The study aimed to evaluate the concentration of potentially toxic elements in the soil samples of landfill sites in An Giang province. Eighty-eight soil samples were collected from five landfills. The potentially toxic elements including Cu, Zn, Pb, Cd, and As were analysed and compared with the National technical regulations on the allowable limits of heavy metals in the soils. A cluster analysis was applied to identify the sampling sites with similar soil toxic elements properties. The ecological potential risk index was used to determine the risk of the landfills to the ecosystem. The results showed that four out of five potentially toxic elements were detected in the soil, and their concentration decreased in the order of Zn > Cu > Pb > As. Most of the potentially toxic element concentrations were within the allowable limits, except for Cu and As in some positions. The ecological potential risk index in unsanitary landfills was higher than that in a sanitary landfill; however, the level of risk was low. The occurrence of toxic elements in the soil around the landfills affects the ecosystems as well as human health. Therefore, it is necessary to prevent the effect of heavy metals in the surrounding environments.
本研究旨在评价安江省垃圾填埋场土壤样品中潜在有毒元素的浓度。在五个堆填区收集了88个土壤样本。对土壤中Cu、Zn、Pb、Cd、As等潜在有毒元素进行了分析,并与《国家土壤重金属允许限量技术规范》进行了比较。采用聚类分析方法确定了土壤有毒元素性质相似的采样点。采用生态潜在风险指数来确定垃圾填埋场对生态系统的风险。结果表明,土壤中检出了5种潜在有毒元素中的4种,其浓度依次为Zn > Cu > Pb > As。除Cu和As在部分位置外,大部分潜在有毒元素浓度均在允许范围内。不卫生填埋场的生态潜在风险指数高于卫生填埋场;然而,风险水平很低。垃圾填埋场周围土壤中有毒元素的出现不仅影响生态系统,也影响人类健康。因此,有必要防止周围环境中重金属的影响。
{"title":"Risk associated with occurrence of toxic elements in the environment surrounding landfills in An Giang Province, Vietnam","authors":"N. Giao, V. Minh","doi":"10.17221/111/2021-swr","DOIUrl":"https://doi.org/10.17221/111/2021-swr","url":null,"abstract":"The study aimed to evaluate the concentration of potentially toxic elements in the soil samples of landfill sites in An Giang province. Eighty-eight soil samples were collected from five landfills. The potentially toxic elements including Cu, Zn, Pb, Cd, and As were analysed and compared with the National technical regulations on the allowable limits of heavy metals in the soils. A cluster analysis was applied to identify the sampling sites with similar soil toxic elements properties. The ecological potential risk index was used to determine the risk of the landfills to the ecosystem. The results showed that four out of five potentially toxic elements were detected in the soil, and their concentration decreased in the order of Zn > Cu > Pb > As. Most of the potentially toxic element concentrations were within the allowable limits, except for Cu and As in some positions. The ecological potential risk index in unsanitary landfills was higher than that in a sanitary landfill; however, the level of risk was low. The occurrence of toxic elements in the soil around the landfills affects the ecosystems as well as human health. Therefore, it is necessary to prevent the effect of heavy metals in the surrounding environments.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44905108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Janků, Markéta Kosánová, J. Kozak, Tomáš Herza, J. Jehlička, Mansoor Maitah, J. Vopravil, K. Němeček, Daniell Toth, Karel Jacko, R. Vácha, J. Poláková
The project dealt with an evaluation of the soil quality in the Central Bohemian Region in the Czech Republic. The relevant attributes and characteristics were found regarding the soils in this selected area. Based on the data from soil probes, climate characteristics, soil production function and data on the land use, the characteristics, known as soil quality indicators, were selected. Then the soils were sorted into groups which indicated their suitability for the best land use and planning. The characteristics of the soils that contributed the most to the ecosystem services provided by this part of the environment were chosen as the soil quality indicators. In order to find out how the soils are able to provide ecosystem services, two types of approaches were used – the average score and the total amount of points gained. Maps indicating the soil quality were created using the ArcGIS program. At the same time, research on the differences in the quality in two different layers of the soil was carried out. In most cases, there was a decrease in the soil quality with an increasing depth. The results of this project can be used as a basis for a new soil valuation in the Czech Republic.
