首页 > 最新文献

Plant Genome最新文献

英文 中文
Genome-wide association study and KASP marker development for starch quality traits in wheat. 小麦淀粉品质性状的全基因组关联研究和 KASP 标记开发。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-09-29 DOI: 10.1002/tpg2.20514
Yousheng Tian, Pengpeng Liu, Xin Zhang, Yichen Liu, Dezhen Kong, Yingbin Nie, Hongjun Xu, Xinnian Han, Wei Sang, Weihua Li

Starch is the main component of wheat (Triticum aestivum L.) flour, and its quality directly affects the processing quality of the final product. To investigate the genetic basis of starch, this study assessed the starch quality traits of 341 winter wheat varieties/lines grown in Emin and Qitai during the years 2019-2020 and 2020-2021. A genome-wide association study was conducted with the genotype data obtained from wheat 40K breeding chips using the mixed linear model. Wheat starch quality traits exhibited coefficients of variation ranging from 1.43% to 23.66% and broad-sense heritabilities between 0.37 and 0.87. All traits followed an approximately normal distribution, except for T. There were highly significant correlations among starch quality traits, with the strongest correlation observed between final viscosity (FV) and trough viscosity (TV) (r = 0.748), followed by peak viscosity and breakdown (BD) (r = 0.679). Thirty-four single-nucleotide polymorphism markers significantly and stably associated with starch quality traits were identified, clustering in 31 genetic loci. These included one locus for TV, six loci for BD, three loci for FV, two loci for peak time (PT), 12 loci for T, five loci for falling number, and two loci for damaged starch. One PT-related block of 410 kb was identified in the region of 596 Mb on chromosome 5A, where significant phenotypic differences were observed between different haplotypes. One Kompetitive allele-specific PCR (KASP) marker for T was developed on chromosome 7B, and two KASP markers for BD were developed on chromosome 7A. Four candidate genes possibly affecting BD during grain development were identified on chromosome 7A, including TraesCS7A02G225100.1, TraesCS7A02G225900.1, TraesCS7A02G226400.1, and TraesCS7A02G257100.1. The results have significant implications for utilizing marker-assisted selection in breeding to improve wheat starch quality.

淀粉是小麦(Triticum aestivum L.)面粉的主要成分,其质量直接影响最终产品的加工质量。为了研究淀粉的遗传基础,本研究评估了 2019-2020 年和 2020-2021 年在额敏和奇台种植的 341 个冬小麦品种/品系的淀粉品质性状。采用混合线性模型对小麦 40K 育种芯片中获得的基因型数据进行了全基因组关联研究。小麦淀粉品质性状的变异系数在 1.43% 至 23.66% 之间,广义遗传力在 0.37 至 0.87 之间。淀粉质量性状之间存在高度显著的相关性,其中最终粘度(FV)和低谷粘度(TV)之间的相关性最强(r = 0.748),其次是峰值粘度和分解(BD)之间的相关性(r = 0.679)。已鉴定出 34 个与淀粉质量性状显著且稳定相关的单核苷酸多态性标记,它们聚集在 31 个遗传位点上。其中包括 1 个 TV 基因位点、6 个 BD 基因位点、3 个 FV 基因位点、2 个峰值时间(PT)基因位点、12 个 T 基因位点、5 个下降数基因位点和 2 个受损淀粉基因位点。在染色体 5A 上 596 Mb 的区域中发现了一个 410 kb 的 PT 相关区块,不同单倍型之间存在显著的表型差异。在 7B 染色体上发现了一个针对 T 的竞争性等位基因特异性 PCR(KASP)标记,在 7A 染色体上发现了两个针对 BD 的 KASP 标记。在 7A 染色体上发现了四个可能在谷物发育过程中影响 BD 的候选基因,包括 TraesCS7A02G225100.1、TraesCS7A02G225900.1、TraesCS7A02G226400.1 和 TraesCS7A02G257100.1。这些结果对于在育种中利用标记辅助选择来提高小麦淀粉品质具有重要意义。
{"title":"Genome-wide association study and KASP marker development for starch quality traits in wheat.","authors":"Yousheng Tian, Pengpeng Liu, Xin Zhang, Yichen Liu, Dezhen Kong, Yingbin Nie, Hongjun Xu, Xinnian Han, Wei Sang, Weihua Li","doi":"10.1002/tpg2.20514","DOIUrl":"10.1002/tpg2.20514","url":null,"abstract":"<p><p>Starch is the main component of wheat (Triticum aestivum L.) flour, and its quality directly affects the processing quality of the final product. To investigate the genetic basis of starch, this study assessed the starch quality traits of 341 winter wheat varieties/lines grown in Emin and Qitai during the years 2019-2020 and 2020-2021. A genome-wide association study was conducted with the genotype data obtained from wheat 40K breeding chips using the mixed linear model. Wheat starch quality traits exhibited coefficients of variation ranging from 1.43% to 23.66% and broad-sense heritabilities between 0.37 and 0.87. All traits followed an approximately normal distribution, except for T. There were highly significant correlations among starch quality traits, with the strongest correlation observed between final viscosity (FV) and trough viscosity (TV) (r = 0.748), followed by peak viscosity and breakdown (BD) (r = 0.679). Thirty-four single-nucleotide polymorphism markers significantly and stably associated with starch quality traits were identified, clustering in 31 genetic loci. These included one locus for TV, six loci for BD, three loci for FV, two loci for peak time (PT), 12 loci for T, five loci for falling number, and two loci for damaged starch. One PT-related block of 410 kb was identified in the region of 596 Mb on chromosome 5A, where significant phenotypic differences were observed between different haplotypes. One Kompetitive allele-specific PCR (KASP) marker for T was developed on chromosome 7B, and two KASP markers for BD were developed on chromosome 7A. Four candidate genes possibly affecting BD during grain development were identified on chromosome 7A, including TraesCS7A02G225100.1, TraesCS7A02G225900.1, TraesCS7A02G226400.1, and TraesCS7A02G257100.1. The results have significant implications for utilizing marker-assisted selection in breeding to improve wheat starch quality.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20514"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and mapping of QTLs and their corresponding candidate genes controlling high night-time temperature stress tolerance in wheat (Triticum aestivum L.). 控制小麦(Triticum aestivum L.)耐受夜间高温胁迫的 QTLs 及其相应候选基因的鉴定和绘图。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI: 10.1002/tpg2.20517
Kaviraj S Kahlon, Kanwardeep S Rawale, Sachin Kumar, Kulvinder S Gill

