwu Zhang, Ying Shen, Xin Wang

After the construction of cascade reservoirs in the upper reaches of the Three Gorges Reservoir (TGR), the sediment load outflow of the upper Yangtze River Basin (YRB) has been significantly altered, decreasing from 491.8 Mt/yr (1956–2002) to 36.1 Mt/yr (2003–2017) at Yichang station. This has widely affected river hydrology, suspended sediment grain size distribution, and channel morphology. This study analyzed hydrological variations in water discharge and sediment load of the upper YRB over the past 62 years (1956–2017) by employing a double mass curve. The variations in the source areas of sediment yielding for the upper YRB were quantified, and field measurement data of the cross-channel profile were collected to investigate the sedimentation process in the TGR from 2003 to 2017. More than 90% of the sediment load reduction in the upper YRB may be explained by human activities. The Jinshajiang River was no longer the largest sediment source area for the Zhutuo station (accounting for 5.23%) in the 2013–2017 time span, and the sediment rating rates for the inflow and outflow of the TGR shifted to negatively correlated. A longitudinal fining trend was revealed in the suspended sediment size. Still, the mean median grain size of suspended sediment in the TGR had an increasing trend in the 2013–2017 period. This result may be closely related to sediment regulation in reservoirs and incoming sediment load reduction. Sedimentation in the TGR decreased sharply from 299.8 Mt/yr in 2003–2012 to 47.2 Mt/yr in 2013–2017, but the sedimentation rate of the TGR remained at > 80% annually. Moreover, some cross sections in the fluctuating backwater zone experienced scouring.

三峡水库(TGR)上游梯级水库建成后,长江上游流域(YRB)的泥沙出流量发生了显著变化,宜昌站的泥沙出流量从 4.918 亿吨/年(1956-2002 年)减少到 3.61 亿吨/年(2003-2017 年)。这对河流水文、悬浮泥沙粒径分布和河道形态产生了广泛影响。本研究采用双质量曲线分析了过去 62 年(1956-2017 年)宜昌河上游的排水量和泥沙量的水文变化。量化了长江上游泥沙产源区的变化,并收集了跨河道剖面的实地测量数据,研究了 2003 年至 2017 年 TGR 的泥沙淤积过程。长江上游泥沙量减少的 90% 以上可能是由人类活动造成的。2013-2017年时间跨度内,金沙江不再是朱沱站最大的泥沙来源区(占比5.23%),TGR入流和出流泥沙分级率转为负相关。悬浮泥沙粒径呈纵向细化趋势。但在 2013-2017 年期间,湍河流域悬浮泥沙粒径的平均中值仍呈上升趋势。这一结果可能与水库泥沙调节和入库泥沙负荷减少密切相关。湍河流域的沉积量从 2003-2012 年的 2.998 亿吨/年急剧下降至 2013-2017 年的 4 720 万吨/年,但湍河流域的年沉积率仍保持在 80%左右。此外,波动回水区的部分断面还出现了冲刷现象。
{"title":"Dramatic sediment load changes and sedimentation characteristics upstream of the Three Gorges Dam due to the large reservoirs construction","authors":"Jie Liu, Wenwu Zhang, Ying Shen, Xin Wang","doi":"10.1007/s11707-022-1081-3","DOIUrl":"https://doi.org/10.1007/s11707-022-1081-3","url":null,"abstract":"<p>After the construction of cascade reservoirs in the upper reaches of the Three Gorges Reservoir (TGR), the sediment load outflow of the upper Yangtze River Basin (YRB) has been significantly altered, decreasing from 491.8 Mt/yr (1956–2002) to 36.1 Mt/yr (2003–2017) at Yichang station. This has widely affected river hydrology, suspended sediment grain size distribution, and channel morphology. This study analyzed hydrological variations in water discharge and sediment load of the upper YRB over the past 62 years (1956–2017) by employing a double mass curve. The variations in the source areas of sediment yielding for the upper YRB were quantified, and field measurement data of the cross-channel profile were collected to investigate the sedimentation process in the TGR from 2003 to 2017. More than 90% of the sediment load reduction in the upper YRB may be explained by human activities. The Jinshajiang River was no longer the largest sediment source area for the Zhutuo station (accounting for 5.23%) in the 2013–2017 time span, and the sediment rating rates for the inflow and outflow of the TGR shifted to negatively correlated. A longitudinal fining trend was revealed in the suspended sediment size. Still, the mean median grain size of suspended sediment in the TGR had an increasing trend in the 2013–2017 period. This result may be closely related to sediment regulation in reservoirs and incoming sediment load reduction. Sedimentation in the TGR decreased sharply from 299.8 Mt/yr in 2003–2012 to 47.2 Mt/yr in 2013–2017, but the sedimentation rate of the TGR remained at &gt; 80% annually. Moreover, some cross sections in the fluctuating backwater zone experienced scouring.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empirical prediction of hydraulic aperture of 2D rough fractures: a systematic numerical study 二维粗糙断裂水力孔径的经验预测:系统数值研究
IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-07-04 DOI: 10.1007/s11707-023-1089-3
Xiaolin Wang, Shuchen Li, Richeng Liu, Xinjie Zhu, Minghui Hu

This study aims to propose an empirical prediction model of hydraulic aperture of 2D rough fractures through numerical simulations by considering the influences of fracture length, average mechanical aperture, minimum mechanical aperture, joint roughness coefficient (JRC) and hydraulic gradient. We generate 600 numerical models using successive random additions (SRA) algorithm and for each model, seven hydraulic gradients spanning from 2.5 × 10−7 to 1 are considered to fully cover both linear and nonlinear flow regimes. As a result, a total of 4200 fluid flow cases are simulated, which can provide sufficient data for the prediction of hydraulic aperture. The results show that as the ratio of average mechanical aperture to fracture length increases from 0.01 to 0.2, the hydraulic aperture increases following logarithm functions. As the hydraulic gradient increases from 2.5 × 10−7 to 1, the hydraulic aperture decreases following logarithm functions. When a relatively low hydraulic gradient (i.e., 5 × 10−7) is applied between the inlet and the outlet boundaries, the streamlines are of parallel distribution within the fractures. However, when a relatively large hydraulic gradient (i.e., 0.5) is applied between the inlet and the outlet boundaries, the streamlines are disturbed and a number of eddies are formed. The hydraulic aperture predicted using the proposed empirical functions agree well with the calculated results and is more reliable than those available in the preceding literature. In practice, the hydraulic aperture can be calculated as a first-order estimation using the proposed prediction model when the associated parameters are given.