{"title":"Using of soil quality indicators to assess their production and ecological functions","authors":"J. Janků, Markéta Kosánová, J. Kozak, Tomáš Herza, J. Jehlička, Mansoor Maitah, J. Vopravil, K. Němeček, Daniell Toth, Karel Jacko, R. Vácha, J. Poláková","doi":"10.17221/146/2021-swr","DOIUrl":"https://doi.org/10.17221/146/2021-swr","url":null,"abstract":"The project dealt with an evaluation of the soil quality in the Central Bohemian Region in the Czech Republic. The relevant attributes and characteristics were found regarding the soils in this selected area. Based on the data from soil probes, climate characteristics, soil production function and data on the land use, the characteristics, known as soil quality indicators, were selected. Then the soils were sorted into groups which indicated their suitability for the best land use and planning. The characteristics of the soils that contributed the most to the ecosystem services provided by this part of the environment were chosen as the soil quality indicators. In order to find out how the soils are able to provide ecosystem services, two types of approaches were used – the average score and the total amount of points gained. Maps indicating the soil quality were created using the ArcGIS program. At the same time, research on the differences in the quality in two different layers of the soil was carried out. In most cases, there was a decrease in the soil quality with an increasing depth. The results of this project can be used as a basis for a new soil valuation in the Czech Republic.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43673771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to increase the reuse of wastes and residues, as required by the Waste Framework Directive, the potential use of waste, residue and natural minerals as low-cost permeable reactive barrier (PRB) materials was investigated. The performance of a kitchen waste compost, sepiolite and steel slag was compared with that of volcanic slag, pumice and activated carbon in removing specific contaminants from landfill leachate. The experiments represented that the activated carbon removed 27% of the ammonium (NH4+), 75% of the chemical oxygen demand (COD) and 100% of the phosphate (PO43–), zinc (Zn2+) and nickel (Ni2+) from the landfill leachate. Volcanic slag exhibited removal efficiencies of 50% COD and 100% PO43– and pumice exhibited removal efficiencies of 20% NH4+, 27% Zn2+, 65% COD and 100% PO43–. The reactive materials were also checked for their potential in releasing unwanted constituents and represented different levels of the solute (e.g., PO43–, SO42–, NH4+) release. Among the reactives, sepiolite was found to be the reactive material reflecting a minor release (e.g., Zn2+, Cd2+ and Ni2+), but also delivering removal efficiencies of 40, 50, 65, 95, 97, 98, 98 and 100% for Ni2+, COD, Zn2+, SO42–, Cl–, F–, NH4+ and PO43–, respectively. The results show that the studied materials have the potential as reactives for PRB systems treating high strength contaminant plumes.
{"title":"Reuse of industrial residues/wastes as a sustainable solution for landfill leachate contaminated groundwater","authors":"E. Özkaraova, Elif Güven Oral","doi":"10.17221/71/2021-swr","DOIUrl":"https://doi.org/10.17221/71/2021-swr","url":null,"abstract":"In order to increase the reuse of wastes and residues, as required by the Waste Framework Directive, the potential use of waste, residue and natural minerals as low-cost permeable reactive barrier (PRB) materials was investigated. The performance of a kitchen waste compost, sepiolite and steel slag was compared with that of volcanic slag, pumice and activated carbon in removing specific contaminants from landfill leachate. The experiments represented that the activated carbon removed 27% of the ammonium (NH4+), 75% of the chemical oxygen demand (COD) and 100% of the phosphate (PO43–), zinc (Zn2+) and nickel (Ni2+) from the landfill leachate. Volcanic slag exhibited removal efficiencies of 50% COD and 100% PO43– and pumice exhibited removal efficiencies of 20% NH4+, 27% Zn2+, 65% COD and 100% PO43–. The reactive materials were also checked for their potential in releasing unwanted constituents and represented different levels of the solute (e.g., PO43–, SO42–, NH4+) release. Among the reactives, sepiolite was found to be the reactive material reflecting a minor release (e.g., Zn2+, Cd2+ and Ni2+), but also delivering removal efficiencies of 40, 50, 65, 95, 97, 98, 98 and 100% for Ni2+, COD, Zn2+, SO42–, Cl–, F–, NH4+ and PO43–, respectively. The results show that the studied materials have the potential as reactives for PRB systems treating high strength contaminant plumes.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49081520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunhao An, Xiyun Jiao, Zhe Gu, Chuanmeng Shi, Kaihua Liu
To study the effects of straw return and aeration of the water layer on oxygen and redox status in the water column and at different depths in paddy field soil, a short-term incubation experiment was conducted with four treatments: (1) no straw return (NS); (2) straw return without aeration (S); (3) straw return and 30 minutes of aeration per day (SO30); and (4) straw return and 90 minutes of aeration per day (SO90). Compared to NS, S decreased dissolved oxygen (DO) and redox potential (ORP) by 23–58% and 47–53 mV, respectively, and increased active reducing substance (ARS) by 21–46% in the water and soil layers. The aeration treatments increased DO and ORP by 25–120% and 11–86 mV, respectively, and reduced ARS by 5–16% compared to S. The results indicated that straw return to paddy fields exacerbated hypoxia and reducing conditions in the soil. SO90 achieved better effects than SO30 in alleviating the negative impact of straw return by supplying more oxygen, but the effects weakened over time and with soil depth.