With every 1°C rise in temperature, yields are predicted to decrease by 5%-6% for both cool and warm season crops, threatening food production, which should double by 2050 to meet the global demand. While high night-time temperature (HNT) stress is expected to increase due to climate change, limited information is available on the genetic control of the trait, especially in wheat (Triticum aestivum L.). To identify genes controlling the HNT trait, we evaluated a doubled haploid (DH) population developed from a cross between an HNT tolerant line KSG1203 and KSG0057, a selection out of a mega variety PBW343 from South East Asia that turned out to be HNT susceptible. The population, along with the parents, were evaluated under 30°C night-time (HNT stress) keeping the daytime temperature to normal 22°C. The same daytime and 16°C night-time temperature were used as a control. The HNT treatment negatively impacted all agronomic traits under evaluation, with a percentage reduction of 0.5%-35% for the tolerant parent, 8%-75% for the susceptible parent, and 8%-50% for the DH population. Performed using sequencing-based genotyping, quantitative trait locus (QTL) mapping identified 19 QTLs on 13 wheat chromosomes explaining 9.72%-28.81% of cumulative phenotypic variance for HNT stress tolerance, along with 13 that were for traits under normal growing conditions. The size of QTL intervals ranged between 0.021 and 97.48 Mb, with the number of genes ranging between 2 and 867. A candidate gene analysis for the smallest six QTL intervals identified eight putative candidates for night-time heat stress tolerance.

据预测,气温每升高 1°C,冷季和暖季作物的产量都将减少 5%-6%,这将威胁到粮食产量,而到 2050 年,粮食产量应翻一番才能满足全球需求。虽然夜间高温(HNT)胁迫预计会因气候变化而增加,但有关该性状遗传控制的信息却很有限,尤其是在小麦(Triticum aestivum L.)中。为了确定控制 HNT 性状的基因,我们评估了一个由耐受 HNT 的品系 KSG1203 和 KSG0057 杂交而成的双倍单倍体(DH)群体。该群体与亲本一起在夜间温度为 30°C(HNT 胁迫)的条件下进行了评估,白天温度保持在正常的 22°C。同样的白天温度和 16°C 的夜间温度被用作对照。HNT 处理对评估的所有农艺性状都产生了负面影响,耐受性亲本的农艺性状降低了 0.5%-35%,易感性亲本降低了 8%-75%,DH 群体降低了 8%-50%。通过基于测序的基因分型,定量性状基因座(QTL)图谱在 13 条小麦染色体上发现了 19 个 QTLs,可解释 9.72%-28.81% 的 HNT 胁迫耐受性累积表型变异,还有 13 个 QTLs 可解释正常生长条件下的性状。QTL 区间的大小在 0.021 至 97.48 Mb 之间,基因数目在 2 至 867 之间。对最小的 6 个 QTL 区间进行的候选基因分析发现了 8 个潜在的夜间热胁迫耐受性候选基因。
{"title":"Identification and mapping of QTLs and their corresponding candidate genes controlling high night-time temperature stress tolerance in wheat (Triticum aestivum L.).","authors":"Kaviraj S Kahlon, Kanwardeep S Rawale, Sachin Kumar, Kulvinder S Gill","doi":"10.1002/tpg2.20517","DOIUrl":"10.1002/tpg2.20517","url":null,"abstract":"<p><p>With every 1°C rise in temperature, yields are predicted to decrease by 5%-6% for both cool and warm season crops, threatening food production, which should double by 2050 to meet the global demand. While high night-time temperature (HNT) stress is expected to increase due to climate change, limited information is available on the genetic control of the trait, especially in wheat (Triticum aestivum L.). To identify genes controlling the HNT trait, we evaluated a doubled haploid (DH) population developed from a cross between an HNT tolerant line KSG1203 and KSG0057, a selection out of a mega variety PBW343 from South East Asia that turned out to be HNT susceptible. The population, along with the parents, were evaluated under 30°C night-time (HNT stress) keeping the daytime temperature to normal 22°C. The same daytime and 16°C night-time temperature were used as a control. The HNT treatment negatively impacted all agronomic traits under evaluation, with a percentage reduction of 0.5%-35% for the tolerant parent, 8%-75% for the susceptible parent, and 8%-50% for the DH population. Performed using sequencing-based genotyping, quantitative trait locus (QTL) mapping identified 19 QTLs on 13 wheat chromosomes explaining 9.72%-28.81% of cumulative phenotypic variance for HNT stress tolerance, along with 13 that were for traits under normal growing conditions. The size of QTL intervals ranged between 0.021 and 97.48 Mb, with the number of genes ranging between 2 and 867. A candidate gene analysis for the smallest six QTL intervals identified eight putative candidates for night-time heat stress tolerance.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20517"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association studies in a diverse strawberry collection unveil loci controlling agronomic and fruit quality traits. 对不同草莓品种的全基因组关联研究揭示了控制农艺学和果实品质性状的基因位点。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-10-15 DOI: 10.1002/tpg2.20509
Pilar Muñoz, Francisco Javier Roldán-Guerra, Sujeet Verma, Mario Ruiz-Velázquez, Rocío Torreblanca, Nicolás Oiza, Cristina Castillejo, José F Sánchez-Sevilla, Iraida Amaya

Strawberries (Fragaria sp.) are cherished for their organoleptic properties and nutritional value. However, breeding new cultivars involves the simultaneous selection of many agronomic and fruit quality traits, including fruit firmness and extended postharvest life. The strawberry germplasm collection here studied exhibited extensive phenotypic variation in 26 agronomic and fruit quality traits across three consecutive seasons. Phenotypic correlations and principal component analysis revealed relationships among traits and accessions, emphasizing the impact of plant breeding on fruit weight and firmness to the detriment of sugar or vitamin C content. Genetic diversity analysis on 124 accessions using 44,408 markers denoted a population structure divided into six subpopulations still retaining considerable diversity. Genome-wide association studies for the 26 traits unveiled 121 significant marker-trait associations distributed across 95 quantitative trait loci (QTLs). Multiple associations were detected for fruit firmness, a key breeding target, including a prominent locus on chromosome 6A. The candidate gene FaPG1, controlling fruit softening and postharvest shelf life, was identified within this QTL region. Differential expression of FaPG1 confirmed its role as the primary contributor to natural variation in fruit firmness. A kompetitive allele-specific PCR assay based on the single nucleotide polymorphism (SNP) AX-184242253, associated with the 6A QTL, predicts a substantial increase in fruit firmness, validating its utility for marker-assisted selection. In essence, this comprehensive study provides insights into the phenotypic and genetic landscape of the strawberry collection and lays a robust foundation for propelling the development of superior strawberry cultivars through precision breeding.