本研究旨在通过数值模拟,考虑断裂长度、平均力学孔径、最小力学孔径、连接粗糙度系数(JRC)和水力梯度的影响,提出二维粗糙断裂水力孔径的经验预测模型。我们使用连续随机加法(SRA)算法生成了 600 个数值模型,并为每个模型考虑了从 2.5 × 10-7 到 1 的七个水力梯度,以全面覆盖线性和非线性流态。因此,共模拟了 4200 个流体流动案例,为预测水力孔径提供了充足的数据。结果表明,当平均机械孔径与裂缝长度的比值从 0.01 增加到 0.2 时,水力孔径随对数函数的变化而增加。当水力梯度从 2.5 × 10-7 增加到 1 时,水力孔径随对数函数的变化而减小。当入口和出口边界之间的水力梯度相对较低时(即 5 × 10-7),裂缝内的流线呈平行分布。然而,当在入口和出口边界之间施加相对较大的水力梯度(即 0.5)时,流线会受到干扰,并形成一些漩涡。利用所提出的经验函数预测出的水力孔径与计算结果非常吻合,比以往文献中的结果更加可靠。在实际应用中,只要给出相关参数,就可以利用提出的预测模型对水力孔径进行一阶估算。
{"title":"Empirical prediction of hydraulic aperture of 2D rough fractures: a systematic numerical study","authors":"Xiaolin Wang, Shuchen Li, Richeng Liu, Xinjie Zhu, Minghui Hu","doi":"10.1007/s11707-023-1089-3","DOIUrl":"https://doi.org/10.1007/s11707-023-1089-3","url":null,"abstract":"<p>This study aims to propose an empirical prediction model of hydraulic aperture of 2D rough fractures through numerical simulations by considering the influences of fracture length, average mechanical aperture, minimum mechanical aperture, joint roughness coefficient (<i>JRC</i>) and hydraulic gradient. We generate 600 numerical models using successive random additions (SRA) algorithm and for each model, seven hydraulic gradients spanning from 2.5 × 10<sup>−7</sup> to 1 are considered to fully cover both linear and nonlinear flow regimes. As a result, a total of 4200 fluid flow cases are simulated, which can provide sufficient data for the prediction of hydraulic aperture. The results show that as the ratio of average mechanical aperture to fracture length increases from 0.01 to 0.2, the hydraulic aperture increases following logarithm functions. As the hydraulic gradient increases from 2.5 × 10<sup>−7</sup> to 1, the hydraulic aperture decreases following logarithm functions. When a relatively low hydraulic gradient (i.e., 5 × 10<sup>−7</sup>) is applied between the inlet and the outlet boundaries, the streamlines are of parallel distribution within the fractures. However, when a relatively large hydraulic gradient (i.e., 0.5) is applied between the inlet and the outlet boundaries, the streamlines are disturbed and a number of eddies are formed. The hydraulic aperture predicted using the proposed empirical functions agree well with the calculated results and is more reliable than those available in the preceding literature. In practice, the hydraulic aperture can be calculated as a first-order estimation using the proposed prediction model when the associated parameters are given.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DEM upscaling method with integrating valley lines based on HASM 基于 HASM 的集成谷线 DEM 放大法
IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-07-04 DOI: 10.1007/s11707-022-1068-0
Mingwei Zhao, Xiaoxiao Ju, Na Zhao, Chun Wang, Yan Xu, Xiaoran Wu, Weitao Li

A new digital elevation model (DEM) upscaling method based on high accuracy surface modeling (HASM) is proposed by combining the elevation information of DEM and the valley lines extracted from DEM with different flow accumulation thresholds. The proposed method has several advantages over traditional DEM upscaling methods. First, the HASM ensures the smoothness of the upscaled DEM. Secondly, several DEMs with different topographic details can be obtained using the same DEM grid size by incorporating the valley lines with different flow accumulation thresholds. The Jiuyuangou watershed in China’s Loess Plateau was used as a case study. A DEM with a grid size of 5 m obtained from the local surveying and mapping department was used to verify the proposed DEM upscaling method. We established the surface complexity index to describe the complexity of the topographic surface and quantified the differences in the topographic features obtained from different upscaling results. The results show that topography becomes more generalized as grid size and flow accumulation threshold increase. At a large DEM grid size, an increase in the flow accumulation threshold increases the difference in elevation values in different grids, increasing the surface complexity index. This study provides a new DEM upscaling method suitable for quantifying topography.