{"title":"Effects of straw return and aeration on oxygen status and redox environment in flooded soil","authors":"Yunhao An, Xiyun Jiao, Zhe Gu, Chuanmeng Shi, Kaihua Liu","doi":"10.17221/87/2020-swr","DOIUrl":"https://doi.org/10.17221/87/2020-swr","url":null,"abstract":"To study the effects of straw return and aeration of the water layer on oxygen and redox status in the water column and at different depths in paddy field soil, a short-term incubation experiment was conducted with four treatments: (1) no straw return (NS); (2) straw return without aeration (S); (3) straw return and 30 minutes of aeration per day (SO30); and (4) straw return and 90 minutes of aeration per day (SO90). Compared to NS, S decreased dissolved oxygen (DO) and redox potential (ORP) by 23–58% and 47–53 mV, respectively, and increased active reducing substance (ARS) by 21–46% in the water and soil layers. The aeration treatments increased DO and ORP by 25–120% and 11–86 mV, respectively, and reduced ARS by 5–16% compared to S. The results indicated that straw return to paddy fields exacerbated hypoxia and reducing conditions in the soil. SO90 achieved better effects than SO30 in alleviating the negative impact of straw return by supplying more oxygen, but the effects weakened over time and with soil depth.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46497000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tile drainage belongs to one of the most important meliorative measures in the Czech Republic. It has been hypothesised that it may improve some soil properties which are influenced by the groundwater and their water regime. In the case of meadows, the used management method may also influence the soil properties. In this study, different physical soil properties (particle and bulk density, total soil porosity, maximum capillary water capacity, minimum air capacity, water retention capacity and saturated water content, volumetric water content and matric potential) at depths of 15, 35 or 40 and 60 cm in differently managed meadows (drained versus undrained) located near the village of Železná in the Czech Republic (mildly cold, humid climatic region) were investigated. The drained meadow is used mainly for grazing (extensively) and the undrained meadow is mown twice a year. In addition, the actual evapotranspiration was estimated for the 2018 vegetation season. The selected physical soil properties were significantly (P < 0.05) different between the experimental meadows, especially at depths of 0–28 versus 0–35 cm (particle and bulk density, total soil porosity, maximum capillary water capacity, water retention capacity and saturated water content) and 28–49 versus 35–45 cm (particle density, water retention capacity and saturated water content). In the case of all the studied soil depths, the volumetric water content and matric potential were significantly (P < 0.05) different between the experimental meadows in the years 2016–2019. The actual evapotranspiration was also significantly different (P < 0.05) between the meadows. The obtained differences in the measured soil properties and estimated actual evapotranspiration were probably influenced by the used tile drainage and also by the type of management of the meadow. It is necessary to obtain more research findings with respect to different types of management in the case of drained meadows and also undrained meadows to understand the role of both treatments (tile drainage, management).