草莓(Fragaria sp.)因其感官特性和营养价值而备受青睐。然而,培育新的栽培品种需要同时选择许多农艺性状和果实品质性状,包括果实紧实度和延长采后寿命。本研究收集的草莓种质在连续三个季节的 26 个农艺性状和果实品质性状中表现出广泛的表型变异。表型相关性和主成分分析揭示了性状和品种之间的关系,强调了植物育种对果实重量和坚实度的影响,而不利于糖分或维生素 C 的含量。利用 44 408 个标记对 124 个品种进行的遗传多样性分析表明,种群结构分为六个亚群,但仍保留了相当大的多样性。对 26 个性状的全基因组关联研究揭示了 121 个显著的标记-性状关联,分布在 95 个数量性状位点(QTL)上。在关键育种目标--果实坚硬度方面,发现了多个关联,包括染色体 6A 上的一个显著位点。在该 QTL 区域内发现了控制果实软化和采后货架期的候选基因 FaPG1。FaPG1 的差异表达证实了它是果实坚硬度自然变异的主要贡献者。基于与 6A QTL 相关的单核苷酸多态性(SNP)AX-184242253 的竞争性等位基因特异性 PCR 分析预测了果实硬度的显著增加,验证了其在标记辅助选择中的实用性。总之,这项综合研究深入揭示了草莓品种的表型和遗传图谱,为通过精准育种培育优良草莓品种奠定了坚实的基础。
{"title":"Genome-wide association studies in a diverse strawberry collection unveil loci controlling agronomic and fruit quality traits.","authors":"Pilar Muñoz, Francisco Javier Roldán-Guerra, Sujeet Verma, Mario Ruiz-Velázquez, Rocío Torreblanca, Nicolás Oiza, Cristina Castillejo, José F Sánchez-Sevilla, Iraida Amaya","doi":"10.1002/tpg2.20509","DOIUrl":"10.1002/tpg2.20509","url":null,"abstract":"<p><p>Strawberries (Fragaria sp.) are cherished for their organoleptic properties and nutritional value. However, breeding new cultivars involves the simultaneous selection of many agronomic and fruit quality traits, including fruit firmness and extended postharvest life. The strawberry germplasm collection here studied exhibited extensive phenotypic variation in 26 agronomic and fruit quality traits across three consecutive seasons. Phenotypic correlations and principal component analysis revealed relationships among traits and accessions, emphasizing the impact of plant breeding on fruit weight and firmness to the detriment of sugar or vitamin C content. Genetic diversity analysis on 124 accessions using 44,408 markers denoted a population structure divided into six subpopulations still retaining considerable diversity. Genome-wide association studies for the 26 traits unveiled 121 significant marker-trait associations distributed across 95 quantitative trait loci (QTLs). Multiple associations were detected for fruit firmness, a key breeding target, including a prominent locus on chromosome 6A. The candidate gene FaPG1, controlling fruit softening and postharvest shelf life, was identified within this QTL region. Differential expression of FaPG1 confirmed its role as the primary contributor to natural variation in fruit firmness. A kompetitive allele-specific PCR assay based on the single nucleotide polymorphism (SNP) AX-184242253, associated with the 6A QTL, predicts a substantial increase in fruit firmness, validating its utility for marker-assisted selection. In essence, this comprehensive study provides insights into the phenotypic and genetic landscape of the strawberry collection and lays a robust foundation for propelling the development of superior strawberry cultivars through precision breeding.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20509"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using cross-country datasets for association mapping in Arachis hypogaea L. 利用跨国数据集绘制Arachis hypogaea L.的关联图谱
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-10-15 DOI: 10.1002/tpg2.20515
Velma Okaron, James Mwololo, Davis M Gimode, David K Okello, Millicent Avosa, Josh Clevenger, Walid Korani, Mildred Ochwo Ssemakula, Thomas L Odong, Damaris A Odeny

Groundnut (Arachis hypogaea L.) is one of the most important climate-resilient oil crops in sub-Saharan Africa. There is a significant yield gap for groundnut in Africa because of poor soil fertility, low agricultural inputs, biotic and abiotic stresses. Cross-country evaluations of promising breeding lines can facilitate the varietal development process. The objective of our study was to characterize popular test environments in Uganda (Serere and Nakabango) and Malawi (Chitala and Chitedze) and identify genotypes with stable superior yields for potential future release. Phenotypic data were generated for 192 breeding lines for yield-related traits, while genotypic data were generated using skim-sequencing. We observed significant variation (p < 0.001; p < 0.01; p < 0.05) across genotypes for all yield-related traits: days to flowering (DTF), pod yield (PY), shelling percentage, 100-seed weight, and grain yield within and across locations. Nakabango, Chitedze, and Serere were clustered as one mega-environment with the top five most stable genotypes being ICGV-SM 01709, ICGV-SM 15575, ICGV-SM 90704, ICGV-SM 15576, and ICGV-SM 03710, all Virginia types. Population structure analysis clustered the genotypes in three distinct groups based on market classes. Eight and four marker-trait associations (MTAs) were recorded for DTF and PY, respectively. One of the MTAs for DTF was co-localized within an uncharacterized protein on chromosome 13, while another one (TRv2Chr.11_3476885) was consistent across the two countries. Future studies will need to further characterize the candidate genes as well as confirm the stability of superior genotypes across seasons before recommending them for release.