通过将 DEM 的高程信息和从 DEM 提取的山谷线与不同的流量累积阈值相结合,提出了一种基于高精度地表建模(HASM)的新型数字高程模型(DEM)放大方法。与传统的 DEM 放大方法相比,所提出的方法有几个优点。首先,HASM 确保了提升后的 DEM 的平滑性。其次,通过纳入不同流量累积阈值的谷线,可以使用相同的 DEM 网格尺寸获得多个具有不同地形细节的 DEM。以中国黄土高原的九黄沟流域为例进行研究。我们使用从当地测绘部门获得的网格尺寸为 5 米的 DEM 来验证所提出的 DEM 放大方法。我们建立了地表复杂性指数来描述地形表面的复杂性,并量化了不同放大结果所得到的地形特征的差异。结果表明,随着网格大小和流量累积阈值的增加,地形变得更加概括。在较大的 DEM 网格尺寸下,流量累积阈值的增加会加大不同网格中高程值的差异,从而增加地表复杂性指数。本研究提供了一种适合量化地形的新 DEM 放大方法。
{"title":"A DEM upscaling method with integrating valley lines based on HASM","authors":"Mingwei Zhao, Xiaoxiao Ju, Na Zhao, Chun Wang, Yan Xu, Xiaoran Wu, Weitao Li","doi":"10.1007/s11707-022-1068-0","DOIUrl":"https://doi.org/10.1007/s11707-022-1068-0","url":null,"abstract":"<p>A new digital elevation model (DEM) upscaling method based on high accuracy surface modeling (HASM) is proposed by combining the elevation information of DEM and the valley lines extracted from DEM with different flow accumulation thresholds. The proposed method has several advantages over traditional DEM upscaling methods. First, the HASM ensures the smoothness of the upscaled DEM. Secondly, several DEMs with different topographic details can be obtained using the same DEM grid size by incorporating the valley lines with different flow accumulation thresholds. The Jiuyuangou watershed in China’s Loess Plateau was used as a case study. A DEM with a grid size of 5 m obtained from the local surveying and mapping department was used to verify the proposed DEM upscaling method. We established the surface complexity index to describe the complexity of the topographic surface and quantified the differences in the topographic features obtained from different upscaling results. The results show that topography becomes more generalized as grid size and flow accumulation threshold increase. At a large DEM grid size, an increase in the flow accumulation threshold increases the difference in elevation values in different grids, increasing the surface complexity index. This study provides a new DEM upscaling method suitable for quantifying topography.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence stratigraphic analysis of superimposed coal measure gas-bearing system in Daning-Jixian block, eastern margin of Ordos Basin, China 中国鄂尔多斯盆地东缘大宁-集贤区块叠压煤层含气系统的层序地层分析
IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-22 DOI: 10.1007/s11707-024-1098-x
Shizhuang Yang, Song Li, Wenguang Tian, Guanghao Zhong, Junjian Wang

The identification of superimposed gas-bearing systems in coal measures is the basis for expediting the optimization of coal measure gas co-production. Through the analysis of drill cores and log data of Upper Carboniferous Benxi Formation to the member 8 of Middle Permian Lower Shihezi Formation in Daning-Jixian block, eastern margin of Ordos Basin, four distinct superimposed coal measure gas-bearing systems were identified, and their formation mechanism was discussed from the sequence stratigraphic perspective. Type I system mainly contains multiple coal seams, shales and sandstone layers. Type II system is dominated by multiple coal seams and shales. Type III is characterized by multiple sandstone layers, and type IV system is dominated by limestones and mudstones. In general, the gas-bearing systems deposited in barrier-lagoon are type II, those deposited in carbonate tidal flats are type IV, and those deposited in the delta front are types I and III. The marine mudstone, acting as a key layer near the maximum flooding surface, exhibits very low permeability, which is the main factor contributing to the formation of superimposed gas-bearing systems. The sedimentary environment plays a significant role in controlling the distribution of gas-bearing systems. Notably, the vertical gas-bearing systems in the south-western region, where delta front and lagoon facies overlap, are more complex than those in the north-eastern delta front facies.

煤层中叠加含气系统的识别是加快优化煤层气共生的基础。通过对鄂尔多斯盆地东缘大宁-集贤区块石炭系上统本溪组至二叠系中统下统石河子组第8层钻孔岩心和测井资料的分析,确定了四个不同的煤系叠加含气系统,并从层序角度探讨了其形成机理。Ⅰ型系统主要包含多煤层、页岩和砂岩层。Ⅱ型系统以多煤层和页岩为主。III 型系统以多层砂岩为主,IV 型系统以灰岩和泥岩为主。一般来说,沉积在屏障泻湖的含气系统为 II 型,沉积在碳酸盐滩涂的含气系统为 IV 型,沉积在三角洲前沿的含气系统为 I 型和 III 型。海相泥岩是最大洪水面附近的关键层,其渗透率非常低,是形成叠加含气系统的主要因素。沉积环境对含气系统的分布起着重要的控制作用。值得注意的是,三角洲前缘面和泻湖面重叠的西南部地区的垂直含气系统比东北部三角洲前缘面的含气系统更为复杂。
{"title":"Sequence stratigraphic analysis of superimposed coal measure gas-bearing system in Daning-Jixian block, eastern margin of Ordos Basin, China","authors":"Shizhuang Yang, Song Li, Wenguang Tian, Guanghao Zhong, Junjian Wang","doi":"10.1007/s11707-024-1098-x","DOIUrl":"https://doi.org/10.1007/s11707-024-1098-x","url":null,"abstract":"<p>The identification of superimposed gas-bearing systems in coal measures is the basis for expediting the optimization of coal measure gas co-production. Through the analysis of drill cores and log data of Upper Carboniferous Benxi Formation to the member 8 of Middle Permian Lower Shihezi Formation in Daning-Jixian block, eastern margin of Ordos Basin, four distinct superimposed coal measure gas-bearing systems were identified, and their formation mechanism was discussed from the sequence stratigraphic perspective. Type I system mainly contains multiple coal seams, shales and sandstone layers. Type II system is dominated by multiple coal seams and shales. Type III is characterized by multiple sandstone layers, and type IV system is dominated by limestones and mudstones. In general, the gas-bearing systems deposited in barrier-lagoon are type II, those deposited in carbonate tidal flats are type IV, and those deposited in the delta front are types I and III. The marine mudstone, acting as a key layer near the maximum flooding surface, exhibits very low permeability, which is the main factor contributing to the formation of superimposed gas-bearing systems. The sedimentary environment plays a significant role in controlling the distribution of gas-bearing systems. Notably, the vertical gas-bearing systems in the south-western region, where delta front and lagoon facies overlap, are more complex than those in the north-eastern delta front facies.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control of slope-pattern on the deposition of fan-delta systems: a case study of the Upper Karamay Formation, Junggar Basin 斜坡形态对扇三角洲系统沉积的控制:准噶尔盆地上卡拉麦地层案例研究
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-05 DOI: 10.1007/s11707-022-1077-z
Mingxuan Gao, Xinghe Yu, Shunli Li, Wenmiao Zhang, Songhao Hu, Menglu Zhang

