首页 > 最新文献

Plant Genome最新文献

英文 中文
Integrated meta-QTL and in silico transcriptome assessment pinpoint major genomic regions responsible for spike length in wheat (Triticum aestivum L.). 综合元 QTL 和默观转录组评估确定了小麦(Triticum aestivum L.)穗长的主要基因组区域。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-31 DOI: 10.1002/tpg2.20492
Changgang Yang, Xueting Zhang, Shihong Wang, Na Liu

Spike length (SL) is one of the major contributors to wheat yield. Uncovering major genetic regions affecting SL is an integral part of elucidating the genetic basis of wheat yield traits and goes further pivotal for marker-assisted selection breeding. A genome-wide meta-quantitative trait locus (MQTL) analysis of wheat SL resulted in the refinement of 48 MQTLs using 227 initial QTLs retrieved from previous studies published over the past decades. The average confidence interval (CI) of these MQTLs amounted to a 5.16-fold reduction compared to the mean CI of the initial QTLs. As many as 2240 putative candidate genes (CGs) were identified from the MQTL intervals using transcriptomics data in silico of wheat, of which 58 CGs were identified based on wheat-rice homology analysis. For the key CG affecting SL, a functional kompetitive allele-specific PCR (KASP) marker, TaPP2C-3B-KASP, was developed to distinguish TaPP2C-3B-Hap I and TaPP2C-3B-Hap II based on the single nucleotide polymorphism at the 272 bp (A/G). The frequency of the elite allelic variation TaPP2C-3B-Hap II with high SL remained relatively stable at about 49.62% from the 1960s to 1990s. Integration of MQTL analysis and in silico transcriptome data led to a significant increase in the reliability of CGs for the genetic regulation of wheat SL, and the haplotype analysis for key CGs TaPP2C-3B of SL provided insights into the biological function of the TaPP2C-3B gene.

穗长(SL)是影响小麦产量的主要因素之一。揭示影响穗长的主要遗传区域是阐明小麦产量性状遗传基础不可或缺的一部分,也是标记辅助选择育种的关键。通过对小麦SL的全基因组元定量性状位点(MQTL)分析,利用从过去几十年发表的研究中检索到的227个初始QTL,提炼出了48个MQTL。与初始 QTLs 的平均置信区间(CI)相比,这些 MQTLs 的平均置信区间缩小了 5.16 倍。利用小麦默写转录组学数据,从MQTL区间确定了多达2240个推测候选基因(CG),其中58个CG是根据小麦-水稻同源性分析确定的。对于影响SL的关键CG,开发了一个功能性竞争等位基因特异性PCR(KASP)标记TaPP2C-3B-KASP,根据272 bp处的单核苷酸多态性(A/G)区分TaPP2C-3B-Hap I和TaPP2C-3B-Hap II。从 20 世纪 60 年代到 90 年代,具有高 SL 的精英等位基因变异 TaPP2C-3B-Hap II 的频率相对稳定,约为 49.62%。整合MQTL分析和默观转录组数据,显著提高了小麦SL遗传调控CGs的可靠性,而SL关键CGs TaPP2C-3B的单倍型分析为TaPP2C-3B基因的生物学功能提供了见解。
{"title":"Integrated meta-QTL and in silico transcriptome assessment pinpoint major genomic regions responsible for spike length in wheat (Triticum aestivum L.).","authors":"Changgang Yang, Xueting Zhang, Shihong Wang, Na Liu","doi":"10.1002/tpg2.20492","DOIUrl":"https://doi.org/10.1002/tpg2.20492","url":null,"abstract":"<p><p>Spike length (SL) is one of the major contributors to wheat yield. Uncovering major genetic regions affecting SL is an integral part of elucidating the genetic basis of wheat yield traits and goes further pivotal for marker-assisted selection breeding. A genome-wide meta-quantitative trait locus (MQTL) analysis of wheat SL resulted in the refinement of 48 MQTLs using 227 initial QTLs retrieved from previous studies published over the past decades. The average confidence interval (CI) of these MQTLs amounted to a 5.16-fold reduction compared to the mean CI of the initial QTLs. As many as 2240 putative candidate genes (CGs) were identified from the MQTL intervals using transcriptomics data in silico of wheat, of which 58 CGs were identified based on wheat-rice homology analysis. For the key CG affecting SL, a functional kompetitive allele-specific PCR (KASP) marker, TaPP2C-3B-KASP, was developed to distinguish TaPP2C-3B-Hap I and TaPP2C-3B-Hap II based on the single nucleotide polymorphism at the 272 bp (A/G). The frequency of the elite allelic variation TaPP2C-3B-Hap II with high SL remained relatively stable at about 49.62% from the 1960s to 1990s. Integration of MQTL analysis and in silico transcriptome data led to a significant increase in the reliability of CGs for the genetic regulation of wheat SL, and the haplotype analysis for key CGs TaPP2C-3B of SL provided insights into the biological function of the TaPP2C-3B gene.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Globally deployed sorghum aphid resistance gene RMES1 is vulnerable to biotype shifts but is bolstered by RMES2. 勘误:全球部署的高粱蚜虫抗性基因 RMES1 易受生物型转变的影响,但 RMES2 可增强其抗性。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-29 DOI: 10.1002/tpg2.20499
Carl VanGessel, Brian Rice, Terry J Felderhoff, Jean Rigaud Charles, Gael Pressoir, Vamsi Nalam, Geoffrey P Morris
{"title":"Erratum to: Globally deployed sorghum aphid resistance gene RMES1 is vulnerable to biotype shifts but is bolstered by RMES2.","authors":"Carl VanGessel, Brian Rice, Terry J Felderhoff, Jean Rigaud Charles, Gael Pressoir, Vamsi Nalam, Geoffrey P Morris","doi":"10.1002/tpg2.20499","DOIUrl":"https://doi.org/10.1002/tpg2.20499","url":null,"abstract":"","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic diversity and population structure in banana (Musa spp.) breeding germplasm. 香蕉(Musa spp.)育种种质的遗传多样性和种群结构。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-29 DOI: 10.1002/tpg2.20497
Violet Akech, Therése Bengtsson, Rodomiro Ortiz, Rony Swennen, Brigitte Uwimana, Claudia F Ferreira, Delphine Amah, Edson P Amorim, Elizabeth Blisset, Ines Van den Houwe, Ivan K Arinaitwe, Liana Nice, Priver Bwesigye, Steve Tanksley, Subbaraya Uma, Backiyarani Suthanthiram, Marimuthu S Saraswathi, Hassan Mduma, Allan Brown