落花生(Arachis hypogaea L.)是撒哈拉以南非洲地区最重要的耐气候油料作物之一。由于土壤肥力差、农业投入少、生物和非生物胁迫等原因,非洲的落花生产量差距很大。对有前途的育种品系进行跨国评估可促进品种开发进程。我们研究的目的是描述乌干达(Serere 和 Nakabango)和马拉维(Chitala 和 Chitedze)流行试验环境的特征,并确定具有稳定优异产量的基因型,以便将来发布。我们为 192 个育种品系生成了产量相关性状的表型数据,并使用脱脂测序法生成了基因型数据。我们观察到了明显的差异(p
{"title":"Using cross-country datasets for association mapping in Arachis hypogaea L.","authors":"Velma Okaron, James Mwololo, Davis M Gimode, David K Okello, Millicent Avosa, Josh Clevenger, Walid Korani, Mildred Ochwo Ssemakula, Thomas L Odong, Damaris A Odeny","doi":"10.1002/tpg2.20515","DOIUrl":"10.1002/tpg2.20515","url":null,"abstract":"<p><p>Groundnut (Arachis hypogaea L.) is one of the most important climate-resilient oil crops in sub-Saharan Africa. There is a significant yield gap for groundnut in Africa because of poor soil fertility, low agricultural inputs, biotic and abiotic stresses. Cross-country evaluations of promising breeding lines can facilitate the varietal development process. The objective of our study was to characterize popular test environments in Uganda (Serere and Nakabango) and Malawi (Chitala and Chitedze) and identify genotypes with stable superior yields for potential future release. Phenotypic data were generated for 192 breeding lines for yield-related traits, while genotypic data were generated using skim-sequencing. We observed significant variation (p < 0.001; p < 0.01; p < 0.05) across genotypes for all yield-related traits: days to flowering (DTF), pod yield (PY), shelling percentage, 100-seed weight, and grain yield within and across locations. Nakabango, Chitedze, and Serere were clustered as one mega-environment with the top five most stable genotypes being ICGV-SM 01709, ICGV-SM 15575, ICGV-SM 90704, ICGV-SM 15576, and ICGV-SM 03710, all Virginia types. Population structure analysis clustered the genotypes in three distinct groups based on market classes. Eight and four marker-trait associations (MTAs) were recorded for DTF and PY, respectively. One of the MTAs for DTF was co-localized within an uncharacterized protein on chromosome 13, while another one (TRv2Chr.11_3476885) was consistent across the two countries. Future studies will need to further characterize the candidate genes as well as confirm the stability of superior genotypes across seasons before recommending them for release.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20515"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soybean genomics research community strategic plan: A vision for 2024-2028. 大豆基因组研究界战略计划:2024-2028 年愿景。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-11-21 DOI: 10.1002/tpg2.20516
Robert M Stupar, Anna M Locke, Doug K Allen, Minviluz G Stacey, Jianxin Ma, Jackie Weiss, Rex T Nelson, Matthew E Hudson, Trupti Joshi, Zenglu Li, Qijian Song, Joseph R Jedlicka, Gustavo C MacIntosh, David Grant, Wayne A Parrott, Tom E Clemente, Gary Stacey, Yong-Qiang Charles An, Jose Aponte-Rivera, Madan K Bhattacharyya, Ivan Baxter, Kristin D Bilyeu, Jacqueline D Campbell, Steven B Cannon, Steven J Clough, Shaun J Curtin, Brian W Diers, Anne E Dorrance, Jason D Gillman, George L Graef, C Nathan Hancock, Karen A Hudson, David L Hyten, Aardra Kachroo, Jenny Koebernick, Marc Libault, Aaron J Lorenz, Adam L Mahan, Jon M Massman, Michaela McGinn, Khalid Meksem, Jack K Okamuro, Kerry F Pedley, Katy Martin Rainey, Andrew M Scaboo, Jeremy Schmutz, Bao-Hua Song, Adam D Steinbrenner, Benjamin B Stewart-Brown, Katalin Toth, Dechun Wang, Lisa Weaver, Bo Zhang, Michelle A Graham, Jamie A O'Rourke

This strategic plan summarizes the major accomplishments achieved in the last quinquennial by the soybean [Glycine max (L.) Merr.] genetics and genomics research community and outlines key priorities for the next 5 years (2024-2028). This work is the result of deliberations among over 50 soybean researchers during a 2-day workshop in St Louis, MO, USA, at the end of 2022. The plan is divided into seven traditional areas/disciplines: Breeding, Biotic Interactions, Physiology and Abiotic Stress, Functional Genomics, Biotechnology, Genomic Resources and Datasets, and Computational Resources. One additional section was added, Training the Next Generation of Soybean Researchers, when it was identified as a pressing issue during the workshop. This installment of the soybean genomics strategic plan provides a snapshot of recent progress while looking at future goals that will improve resources and enable innovation among the community of basic and applied soybean researchers. We hope that this work will inform our community and increase support for soybean research.

本战略计划总结了大豆 [Glycine max (L.) Merr.] 遗传学和基因组学研究界在过去五年中取得的主要成就,并概述了未来五年(2024-2028 年)的主要优先事项。这项工作是 2022 年底在美国密苏里州圣路易斯市举行的为期两天的研讨会上 50 多名大豆研究人员讨论的结果。该计划分为七个传统领域/学科:育种、生物相互作用、生理学和非生物压力、功能基因组学、生物技术、基因组资源和数据集以及计算资源。在研讨会上,下一代大豆研究人员的培训被认为是一个紧迫的问题,因此增加了一个章节。本期大豆基因组学战略计划简要介绍了近期取得的进展,同时展望了未来的目标,这些目标将改善大豆基础和应用研究人员社区的资源并促进创新。我们希望这项工作能为我们的社区提供信息,并增加对大豆研究的支持。
{"title":"Soybean genomics research community strategic plan: A vision for 2024-2028.","authors":"Robert M Stupar, Anna M Locke, Doug K Allen, Minviluz G Stacey, Jianxin Ma, Jackie Weiss, Rex T Nelson, Matthew E Hudson, Trupti Joshi, Zenglu Li, Qijian Song, Joseph R Jedlicka, Gustavo C MacIntosh, David Grant, Wayne A Parrott, Tom E Clemente, Gary Stacey, Yong-Qiang Charles An, Jose Aponte-Rivera, Madan K Bhattacharyya, Ivan Baxter, Kristin D Bilyeu, Jacqueline D Campbell, Steven B Cannon, Steven J Clough, Shaun J Curtin, Brian W Diers, Anne E Dorrance, Jason D Gillman, George L Graef, C Nathan Hancock, Karen A Hudson, David L Hyten, Aardra Kachroo, Jenny Koebernick, Marc Libault, Aaron J Lorenz, Adam L Mahan, Jon M Massman, Michaela McGinn, Khalid Meksem, Jack K Okamuro, Kerry F Pedley, Katy Martin Rainey, Andrew M Scaboo, Jeremy Schmutz, Bao-Hua Song, Adam D Steinbrenner, Benjamin B Stewart-Brown, Katalin Toth, Dechun Wang, Lisa Weaver, Bo Zhang, Michelle A Graham, Jamie A O'Rourke","doi":"10.1002/tpg2.20516","DOIUrl":"10.1002/tpg2.20516","url":null,"abstract":"<p><p>This strategic plan summarizes the major accomplishments achieved in the last quinquennial by the soybean [Glycine max (L.) Merr.] genetics and genomics research community and outlines key priorities for the next 5 years (2024-2028). This work is the result of deliberations among over 50 soybean researchers during a 2-day workshop in St Louis, MO, USA, at the end of 2022. The plan is divided into seven traditional areas/disciplines: Breeding, Biotic Interactions, Physiology and Abiotic Stress, Functional Genomics, Biotechnology, Genomic Resources and Datasets, and Computational Resources. One additional section was added, Training the Next Generation of Soybean Researchers, when it was identified as a pressing issue during the workshop. This installment of the soybean genomics strategic plan provides a snapshot of recent progress while looking at future goals that will improve resources and enable innovation among the community of basic and applied soybean researchers. We hope that this work will inform our community and increase support for soybean research.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20516"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local haplotyping reveals insights into the genetic control of flowering time variation in wild and domesticated soybean. 局部单倍型分析揭示了野生大豆和驯化大豆花期变异的遗传控制。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-11-07 DOI: 10.1002/tpg2.20528
Shameela Mohamedikbal, Hawlader A Al-Mamun, Jacob I Marsh, Shriprabha Upadhyaya, Monica F Danilevicz, Henry T Nguyen, Babu Valliyodan, Adam Mahan, Jacqueline Batley, David Edwards