The Mesozoic fan deltas in the north-west margin of the Junggar Basin, as important petroleum reservoirs, exhibited complex facies change and internal structures with strong heterogeneity which were controlled by the transformation of slope-patterns, bringing great challenges to the study of sedimentary characteristics. The Upper Karamay Formation at north-west margin of the Junggar Basin was the objective in this paper which attempts to clarify the mechanism of sedimentary response and sand-body distribution of fan delta systems under the control of slope-pattern change. Based on a data set of cores, well logs and seismic, two types of slope-pattern were identified in the study area, which include steep-to-gentle in the south and gentle-to-steep in the north. The control of difference slope-patterns on the sand-body distribution was clarified based on the analysis of the sedimentary dynamics, facies characteristics, and depositional evolution of the fan deltas. The study shows that the transport mechanism of sediments on the steep-slope was dominated by debris flows, developing coarse-grained, thick-bedded lobes with poor structural maturity of clasts. On the gentle-slope, the deposition was dominated by hyperconcentrated-traction currents, forming relatively fine-grained, thin-bedded lobes with increased sandy matrix. The sand-bodies show frequent bar-channel transformation and channel down-cutting under the steep slope setting, which exhibit migration of isolated river channels on the gentle slopes. Under the steep-to-gentle pattern, the coase-grained sediments were mainly accumulated at slope toe, generally developed equiaxial lobes. However, the coarse-grained clasts were preserved both at proximal and distal lobes on the gentle-to-steep slopes, showing obvious lateral extension of the fan delta. The slope patterns controlled sedimentary respond rates of the fan deltas during lake level change. By comparing the modern cases of fan systems worldwide, the control of slope patterns on deposition of coarse-grained fans was clarified, providing insight into hydrocarbon exploration on basin margins.

准噶尔盆地西北缘中生代扇三角洲作为重要的石油储层,在斜坡形态转换的控制下,表现出复杂的层位变化和具有强烈异质性的内部结构,给沉积特征研究带来了巨大挑战。本文以准噶尔盆地西北缘上克拉玛依地层为研究对象,试图阐明在斜坡形态变化控制下扇形三角洲系统的沉积响应机制和砂体分布。根据岩心、测井记录和地震资料,研究区确定了两种坡度模式,即南部由陡变缓,北部由缓变陡;其中,南部坡度最大,北部坡度最小。在分析扇三角洲的沉积动力学、岩相特征和沉积演化的基础上,明确了不同斜坡形态对砂体分布的控制作用。研究表明,陡坡沉积物的运移机制以泥石流为主,形成粗粒、厚层、碎屑结构成熟度差的裂片。在缓坡上,沉积则以超集中牵引流为主,形成相对细粒、薄层的裂片,砂质基质增多。在陡坡环境下,砂体经常出现条状河道转换和河道下切,在缓坡上则表现为孤立河道的迁移。在由陡变缓的模式下,胶粒沉积物主要堆积在坡脚,一般发育等轴裂片。然而,在由缓到陡的斜坡上,粗粒碎屑岩在近端和远端裂片处均有保留,显示出明显的扇三角洲横向延伸。坡度模式控制着扇三角洲在湖面变化过程中的沉积响应速度。通过比较全球扇形系统的现代案例,阐明了斜坡模式对粗粒扇形沉积的控制,为盆地边缘的油气勘探提供了启示。
{"title":"Control of slope-pattern on the deposition of fan-delta systems: a case study of the Upper Karamay Formation, Junggar Basin","authors":"Mingxuan Gao, Xinghe Yu, Shunli Li, Wenmiao Zhang, Songhao Hu, Menglu Zhang","doi":"10.1007/s11707-022-1077-z","DOIUrl":"https://doi.org/10.1007/s11707-022-1077-z","url":null,"abstract":"<p>The Mesozoic fan deltas in the north-west margin of the Junggar Basin, as important petroleum reservoirs, exhibited complex facies change and internal structures with strong heterogeneity which were controlled by the transformation of slope-patterns, bringing great challenges to the study of sedimentary characteristics. The Upper Karamay Formation at north-west margin of the Junggar Basin was the objective in this paper which attempts to clarify the mechanism of sedimentary response and sand-body distribution of fan delta systems under the control of slope-pattern change. Based on a data set of cores, well logs and seismic, two types of slope-pattern were identified in the study area, which include steep-to-gentle in the south and gentle-to-steep in the north. The control of difference slope-patterns on the sand-body distribution was clarified based on the analysis of the sedimentary dynamics, facies characteristics, and depositional evolution of the fan deltas. The study shows that the transport mechanism of sediments on the steep-slope was dominated by debris flows, developing coarse-grained, thick-bedded lobes with poor structural maturity of clasts. On the gentle-slope, the deposition was dominated by hyperconcentrated-traction currents, forming relatively fine-grained, thin-bedded lobes with increased sandy matrix. The sand-bodies show frequent bar-channel transformation and channel down-cutting under the steep slope setting, which exhibit migration of isolated river channels on the gentle slopes. Under the steep-to-gentle pattern, the coase-grained sediments were mainly accumulated at slope toe, generally developed equiaxial lobes. However, the coarse-grained clasts were preserved both at proximal and distal lobes on the gentle-to-steep slopes, showing obvious lateral extension of the fan delta. The slope patterns controlled sedimentary respond rates of the fan deltas during lake level change. By comparing the modern cases of fan systems worldwide, the control of slope patterns on deposition of coarse-grained fans was clarified, providing insight into hydrocarbon exploration on basin margins.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow resistance in the channel-bar landscape of large alluvial rivers 大型冲积河流的河槽-河坝景观中的水流阻力
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-05 DOI: 10.1007/s11707-022-1040-z
Yong Hu, Congcong Liu, Jinyun Deng, Wei Zhang, Yitian Li