{"title":"Soil water dynamics in drained and undrained meadows","authors":"J. Vopravil, P. Formánek, J. Janků, T. Khel","doi":"10.17221/51/2021-swr","DOIUrl":"https://doi.org/10.17221/51/2021-swr","url":null,"abstract":"Tile drainage belongs to one of the most important meliorative measures in the Czech Republic. It has been hypothesised that it may improve some soil properties which are influenced by the groundwater and their water regime. In the case of meadows, the used management method may also influence the soil properties. In this study, different physical soil properties (particle and bulk density, total soil porosity, maximum capillary water capacity, minimum air capacity, water retention capacity and saturated water content, volumetric water content and matric potential) at depths of 15, 35 or 40 and 60 cm in differently managed meadows (drained versus undrained) located near the village of Železná in the Czech Republic (mildly cold, humid climatic region) were investigated. The drained meadow is used mainly for grazing (extensively) and the undrained meadow is mown twice a year. In addition, the actual evapotranspiration was estimated for the 2018 vegetation season. The selected physical soil properties were significantly (P < 0.05) different between the experimental meadows, especially at depths of 0–28 versus 0–35 cm (particle and bulk density, total soil porosity, maximum capillary water capacity, water retention capacity and saturated water content) and 28–49 versus 35–45 cm (particle density, water retention capacity and saturated water content). In the case of all the studied soil depths, the volumetric water content and matric potential were significantly (P < 0.05) different between the experimental meadows in the years 2016–2019. The actual evapotranspiration was also significantly different (P < 0.05) between the meadows. The obtained differences in the measured soil properties and estimated actual evapotranspiration were probably influenced by the used tile drainage and also by the type of management of the meadow. It is necessary to obtain more research findings with respect to different types of management in the case of drained meadows and also undrained meadows to understand the role of both treatments (tile drainage, management).","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45193707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Vona, Endre Andor Toth, C. Centeri, Zsolt Giczi, Z. Biró, G. Jakab, G. Milics, I. Kulmány, R. Kalocsai, A. Kovács
Zn is an essential micronutrient involved in a wide variety of physiological processes. Soils are tested for zinc in many countries with several extractants. Each country has its validated methods, best-suited for its soils. The current study was designed to compare different zinc content measuring methods with seventy-one samples from Hungary. The data were first compared for the whole dataset and then in certain categories such as CaCO3-content, pH, texture and clay content. The zinc content was determined by the water extraction, KCl-EDTA (ethylenediaminetetraacetic acid), Mehlich 3, CoHex (cobalt hexamine trichloride), and XRF (X-ray fluorescence) methods. Based on the analyses of all the data, we can conclude that all the methods are different. However, further analyses during the comparison of the methods based on the influencing factors, such as the pH, lime content, texture class, and clay content proved that, in some of the cases, there are similarities among the methods and, this way, we can get more knowledge on the measurements and the results provided. Farmers can gain extra knowledge from the comparison of the influencing factors to know where intervention is needed to use extra Zn for the proper fertilisation of their plants.
{"title":"The effect of soil physicochemical characteristics on zinc analysis methods","authors":"V. Vona, Endre Andor Toth, C. Centeri, Zsolt Giczi, Z. Biró, G. Jakab, G. Milics, I. Kulmány, R. Kalocsai, A. Kovács","doi":"10.17221/53/2020-SWR","DOIUrl":"https://doi.org/10.17221/53/2020-SWR","url":null,"abstract":"Zn is an essential micronutrient involved in a wide variety of physiological processes. Soils are tested for zinc in many countries with several extractants. Each country has its validated methods, best-suited for its soils. The current study was designed to compare different zinc content measuring methods with seventy-one samples from Hungary. The data were first compared for the whole dataset and then in certain categories such as CaCO3-content, pH, texture and clay content. The zinc content was determined by the water extraction, KCl-EDTA (ethylenediaminetetraacetic acid), Mehlich 3, CoHex (cobalt hexamine trichloride), and XRF (X-ray fluorescence) methods. Based on the analyses of all the data, we can conclude that all the methods are different. However, further analyses during the comparison of the methods based on the influencing factors, such as the pH, lime content, texture class, and clay content proved that, in some of the cases, there are similarities among the methods and, this way, we can get more knowledge on the measurements and the results provided. Farmers can gain extra knowledge from the comparison of the influencing factors to know where intervention is needed to use extra Zn for the proper fertilisation of their plants.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":"16 1","pages":"180-190"},"PeriodicalIF":2.3,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49108324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract: Afforestation is an essential strategy for erosion control. The objective of this study was to determine the soil quality index (SQI) in established afforested areas of different ages for erosion control in Erzurum, Turkey. Three afforested areas were selected as plots considering their establishment periods: + 40 years old (AA>40), 10–40 years old (AA10–40), and less than 10 years old (AA<10). Forty soil samples were taken in each plot area over the 0–15 and 15–30 cm depths. The soil samples were analysed for the texture, mean weight diameter, aggregate stability, pH, electrical conductivity, total nitrogen, total carbon, and total sulfur contents. These properties were used as the soil quality indicators, whereby the analytic hierarchy process (AHP) and principal component analysis (PCA) were used to establish their relative importance for describing the soil quality. The indicators were scored using the linear score functions of “more is better” and “optimum value”. For determining the SQI, the additive method (SQIA), the weighted method with AHP (SQIAHP), and the weighted method with PCA (SQIPCA) were used. The SQI scores of the plots showed statistically significant differences. In all three methods, the highest SQI value was obtained from the AA>40 plots.