The timing of flowering in soybean [Glycine max (L.) Merr.], a key legume crop, is influenced by many factors, including daylight length or photoperiodic sensitivity, that affect crop yield, productivity, and geographical adaptation. Despite its importance, a comprehensive understanding of the local linkage landscape and allelic diversity within regions of the genome influencing flowering and contributing to phenotypic variation in subpopulations has been limited. This study addresses these gaps by conducting an in-depth trait association and linkage analysis coupled with local haplotyping using advanced bioinformatics tools, including crosshap, to characterize genomic variation using a pangenome dataset representing 915 domesticated and wild-type individuals. The association analysis identified eight significant loci on seven chromosomes. Moving beyond traditional association analysis, local haplotyping of targeted regions on chromosomes 6 and 20 identified distinct haplotype structures, variation patterns, and genomic candidates influencing flowering in subpopulations. These results suggest the action of a network of genomic candidates influencing flowering time and an untapped reservoir of genomic variation for this trait in wild germplasm. Notably, GlymaLee.20G147200 on chromosome 20 was identified as a candidate gene that may cause delayed flowering in soybean, potentially through histone modifications of floral repressor loci as seen in Arabidopsis thaliana (L.) Heynh. These findings support future functional validation of haplotype-based alleles for marker-assisted breeding and genomic selection to enhance latitude adaptability of soybean without compromising yield.

大豆[Glycine max (L.) Merr.]是一种重要的豆科作物,其开花时间受许多因素的影响,包括日照长度或光周期敏感性,这些因素会影响作物产量、生产率和地理适应性。尽管开花很重要,但对影响开花并导致亚群表型变异的基因组区域内的局部连接景观和等位基因多样性的全面了解却很有限。为了弥补这些差距,本研究利用代表 915 个驯化个体和野生型个体的泛基因组数据集,进行了深入的性状关联分析和连锁分析,并使用先进的生物信息学工具(包括 crosshap)进行了局部单倍型分析,以确定基因组变异的特征。关联分析确定了 7 条染色体上的 8 个重要位点。除了传统的关联分析外,还对 6 号和 20 号染色体上的目标区域进行了局部单倍型分析,确定了不同的单倍型结构、变异模式以及影响亚群开花的候选基因组。这些结果表明,影响开花时间的候选基因组网络正在发挥作用,野生种质中这一性状的基因组变异库尚未开发。值得注意的是,20 号染色体上的 GlymaLee.20G147200 被确定为可能导致大豆延迟开花的候选基因,该基因可能是通过对拟南芥(L. )Heynh 的花抑制基因座进行组蛋白修饰而导致的。这些发现支持未来对基于单体型的等位基因进行功能验证,以用于标记辅助育种和基因组选择,从而在不影响产量的情况下提高大豆的纬度适应性。
{"title":"Local haplotyping reveals insights into the genetic control of flowering time variation in wild and domesticated soybean.","authors":"Shameela Mohamedikbal, Hawlader A Al-Mamun, Jacob I Marsh, Shriprabha Upadhyaya, Monica F Danilevicz, Henry T Nguyen, Babu Valliyodan, Adam Mahan, Jacqueline Batley, David Edwards","doi":"10.1002/tpg2.20528","DOIUrl":"10.1002/tpg2.20528","url":null,"abstract":"<p><p>The timing of flowering in soybean [Glycine max (L.) Merr.], a key legume crop, is influenced by many factors, including daylight length or photoperiodic sensitivity, that affect crop yield, productivity, and geographical adaptation. Despite its importance, a comprehensive understanding of the local linkage landscape and allelic diversity within regions of the genome influencing flowering and contributing to phenotypic variation in subpopulations has been limited. This study addresses these gaps by conducting an in-depth trait association and linkage analysis coupled with local haplotyping using advanced bioinformatics tools, including crosshap, to characterize genomic variation using a pangenome dataset representing 915 domesticated and wild-type individuals. The association analysis identified eight significant loci on seven chromosomes. Moving beyond traditional association analysis, local haplotyping of targeted regions on chromosomes 6 and 20 identified distinct haplotype structures, variation patterns, and genomic candidates influencing flowering in subpopulations. These results suggest the action of a network of genomic candidates influencing flowering time and an untapped reservoir of genomic variation for this trait in wild germplasm. Notably, GlymaLee.20G147200 on chromosome 20 was identified as a candidate gene that may cause delayed flowering in soybean, potentially through histone modifications of floral repressor loci as seen in Arabidopsis thaliana (L.) Heynh. These findings support future functional validation of haplotype-based alleles for marker-assisted breeding and genomic selection to enhance latitude adaptability of soybean without compromising yield.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20528"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Candidate selective sweeps in US wheat populations. 美国小麦种群中的候选选择性横扫。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-09-25 DOI: 10.1002/tpg2.20513
Sajal R Sthapit, Travis M Ruff, Marcus A Hooker, Bosen Zhang, Xianran Li, Deven R See