Accurate approaches for estimating flow resistance in large alluvial rivers are fundamental for simulating discharge, sediment transport, and flood routing. However, methods for estimating riverbed resistance and additional resistance in the channel-bar landscapes remain poorly investigated. In this study, we used in situ river bathymetry, sediment, and hydraulic data from the Shashi Reach in the Yangtze River to develop a semi-empirical approach for calculating flow resistance. Our method quantitatively separates flow resistance into riverbed resistance and additional resistance and shows high accuracy in terms of deviation ratio (∼20%), root-mean-square error (∼0.008), and geometric standard deviation (∼3). Additional resistance plays a dominant role under low-flow conditions but a secondary role under high flows, primarily due to the reduction in momentum exchange in channel-bar regions as discharge increases. Riverbed resistance first decreases and then increases, which might be attributed to bedform changes in the lower and transitional flow regimes as flow velocity increases. Overall, our findings further the understanding of dynamic changes in flow resistance in the channel-bar landscapes of large river systems and have important implications for riverine ecology and flood management.

准确估算大型冲积河流的流动阻力是模拟排泄、泥沙输移和洪水路径的基础。然而,估算河床阻力和河道-河段地貌附加阻力的方法仍然鲜有研究。在本研究中,我们利用长江沙市河段的原位河道水深测量、泥沙和水力数据,开发了一种计算流动阻力的半经验方法。我们的方法将流动阻力定量地分为河床阻力和附加阻力,在偏差率(∼20%)、均方根误差(∼0.008)和几何标准偏差(∼3)方面都表现出较高的精度。附加阻力在低流量条件下起主导作用,但在高流量条件下起次要作用,这主要是由于随着排水量的增加,河道-河床区域的动量交换减少。河床阻力先减小后增大,这可能是由于随着流速的增加,低水流和过渡水流水系的河床形态发生了变化。总之,我们的研究结果进一步加深了对大河水系河道-河床景观中水流阻力动态变化的理解,对河流生态学和洪水管理具有重要意义。
{"title":"Flow resistance in the channel-bar landscape of large alluvial rivers","authors":"Yong Hu, Congcong Liu, Jinyun Deng, Wei Zhang, Yitian Li","doi":"10.1007/s11707-022-1040-z","DOIUrl":"https://doi.org/10.1007/s11707-022-1040-z","url":null,"abstract":"<p>Accurate approaches for estimating flow resistance in large alluvial rivers are fundamental for simulating discharge, sediment transport, and flood routing. However, methods for estimating riverbed resistance and additional resistance in the channel-bar landscapes remain poorly investigated. In this study, we used <i>in situ</i> river bathymetry, sediment, and hydraulic data from the Shashi Reach in the Yangtze River to develop a semi-empirical approach for calculating flow resistance. Our method quantitatively separates flow resistance into riverbed resistance and additional resistance and shows high accuracy in terms of deviation ratio (∼20%), root-mean-square error (∼0.008), and geometric standard deviation (∼3). Additional resistance plays a dominant role under low-flow conditions but a secondary role under high flows, primarily due to the reduction in momentum exchange in channel-bar regions as discharge increases. Riverbed resistance first decreases and then increases, which might be attributed to bedform changes in the lower and transitional flow regimes as flow velocity increases. Overall, our findings further the understanding of dynamic changes in flow resistance in the channel-bar landscapes of large river systems and have important implications for riverine ecology and flood management.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning methods for predicting the uniaxial compressive strength of the rocks: a comparative study 预测岩石单轴抗压强度的机器学习方法:比较研究
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-05 DOI: 10.1007/s11707-024-1101-6
Tao Wen, Decheng Li, Yankun Wang, Mingyi Hu, Ruixuan Tang

The uniaxial compressive strength (UCS) of rocks is a critical index for evaluating the mechanical properties and construction of an engineering rock mass classification system. The most commonly used method for determining the UCS in laboratory settings is expensive and time-consuming. For this reason, UCS can be estimated using an indirect determination method based on several simple laboratory tests, including point-load strength, rock density, longitudinal wave velocity, Brazilian tensile strength, Schmidt hardness, and shore hardness. In this study, six data sets of indices for different rock types were utilized to predict the UCS using three nonlinear combination models, namely back propagation (BP), particle swarm optimization (PSO), and least squares support vector machine (LSSVM). Moreover, the best prediction model was examined and selected based on four performance prediction indices. The results reveal that the PSO–LSSVM model was more successful than the other two models due to its higher performance capacity. The ratios of the predicted UCS to the measured UCS for the six data sets were 0.954, 0.982, 0.9911, 0.9956, 0.9995, and 0.993, respectively. The results were more reasonable when the predicted ratio was close to a value of approximately 1.