{"title":"Determining the effects of the forest stand age on the soil quality index in afforested areas: A case study in the Palandöken Mountains","authors":"Emre Çomaklı, B. Turgut","doi":"10.17221/179/2020-SWR","DOIUrl":"https://doi.org/10.17221/179/2020-SWR","url":null,"abstract":"Abstract: Afforestation is an essential strategy for erosion control. The objective of this study was to determine the soil quality index (SQI) in established afforested areas of different ages for erosion control in Erzurum, Turkey. Three afforested areas were selected as plots considering their establishment periods: + 40 years old (AA>40), 10–40 years old (AA10–40), and less than 10 years old (AA<10). Forty soil samples were taken in each plot area over the 0–15 and 15–30 cm depths. The soil samples were analysed for the texture, mean weight diameter, aggregate stability, pH, electrical conductivity, total nitrogen, total carbon, and total sulfur contents. These properties were used as the soil quality indicators, whereby the analytic hierarchy process (AHP) and principal component analysis (PCA) were used to establish their relative importance for describing the soil quality. The indicators were scored using the linear score functions of “more is better” and “optimum value”. For determining the SQI, the additive method (SQIA), the weighted method with AHP (SQIAHP), and the weighted method with PCA (SQIPCA) were used. The SQI scores of the plots showed statistically significant differences. In all three methods, the highest SQI value was obtained from the AA>40 plots.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48440767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Spasić, L. Borůvka, O. Vacek, O. Drábek, V. Tejnecký
Open-cast coal mining presents a big global issue because of the large areas the mines occupy, which get entirely changed. Their ecosystems lose most of their functions, and a huge amount of fertile soil gets utterly destroyed. Reclamation is a process of returning the functions of the soil after the excavation is finished, most commonly achieved by establishing vegetation, which can sometimes be very difficult. This happens due to the physical, chemical and biological changes that occur on these sites, which are described in this paper. Also, some directions for mitigating these problems are given. Once the vegetation is successfully introduced, natural cycles that were compromised by the mining are established once again, and the process of soil formation begins. Some trends and problems related to pedogenesis research on reclaimed mine sites are presented and discussed, along with presumptions of how the process of soil formation evolves on afforested clayey Technosols of central Europe. The potential future research which would confirm these presumptions is discussed, with the emphasis on the need of research performed on older reclamation sites, as well as sites with similar ecological conditions and different tree species cover.
{"title":"Pedogenesis problems on reclaimed coal mining sites","authors":"M. Spasić, L. Borůvka, O. Vacek, O. Drábek, V. Tejnecký","doi":"10.17221/163/2020-SWR","DOIUrl":"https://doi.org/10.17221/163/2020-SWR","url":null,"abstract":"Open-cast coal mining presents a big global issue because of the large areas the mines occupy, which get entirely changed. Their ecosystems lose most of their functions, and a huge amount of fertile soil gets utterly destroyed. Reclamation is a process of returning the functions of the soil after the excavation is finished, most commonly achieved by establishing vegetation, which can sometimes be very difficult. This happens due to the physical, chemical and biological changes that occur on these sites, which are described in this paper. Also, some directions for mitigating these problems are given. Once the vegetation is successfully introduced, natural cycles that were compromised by the mining are established once again, and the process of soil formation begins. Some trends and problems related to pedogenesis research on reclaimed mine sites are presented and discussed, along with presumptions of how the process of soil formation evolves on afforested clayey Technosols of central Europe. The potential future research which would confirm these presumptions is discussed, with the emphasis on the need of research performed on older reclamation sites, as well as sites with similar ecological conditions and different tree species cover.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":"16 1","pages":"137-150"},"PeriodicalIF":2.3,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41611340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Á. Béni, E. Juhász, P. Ragán, Tamás Ratonyi, G. Várbíró, I. Fekete
We managed to create a self-developed sensor system, which is based on the simultaneous reflectance measurements at a 660 and 940 nm wavelength. The ratio of the reflectance refers to the concentration of the soil organic carbon (SOC). This instrument has a calibration range of 1.19 to 6.05 SOC%. The SOC content of twenty-six soil samples was measured by the self-developed system and a standard spectrophotometric method and we found that the SOC estimation in the self-developed system had a good approximation and the differences ranged from –27.72% ~ + 6.99%. We found a strong correlation between the data of the reference measurements (R2 = 0.73) and the values indicated by our self-developed sensor system (Reference (SOX%) =1.4857 × E (SOC%) – 0.7393). This measurement system is easy to use and displays and records the data in real time. This allows one to map an agricultural production area based on the SOC concentration using its built-in GPS unit.