Exploration of novel alleles from ex situ collection is still limited in modern plant breeding as these alleles exist in genetic backgrounds of landraces that are not adapted to modern production environments. The practice of backcross breeding results in preservation of the adapted background of elite parents but leaves little room for novel alleles from landraces to be incorporated. Selection of adaptation-associated linkage blocks instead of the entire adapted background may allow breeders to incorporate more of the landrace's genetic background and to observe and evaluate novel alleles. Important adaptation-associated linkage blocks would have been selected over multiple cycles of breeding and hence are likely to exhibit signatures of positive selection or selective sweeps. We conducted genome-wide scan for candidate selective sweeps (CSS) using Fst, Rsb, and xpEHH in state, regional, spring, winter, and market-class population pairs and reported 446 CSS in 19 population pairs over time and 1033 CSS in 44 population pairs across geography and class. Further validation of these CSS in specific breeding programs may lead to identification of sets of loci that can be selected to restore population-specific adaptation in pre-breeding germplasms.

在现代植物育种中,从异地采集的新等位基因的探索仍然受到限制,因为这些等位基因存在于不适应现代生产环境的陆地品种的遗传背景中。回交育种的结果是保留了精英亲本的适应背景,但却几乎没有为来自陆地品系的新型等位基因留下融入的空间。选择与适应相关的连接区块而不是整个适应背景,可使育种者吸收更多的陆地品种遗传背景,并观察和评估新的等位基因。重要的适应性相关连锁区块会经过多个育种周期的筛选,因此很可能会表现出正向选择或选择性扫描的特征。我们使用 Fst、Rsb 和 xpEHH 对州、地区、春季、冬季和市场等级的种群配对进行了候选选择性横扫(CSS)的全基因组扫描,结果表明在 19 个种群配对中有 446 个 CSS 随时间变化,在 44 个种群配对中有 1033 个 CSS 跨地域和等级。在特定育种计划中对这些 CSS 的进一步验证可能会导致识别出一些位点集,这些位点集可用于选择,以恢复育种前种质的种群特异性适应。
{"title":"Candidate selective sweeps in US wheat populations.","authors":"Sajal R Sthapit, Travis M Ruff, Marcus A Hooker, Bosen Zhang, Xianran Li, Deven R See","doi":"10.1002/tpg2.20513","DOIUrl":"10.1002/tpg2.20513","url":null,"abstract":"<p><p>Exploration of novel alleles from ex situ collection is still limited in modern plant breeding as these alleles exist in genetic backgrounds of landraces that are not adapted to modern production environments. The practice of backcross breeding results in preservation of the adapted background of elite parents but leaves little room for novel alleles from landraces to be incorporated. Selection of adaptation-associated linkage blocks instead of the entire adapted background may allow breeders to incorporate more of the landrace's genetic background and to observe and evaluate novel alleles. Important adaptation-associated linkage blocks would have been selected over multiple cycles of breeding and hence are likely to exhibit signatures of positive selection or selective sweeps. We conducted genome-wide scan for candidate selective sweeps (CSS) using F<sub>st</sub>, Rsb, and xpEHH in state, regional, spring, winter, and market-class population pairs and reported 446 CSS in 19 population pairs over time and 1033 CSS in 44 population pairs across geography and class. Further validation of these CSS in specific breeding programs may lead to identification of sets of loci that can be selected to restore population-specific adaptation in pre-breeding germplasms.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20513"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional analysis of PagERF021 gene in salt stress tolerance in Populus alba × P. glandulosa. PagERF021 基因在白杨×腺叶杨耐盐胁迫中的功能分析
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-10-16 DOI: 10.1002/tpg2.20521
Gaofeng Fan, Yuan Gao, Xinyue Wu, Yingying Yu, Wenjing Yao, Jiahui Jiang, Huanzhen Liu, Tingbo Jiang

Poplar trees are crucial for timber and greening, but high levels of salt in the soil have severely limited the yield of poplar. Ethylene response factor (ERF) transcription factors play an important role in growth, development, and stress response in eukaryotes. Our study focused on the PagERF021 gene from Populus alba × P. glandulosa, which was significantly upregulated in various tissues under salt stress [Correction added on October 4, 2024, after first online publication: "ETS2 reporter factor" is changed to "Ethylene response factor".]. Both the tissue-specific expression pattern and β-glucuronidase (GUS) staining of proPagERF021-GUS plants indicated that this gene was predominantly expressed in the roots and stems. The subcellular localization showed that the protein was only localized in the nucleus. The yeast assay demonstrated that this protein had transcriptional activation activity at its C-terminal and could specifically binding to the MYB-core cis-element. The overexpression of PagERF021 gene could scavenge the accumulation of reactive oxygen species and reduce the degree of cellular membrane damage, indicating that this gene enhanced the salt tolerance of poplars. This finding will provide a feasible insight for future research into the regulatory mechanisms of ERF genes in resisting to abiotic stress and the development of new stress-resistant varieties in plants.