岩石的单轴抗压强度(UCS)是评估岩石力学性质和构建工程岩体分类系统的关键指标。在实验室环境中测定单轴抗压强度最常用的方法既昂贵又耗时。因此,可以根据几种简单的实验室测试,包括点荷载强度、岩石密度、纵波速度、巴西抗拉强度、施密特硬度和邵氏硬度,采用间接测定法估算 UCS。本研究利用不同岩石类型的六组指数数据,采用三种非线性组合模型(即反向传播模型(BP)、粒子群优化模型(PSO)和最小二乘支持向量机模型(LSSVM))预测 UCS。此外,还根据四项性能预测指标对最佳预测模型进行了检验和筛选。结果显示,PSO-LSSVM 模型因其更高的性能容量而比其他两个模型更成功。六个数据集的预测 UCS 与测量 UCS 之比分别为 0.954、0.982、0.9911、0.9956、0.9995 和 0.993。当预测比率接近约 1 时,结果更为合理。
{"title":"Machine learning methods for predicting the uniaxial compressive strength of the rocks: a comparative study","authors":"Tao Wen, Decheng Li, Yankun Wang, Mingyi Hu, Ruixuan Tang","doi":"10.1007/s11707-024-1101-6","DOIUrl":"https://doi.org/10.1007/s11707-024-1101-6","url":null,"abstract":"<p>The uniaxial compressive strength (UCS) of rocks is a critical index for evaluating the mechanical properties and construction of an engineering rock mass classification system. The most commonly used method for determining the UCS in laboratory settings is expensive and time-consuming. For this reason, UCS can be estimated using an indirect determination method based on several simple laboratory tests, including point-load strength, rock density, longitudinal wave velocity, Brazilian tensile strength, Schmidt hardness, and shore hardness. In this study, six data sets of indices for different rock types were utilized to predict the UCS using three nonlinear combination models, namely back propagation (BP), particle swarm optimization (PSO), and least squares support vector machine (LSSVM). Moreover, the best prediction model was examined and selected based on four performance prediction indices. The results reveal that the PSO–LSSVM model was more successful than the other two models due to its higher performance capacity. The ratios of the predicted UCS to the measured UCS for the six data sets were 0.954, 0.982, 0.9911, 0.9956, 0.9995, and 0.993, respectively. The results were more reasonable when the predicted ratio was close to a value of approximately 1.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astronomical forcing and sedimentary noise modeling of lake-level changes in the Middle Eocene Chezhen Sag, Bohai Bay Basin, eastern China 中国东部渤海湾盆地中始新世车镇沙格湖湖面变化的天文强迫和沉积噪音模拟
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-05 DOI: 10.1007/s11707-022-1073-3
Xuwei Luan, Jinliang Zhang, Na Li, Tao Chen, Long Sun, Xuecai Zhang

The accurate determination of geological age is a key to understanding the history and process of paleolake evolution and oil and gas exploration in continental lake basin. However, improving the accuracy of geological age has always been a difficult scientific problem. A 609-m-thick, continuous lacustrine mudstone and sandstone succession in Chezhen Sag (eastern China) provides an ideal middle Eocene sedimentary record for establishing a high-resolution stratigraphic chronology framework. Based on spectrum analysis and sliding window spectrum analysis of the natural gamma (GR) logging data of well Che 271 (C271) in Chezhen Sag, the periods of 405 kyr and 40.1 kyr were filtered by a Gaussian bandpass filter, and a “flngting” astrochronological time scale (ATS) was established. The total number of 405 kyr eccentricity cycles were 13.6 and 40.1 kyr obliquity cycles were 138 which recorded from the upper member 4 (Es4U) to the member 3 (Es3) of the Eocene Shahejie Formation, and the depositional duration was 5.53 Myr. Correlation Coefficient (COCO) analysis and evolutionary Correlation Coefficient (eCoCo) analysis found that the optimal sedimentary rate of different strata. Sedimentary noise simulation revealed the history of paleolake water changes in the Middle Eocene in the Chezhen Sag, according to which four sequences are divided. The study shows that the lake level change of Chezhen Sag in the middle Eocene shows prominent 1.2 Myr cycles and an antiphase well-coupled relationship with obliquity modulation. Finally, we propose a model to explain the relationship between the orbital cycle and lake level change in the continental lake basin. When the obliquity of the earth increases, the middle and high latitudes of the earth will be closer to the sun, the direct sunlight will be higher, and the meridional sunshine will increase, thus accelerating the evaporation process of lake basin water. When the seasonal changes are obvious (maximum period of 1.2 Myr ultra-long obliquity), this effect is more significant. The relative lake level change based on the restoration of high-precision ATS has significant scientific and economic value for understanding the vertical evolution of continental stratigraphic sequences and the formation and distribution of oil and gas resources.