{"title":"Development of soil organic matter measurement system","authors":"Á. Béni, E. Juhász, P. Ragán, Tamás Ratonyi, G. Várbíró, I. Fekete","doi":"10.17221/18/2021-SWR","DOIUrl":"https://doi.org/10.17221/18/2021-SWR","url":null,"abstract":"We managed to create a self-developed sensor system, which is based on the simultaneous reflectance measurements at a 660 and 940 nm wavelength. The ratio of the reflectance refers to the concentration of the soil organic carbon (SOC). This instrument has a calibration range of 1.19 to 6.05 SOC%. The SOC content of twenty-six soil samples was measured by the self-developed system and a standard spectrophotometric method and we found that the SOC estimation in the self-developed system had a good approximation and the differences ranged from –27.72% ~ + 6.99%. We found a strong correlation between the data of the reference measurements (R2 = 0.73) and the values indicated by our self-developed sensor system (Reference (SOX%) =1.4857 × E (SOC%) – 0.7393). This measurement system is easy to use and displays and records the data in real time. This allows one to map an agricultural production area based on the SOC concentration using its built-in GPS unit.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":"16 1","pages":"174-179"},"PeriodicalIF":2.3,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44871065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bao-yang Sun, Feipeng Ren, W. Ding, Guan-Yuan Zhang, Jinquan Huang, Jian-ming Li, Lei Zhang
Freeze-thaw erosion occurs primarily at high latitudes and altitudes. Temperature controlled freeze-thaw events dislodge soil particles and serve as a catalyst for erosion. This review paper provided an overview of the effects of freeze-thaw on soil properties and water erosion. The process of freeze-thaw cycles results in temporary and inconsistent changes in the soil moisture, and affects the soil’s mechanical, physical and chemical properties, such as the soil moisture content, porosity, bulk density, aggregates stability, shear strength and organic matter content and so on. The variation trend and range of the soil properties were related to the soil texture, water content and freeze-thaw degree. Furthermore, the soil erosion was affected by the freeze-thaw processes, as thawing and water erosion reinforce each other. However, research of different experimental conditions on indoor simulations have numerous limitations compared with field experiments. The use of indoor and field experiments to further reveal the freeze-thaw effect on the soil erosion would facilitate improved forecasting.
{"title":"Effects of freeze-thaw on soil properties and water erosion","authors":"Bao-yang Sun, Feipeng Ren, W. Ding, Guan-Yuan Zhang, Jinquan Huang, Jian-ming Li, Lei Zhang","doi":"10.17221/143/2020-SWR","DOIUrl":"https://doi.org/10.17221/143/2020-SWR","url":null,"abstract":"Freeze-thaw erosion occurs primarily at high latitudes and altitudes. Temperature controlled freeze-thaw events dislodge soil particles and serve as a catalyst for erosion. This review paper provided an overview of the effects of freeze-thaw on soil properties and water erosion. The process of freeze-thaw cycles results in temporary and inconsistent changes in the soil moisture, and affects the soil’s mechanical, physical and chemical properties, such as the soil moisture content, porosity, bulk density, aggregates stability, shear strength and organic matter content and so on. The variation trend and range of the soil properties were related to the soil texture, water content and freeze-thaw degree. Furthermore, the soil erosion was affected by the freeze-thaw processes, as thawing and water erosion reinforce each other. However, research of different experimental conditions on indoor simulations have numerous limitations compared with field experiments. The use of indoor and field experiments to further reveal the freeze-thaw effect on the soil erosion would facilitate improved forecasting.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49205179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}