杨树是重要的木材和绿化树种,但土壤中的高盐分严重限制了杨树的产量。ETS2 抑制因子(ERF)转录因子在真核生物的生长、发育和应激反应中发挥着重要作用。我们的研究重点是白杨×腺叶杨中的 PagERF021 基因,该基因在盐胁迫下的各种组织中均显著上调。proPagERF021-GUS植株的组织特异性表达模式和β-葡糖醛酸酶(GUS)染色均表明,该基因主要在根和茎中表达。亚细胞定位显示,该蛋白只定位在细胞核中。酵母试验表明,该蛋白的 C 端具有转录激活活性,能与 MYB 核心顺式元件特异性结合。PagERF021基因的过表达能清除活性氧的积累,降低细胞膜损伤程度,表明该基因能增强杨树的耐盐性。这一发现将为今后研究ERF基因在抵抗非生物胁迫中的调控机制以及开发植物抗逆新品种提供可行的启示。
{"title":"Functional analysis of PagERF021 gene in salt stress tolerance in Populus alba × P. glandulosa.","authors":"Gaofeng Fan, Yuan Gao, Xinyue Wu, Yingying Yu, Wenjing Yao, Jiahui Jiang, Huanzhen Liu, Tingbo Jiang","doi":"10.1002/tpg2.20521","DOIUrl":"10.1002/tpg2.20521","url":null,"abstract":"<p><p>Poplar trees are crucial for timber and greening, but high levels of salt in the soil have severely limited the yield of poplar. Ethylene response factor (ERF) transcription factors play an important role in growth, development, and stress response in eukaryotes. Our study focused on the PagERF021 gene from Populus alba × P. glandulosa, which was significantly upregulated in various tissues under salt stress [Correction added on October 4, 2024, after first online publication: \"ETS2 reporter factor\" is changed to \"Ethylene response factor\".]. Both the tissue-specific expression pattern and β-glucuronidase (GUS) staining of proPagERF021-GUS plants indicated that this gene was predominantly expressed in the roots and stems. The subcellular localization showed that the protein was only localized in the nucleus. The yeast assay demonstrated that this protein had transcriptional activation activity at its C-terminal and could specifically binding to the MYB-core cis-element. The overexpression of PagERF021 gene could scavenge the accumulation of reactive oxygen species and reduce the degree of cellular membrane damage, indicating that this gene enhanced the salt tolerance of poplars. This finding will provide a feasible insight for future research into the regulatory mechanisms of ERF genes in resisting to abiotic stress and the development of new stress-resistant varieties in plants.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20521"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies of genetic diversity and genome-wide association for vitamin C content in lettuce (Lactuca sativa L.) using high-throughput SNP arrays. 利用高通量 SNP 阵列研究莴苣(Lactuca sativa L.)中维生素 C 含量的遗传多样性和全基因组关联。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-10-24 DOI: 10.1002/tpg2.20518
Inés Medina-Lozano, Juan Ramón Bertolín, Jörg Plieske, Martin Ganal, Heike Gnad, Aurora Díaz

Lettuce (Lactuca sativa L.) is a source of beneficial compounds though they are generally present in low quantities. We used 40K Axiom and 9K Infinium SNP (single nucleotide polymorphism) arrays to (i) explore the genetic variability in 21 varieties and (ii) carry out genome-wide association studies (GWAS) of vitamin C content in21 varieties and a population of 205 plants from the richest variety in vitamin C ('Lechuga del Pirineo'). Structure and phylogenetic analyses showed that the group formed mainly by traditional varieties was the most diverse, whereas the red commercial varieties clustered together and very distinguishably apart from the rest. GWAS consistently detected, in a region of chromosome 2, several SNPs related to dehydroascorbic acid (a form of vitamin C) content using three different methods to assess population structure, subpopulation membership coefficients, multidimensional scaling, and principal component analysis. The latter detected the highest number of SNPs (17) and the most significantly associated, 12 of them showing a high linkage disequilibrium with the lead SNP. Among the 84 genes in the region, some have been reported to be related to vitamin C content or antioxidant status in other crops either directly, like those encoding long non-coding RNA, several F-box proteins, and a pectinesterase/pectinesterase inhibitor, or indirectly, like extensin-1-like protein and endoglucanase 2 genes. The involvement of other genes identified within the region in vitamin C levels needs to be further studied. Understanding the genetic control of such an important quality trait in lettuce becomes very relevant from a breeding perspective.

生菜(Lactuca sativa L.)是一种有益化合物的来源,但其含量通常较低。我们使用 40K Axiom 和 9K Infinium SNP(单核苷酸多态性)阵列:(i) 探索 21 个品种的遗传变异性;(ii) 对 21 个品种和维生素 C 含量最丰富的品种("Lechuga del Pirineo")的 205 株植物群体的维生素 C 含量进行全基因组关联研究(GWAS)。结构和系统进化分析表明,主要由传统品种组成的群体最具多样性,而红色商业品种聚集在一起,与其他品种有很大区别。利用三种不同的方法评估种群结构,即子种群成员系数、多维尺度和主成分分析,GWAS 在 2 号染色体的一个区域内持续检测到与脱氢抗坏血酸(维生素 C 的一种形式)含量有关的多个 SNP。主成分分析检测到的 SNP 数量最多(17 个),相关性也最显著,其中 12 个 SNP 与主 SNP 存在高度连锁不平衡。在该区域的 84 个基因中,有一些已被报道与其他作物的维生素 C 含量或抗氧化状态有关,有的是直接相关的,如编码长非编码 RNA、几个 F-box 蛋白和一个果胶酶/pectinesterase 抑制剂的基因,有的是间接相关的,如 extensin-1-like 蛋白和内切葡聚糖酶 2 基因。在该区域内发现的其他基因参与维生素 C 水平的情况还有待进一步研究。从育种的角度来看,了解莴苣如此重要的品质性状的遗传控制变得非常重要。
{"title":"Studies of genetic diversity and genome-wide association for vitamin C content in lettuce (Lactuca sativa L.) using high-throughput SNP arrays.","authors":"Inés Medina-Lozano, Juan Ramón Bertolín, Jörg Plieske, Martin Ganal, Heike Gnad, Aurora Díaz","doi":"10.1002/tpg2.20518","DOIUrl":"10.1002/tpg2.20518","url":null,"abstract":"<p><p>Lettuce (Lactuca sativa L.) is a source of beneficial compounds though they are generally present in low quantities. We used 40K Axiom and 9K Infinium SNP (single nucleotide polymorphism) arrays to (i) explore the genetic variability in 21 varieties and (ii) carry out genome-wide association studies (GWAS) of vitamin C content in21 varieties and a population of 205 plants from the richest variety in vitamin C ('Lechuga del Pirineo'). Structure and phylogenetic analyses showed that the group formed mainly by traditional varieties was the most diverse, whereas the red commercial varieties clustered together and very distinguishably apart from the rest. GWAS consistently detected, in a region of chromosome 2, several SNPs related to dehydroascorbic acid (a form of vitamin C) content using three different methods to assess population structure, subpopulation membership coefficients, multidimensional scaling, and principal component analysis. The latter detected the highest number of SNPs (17) and the most significantly associated, 12 of them showing a high linkage disequilibrium with the lead SNP. Among the 84 genes in the region, some have been reported to be related to vitamin C content or antioxidant status in other crops either directly, like those encoding long non-coding RNA, several F-box proteins, and a pectinesterase/pectinesterase inhibitor, or indirectly, like extensin-1-like protein and endoglucanase 2 genes. The involvement of other genes identified within the region in vitamin C levels needs to be further studied. Understanding the genetic control of such an important quality trait in lettuce becomes very relevant from a breeding perspective.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20518"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of a new barley greenbug resistance gene Rsg4 in the Chinese landrace CI 2458. 中国大麦品种 CI 2458 中新的抗大麦青虫基因 Rsg4 的特征。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-12-01 Epub Date: 2024-11-07 DOI: 10.1002/tpg2.20527
Xiangyang Xu, Dolores Mornhinweg, Guihua Bai, Genqiao Li, Ruolin Bian, Amy Bernardo