地质年代的准确测定是了解古湖泊演化历史和过程以及大陆湖盆油气勘探的关键。然而,提高地质年龄的准确性一直是一个科学难题。中国东部车镇嵯峨609米厚的连续湖相泥岩和砂岩演替为建立高分辨率地层年代学框架提供了理想的中始新世沉积记录。基于对车镇下陷车271井(C271)天然伽马测井资料的频谱分析和滑动窗口频谱分析,采用高斯带通滤波器分别滤出了405 kyr和40.1 kyr的年代,建立了 "flngting "天体时间尺度(ATS)。结果表明,在始新世沙河街地层上统第4层(Es4U)至第3层(Es3)共记录了13.6个405 kyr偏心周期和138个40.1 kyr偏斜周期,沉积时间为5.53 Myr。相关系数(COCO)分析和演化相关系数(eCoCo)分析发现,不同地层的最佳沉积速率不同。沉积噪音模拟揭示了车镇嵯峨中新世古湖水位变化的历史,并据此划分了四个序列。研究表明,中始新世车镇沙沟湖泊水位变化呈现出显著的1.2Myr周期,并与纬度调制存在反相的良好耦合关系。最后,我们提出了一个解释大陆湖盆轨道周期与湖泊水位变化关系的模型。当地球纬度增大时,地球中高纬度地区距离太阳更近,太阳直射光更强,经向日照增加,从而加速了湖盆水的蒸发过程。当季节变化明显时(最大周期为 1.2 Myr 超长距平),这种效应更为显著。基于高精度 ATS 恢复的湖泊相对水位变化,对于了解大陆地层序列的垂直演化和油气资源的形成与分布具有重要的科学和经济价值。
{"title":"Astronomical forcing and sedimentary noise modeling of lake-level changes in the Middle Eocene Chezhen Sag, Bohai Bay Basin, eastern China","authors":"Xuwei Luan, Jinliang Zhang, Na Li, Tao Chen, Long Sun, Xuecai Zhang","doi":"10.1007/s11707-022-1073-3","DOIUrl":"https://doi.org/10.1007/s11707-022-1073-3","url":null,"abstract":"<p>The accurate determination of geological age is a key to understanding the history and process of paleolake evolution and oil and gas exploration in continental lake basin. However, improving the accuracy of geological age has always been a difficult scientific problem. A 609-m-thick, continuous lacustrine mudstone and sandstone succession in Chezhen Sag (eastern China) provides an ideal middle Eocene sedimentary record for establishing a high-resolution stratigraphic chronology framework. Based on spectrum analysis and sliding window spectrum analysis of the natural gamma (GR) logging data of well Che 271 (C271) in Chezhen Sag, the periods of 405 kyr and 40.1 kyr were filtered by a Gaussian bandpass filter, and a “flngting” astrochronological time scale (ATS) was established. The total number of 405 kyr eccentricity cycles were 13.6 and 40.1 kyr obliquity cycles were 138 which recorded from the upper member 4 (Es4U) to the member 3 (Es3) of the Eocene Shahejie Formation, and the depositional duration was 5.53 Myr. Correlation Coefficient (COCO) analysis and evolutionary Correlation Coefficient (eCoCo) analysis found that the optimal sedimentary rate of different strata. Sedimentary noise simulation revealed the history of paleolake water changes in the Middle Eocene in the Chezhen Sag, according to which four sequences are divided. The study shows that the lake level change of Chezhen Sag in the middle Eocene shows prominent 1.2 Myr cycles and an antiphase well-coupled relationship with obliquity modulation. Finally, we propose a model to explain the relationship between the orbital cycle and lake level change in the continental lake basin. When the obliquity of the earth increases, the middle and high latitudes of the earth will be closer to the sun, the direct sunlight will be higher, and the meridional sunshine will increase, thus accelerating the evaporation process of lake basin water. When the seasonal changes are obvious (maximum period of 1.2 Myr ultra-long obliquity), this effect is more significant. The relative lake level change based on the restoration of high-precision ATS has significant scientific and economic value for understanding the vertical evolution of continental stratigraphic sequences and the formation and distribution of oil and gas resources.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paleoenvironment evolution and organic matter enrichment mechanisms in the first member of the Qingshankou Formation, Songliao Basin, China 中国松辽盆地青山口地层第一层古环境演化及有机质富集机制
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-05 DOI: 10.1007/s11707-022-1067-1
Ying Li, Min Wang, Yu Yan, Xin Wang, Jinyou Zhang, Xuefeng Bai, Yuchen Zhang, Jiaheng Xue, Junsheng Fei, Lianbin Zhang, Guojun Wang

Organic matter is the basis for oil and gas generation, and the depositional environment controls its enrichment. The first member of the Qingshankou Formation (K2qn1) in Songliao Basin has a thick organic-rich shale and so is an important target section for shale oil exploration and development. In the Gulong Sag, shale samples from this unit were collected over the full length of the section. The characterization of the environments of deposition (EOD) of K2qn1 was improved by utilizing lithological characteristics, thin section observations, elemental compositions, and organic carbon concentrations. Combined with the normalization coefficients proposed in this paper, an organic matter correlation model was established to elucidate the factors that influence organic matter enrichment. From the bottom to the top of K2qn1, the lake depth gradually becomes shallower, the primary productivity first decreases and then increases, the reducing conditions become stronger and then weaker, the water salinity gradually decreases, the climate first becomes semi-humid and then warm and humid, and the input of terrigenous debris first decreases and then increases. A major marine transgression at the base of the K2qn1’s brought in nutrients to increase primary productivity, and the density-stratified reducing environment preserved and enriched organic matter. High primary productivity occurred during the middle of the deposition of the K2qn1, while terrigenous input is low. Organic matter is preserved in reduced deep lake environments, resulting in organic matter-rich black shale. The lake became shallower, and the salinity decreased in the upper part of K2qn1. Benthic organisms rapidly multiplied, consuming large amounts of oxygen and destroying the previously depositional environment, resulting in a reducing environment disturbed by benthic organisms with poor preservation conditions and the lowest organic matter content.