Barley (Hordeum vulgare) is a climate-resilient crop widely cultivated in both highly productive and suboptimal agricultural systems, and its ability to adapt to multiple biotic and abiotic stresses has contributed significantly to food security. Greenbug is a destructive insect pest for global barley production, and new greenbug resistance genes are needed to overcome the challenges posed by diverse greenbug biotypes in fields. CI 2458 is a Chinese landrace exhibiting a unique resistance profile to a set of 14 greenbug biotypes, which suggests the presence of a new greenbug resistance gene in CI 2458. A recombinant inbred line population from the cross Weskan × CI 2458 was developed, evaluated for responses to greenbug biotype F, and genotyped using single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing. Linkage analysis revealed a single gene, designated Rsg4, conditioning greenbug resistance in CI 2458. Rsg4 was delimited to a 1.14 Mb interval between SNP markers S3H_666512114 and S3H_667651446 in the terminal region of chromosome arm 3HL, with genetic distances of 1.2 cM proximal to S3H_667651446 and 1.1 cM distal to S3H_666512114. Allelism tests confirmed that Rsg4 is a new greenbug resistance gene independent of Rsg1 and Rsg3, which reside in the same chromosome arm. Rsg4 differs from Rsg1 alleles and Rsg3 in its resistance to greenbug biotype TX1, one of the most widely virulent biotypes. The introgression of Rsg4 into locally adapted barley cultivars is of agronomic importance, and kompetitive allele-specific polymerase chain reaction (KASP) markers flanking Rsg4, KASP-Rsg336-1 and KASP-Rsg336-2, enable rapid pyramiding of Rsg4 with other resistance genes to develop durable greenbug-resistant cultivars.

大麦(Hordeum vulgare)是一种气候适应性强的作物,在高产和次优农业系统中都有广泛种植,其适应多种生物和非生物胁迫的能力极大地促进了粮食安全。青虫是对全球大麦生产具有破坏性的害虫,需要新的青虫抗性基因来克服田间多种青虫生物型带来的挑战。CI 2458 是一个中国大麦品种,对 14 种绿蝽生物型表现出独特的抗性,这表明 CI 2458 中存在新的抗绿蝽基因。从 Weskan × CI 2458 杂交品种中培育了一个重组近交系群体,评估了该群体对绿化蝽生物型 F 的反应,并使用通过基因分型测序生成的单核苷酸多态性(SNP)标记进行了基因分型。连锁分析表明,在 CI 2458 中有一个名为 Rsg4 的基因在调节绿化苗木对绿化虫的抗性。Rsg4 被限定在染色体臂 3HL 末端区域 SNP 标记 S3H_666512114 和 S3H_667651446 之间的 1.14 Mb 区间内,与 S3H_667651446 的近缘遗传距离为 1.2 cM,与 S3H_666512114 的远缘遗传距离为 1.1 cM。等位基因测试证实,Rsg4 是独立于 Rsg1 和 Rsg3 的新的抗绿害虫基因,而 Rsg1 和 Rsg3 位于同一染色体臂。Rsg4 与 Rsg1 等位基因和 Rsg3 的区别在于它对绿僵菌生物型 TX1 的抗性,TX1 是毒性最强的生物型之一。将 Rsg4 引种到适应当地情况的大麦栽培品种中具有重要的农艺意义,Rsg4 侧翼的竞争性等位基因特异性聚合酶链式反应(KASP)标记 KASP-Rsg336-1 和 KASP-Rsg336-2,可使 Rsg4 与其他抗性基因快速分化,从而培育出耐久的抗绿线虫栽培品种。
{"title":"Characterization of a new barley greenbug resistance gene Rsg4 in the Chinese landrace CI 2458.","authors":"Xiangyang Xu, Dolores Mornhinweg, Guihua Bai, Genqiao Li, Ruolin Bian, Amy Bernardo","doi":"10.1002/tpg2.20527","DOIUrl":"10.1002/tpg2.20527","url":null,"abstract":"<p><p>Barley (Hordeum vulgare) is a climate-resilient crop widely cultivated in both highly productive and suboptimal agricultural systems, and its ability to adapt to multiple biotic and abiotic stresses has contributed significantly to food security. Greenbug is a destructive insect pest for global barley production, and new greenbug resistance genes are needed to overcome the challenges posed by diverse greenbug biotypes in fields. CI 2458 is a Chinese landrace exhibiting a unique resistance profile to a set of 14 greenbug biotypes, which suggests the presence of a new greenbug resistance gene in CI 2458. A recombinant inbred line population from the cross Weskan × CI 2458 was developed, evaluated for responses to greenbug biotype F, and genotyped using single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing. Linkage analysis revealed a single gene, designated Rsg4, conditioning greenbug resistance in CI 2458. Rsg4 was delimited to a 1.14 Mb interval between SNP markers S3H_666512114 and S3H_667651446 in the terminal region of chromosome arm 3HL, with genetic distances of 1.2 cM proximal to S3H_667651446 and 1.1 cM distal to S3H_666512114. Allelism tests confirmed that Rsg4 is a new greenbug resistance gene independent of Rsg1 and Rsg3, which reside in the same chromosome arm. Rsg4 differs from Rsg1 alleles and Rsg3 in its resistance to greenbug biotype TX1, one of the most widely virulent biotypes. The introgression of Rsg4 into locally adapted barley cultivars is of agronomic importance, and kompetitive allele-specific polymerase chain reaction (KASP) markers flanking Rsg4, KASP-Rsg336-1 and KASP-Rsg336-2, enable rapid pyramiding of Rsg4 with other resistance genes to develop durable greenbug-resistant cultivars.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20527"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Genome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1