有机质是油气生成的基础,而沉积环境则控制着有机质的富集。松辽盆地青山口组(K2qn1)第一层具有较厚的富有机质页岩,是页岩油勘探开发的重要目标层段。在古龙沙格,对该单元的页岩样品进行了全断面采集。通过利用岩性特征、薄片观察、元素组成和有机碳浓度,对 K2qn1 的沉积环境(EOD)特征进行了改进。结合本文提出的归一化系数,建立了有机质相关模型,以阐明影响有机质富集的因素。从 K2qn1 的底部到顶部,湖深逐渐变浅,初级生产力先下降后上升,还原条件先强后弱,水体盐度逐渐降低,气候先半湿润后温暖湿润,土著碎屑输入先减少后增加。K2qn1's底部的一次大的海洋断陷带来了营养物质,提高了初级生产力,密度分层的还原环境保存并丰富了有机物。在 K2qn1 沉积的中期,初级生产力较高,而土著输入量较低。有机质在还原的深湖环境中得以保存,形成了富含有机质的黑色页岩。湖水变浅,K2qn1 上部的盐度降低。底栖生物迅速繁殖,消耗了大量氧气,破坏了之前的沉积环境,形成了受底栖生物干扰的还原环境,保存条件差,有机质含量最低。
{"title":"Paleoenvironment evolution and organic matter enrichment mechanisms in the first member of the Qingshankou Formation, Songliao Basin, China","authors":"Ying Li, Min Wang, Yu Yan, Xin Wang, Jinyou Zhang, Xuefeng Bai, Yuchen Zhang, Jiaheng Xue, Junsheng Fei, Lianbin Zhang, Guojun Wang","doi":"10.1007/s11707-022-1067-1","DOIUrl":"https://doi.org/10.1007/s11707-022-1067-1","url":null,"abstract":"<p>Organic matter is the basis for oil and gas generation, and the depositional environment controls its enrichment. The first member of the Qingshankou Formation (K<sub>2</sub>qn<sup>1</sup>) in Songliao Basin has a thick organic-rich shale and so is an important target section for shale oil exploration and development. In the Gulong Sag, shale samples from this unit were collected over the full length of the section. The characterization of the environments of deposition (EOD) of K<sub>2</sub>qn<sup>1</sup> was improved by utilizing lithological characteristics, thin section observations, elemental compositions, and organic carbon concentrations. Combined with the normalization coefficients proposed in this paper, an organic matter correlation model was established to elucidate the factors that influence organic matter enrichment. From the bottom to the top of K<sub>2</sub>qn<sup>1</sup>, the lake depth gradually becomes shallower, the primary productivity first decreases and then increases, the reducing conditions become stronger and then weaker, the water salinity gradually decreases, the climate first becomes semi-humid and then warm and humid, and the input of terrigenous debris first decreases and then increases. A major marine transgression at the base of the K<sub>2</sub>qn<sup>1</sup>’s brought in nutrients to increase primary productivity, and the density-stratified reducing environment preserved and enriched organic matter. High primary productivity occurred during the middle of the deposition of the K<sub>2</sub>qn<sup>1</sup>, while terrigenous input is low. Organic matter is preserved in reduced deep lake environments, resulting in organic matter-rich black shale. The lake became shallower, and the salinity decreased in the upper part of K<sub>2</sub>qn<sup>1</sup>. Benthic organisms rapidly multiplied, consuming large amounts of oxygen and destroying the previously depositional environment, resulting in a reducing environment disturbed by benthic organisms with poor preservation conditions and the lowest organic matter content.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A microphysical investigation of different convective cells during the precipitation event with sustained high-resolution observations 利用持续高分辨率观测对降水过程中不同对流单元的微物理研究
IF 2 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-04-04 DOI: 10.1007/s11707-022-1076-0
Ziheng Huang, Zheng Ruan, Debin Su

The growth and breakup processes of raindrops within a cloud influence the rain intensity and the sizes of raindrops on the surface. The Doppler velocity spectrum acquired by a vertically pointing radar (VPR) contains information on atmospheric turbulence and the size classification of falling hydrometeors. In this study, the four types of Convective Cells (CC) during precipitation events with more than 700 mm of precipitation in southern China are described. The characteristics of four types of CCs correspond to the isolated convection, the early stage, the mature stage, and the decline stage of organizational convection, in that order. Microphysical analysis using retrieval of vertical air motion (Vair) and raindrop evolution in clouds from Doppler velocity spectra collected by C-band VPR revealed the growth and breakup of falling raindrops with dynamic impact. Larger raindrops appear in the early stages and are accompanied by ice particles, which are impacted by the falling path’s downdraft. Raindrop aggregation, which is primarily related to the alternation of updraft and downdraft, accounts for the mature stage’s high efficiency of surface rainfall. The CCs in the decline stage originate from the shallow uplift in the weak and broad downdraft under conditions of enough water vapor. The updraft dominates the stage of isolated convection. Observations of convective cells could be more accurately represented in model evaluations.

云层中雨滴的生长和破裂过程会影响降雨强度和地表雨滴的大小。垂直指向雷达(VPR)获取的多普勒速度频谱包含大气湍流和降水流体大小分类的信息。本研究描述了中国南方降水量超过 700 毫米的降水事件中的四种对流小区(CC)类型。四种类型的 CC 的特征依次对应于孤立对流、组织对流的早期阶段、成熟阶段和衰退阶段。利用 C 波段 VPR 多普勒速度频谱检索空气垂直运动(Vair)和云中雨滴演变的微观物理分析,揭示了降雨在动态影响下的生长和破裂过程。较大的雨滴出现在早期阶段,并伴有冰粒,这些冰粒受到下落路径的下沉气流的影响。雨滴的聚集主要与上升气流和下降气流的交替有关,这也是成熟阶段地表降雨效率高的原因。下降阶段的 CC 源自水汽充足条件下弱而宽的下沉气流中的浅上升。上升气流在孤立对流阶段占主导地位。对流单元的观测结果可以更准确地反映在模式评估中。
{"title":"A microphysical investigation of different convective cells during the precipitation event with sustained high-resolution observations","authors":"Ziheng Huang, Zheng Ruan, Debin Su","doi":"10.1007/s11707-022-1076-0","DOIUrl":"https://doi.org/10.1007/s11707-022-1076-0","url":null,"abstract":"<p>The growth and breakup processes of raindrops within a cloud influence the rain intensity and the sizes of raindrops on the surface. The Doppler velocity spectrum acquired by a vertically pointing radar (VPR) contains information on atmospheric turbulence and the size classification of falling hydrometeors. In this study, the four types of Convective Cells (CC) during precipitation events with more than 700 mm of precipitation in southern China are described. The characteristics of four types of CCs correspond to the isolated convection, the early stage, the mature stage, and the decline stage of organizational convection, in that order. Microphysical analysis using retrieval of vertical air motion (Vair) and raindrop evolution in clouds from Doppler velocity spectra collected by C-band VPR revealed the growth and breakup of falling raindrops with dynamic impact. Larger raindrops appear in the early stages and are accompanied by ice particles, which are impacted by the falling path’s downdraft. Raindrop aggregation, which is primarily related to the alternation of updraft and downdraft, accounts for the mature stage’s high efficiency of surface rainfall. The CCs in the decline stage originate from the shallow uplift in the weak and broad downdraft under conditions of enough water vapor. The updraft dominates the stage of isolated convection. Observations of convective cells could be more accurately represented in model evaluations.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers of Earth Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1