Bananas (Musa spp.) are one of the most highly consumed fruits globally, grown in the tropical and sub-tropical regions. We evaluated 856 Musa accessions from the breeding programs of the International Institute of Tropical Agriculture of Nigeria, Tanzania, and Uganda; the National Agricultural Research Organization of Uganda; the Brazilian Agricultural Research Corporation (Embrapa); and the National Research Centre for Banana of India. Accessions from the in vitro gene bank at the International Transit Centre in Belgium were included to provide a baseline of available global diversity. A total of 16,903 informative single nucleotide polymorphism markers were used to estimate and characterize the genetic diversity and population structure and identify overlaps and unique material among the breeding programs. Analysis of molecular variance displayed low genetic variation among accessions and diploids and a higher variation among tetraploids (p < 0.001). Structure analysis revealed two major clusters corresponding to genomic composition. The results indicate that there is potential for the banana breeding programs to increase the diversity in their breeding materials and should exploit this potential for parental improvement and to enhance genetic gains in future breeding efforts.

香蕉(麝香草属)是全球消费量最高的水果之一,生长在热带和亚热带地区。我们评估了来自尼日利亚、坦桑尼亚和乌干达国际热带农业研究所、乌干达国家农业研究组织、巴西农业研究公司(Embrapa)和印度国家香蕉研究中心育种项目的 856 个香蕉品种。比利时国际转运中心体外基因库中的加入品也包括在内,以提供全球现有多样性的基线。共使用了 16,903 个信息丰富的单核苷酸多态性标记来估计和描述遗传多样性和种群结构,并确定育种计划之间的重叠和独特材料。分子变异分析表明,加入品种和二倍体之间的遗传变异较低,而四倍体之间的变异较高(p
{"title":"Genetic diversity and population structure in banana (Musa spp.) breeding germplasm.","authors":"Violet Akech, Therése Bengtsson, Rodomiro Ortiz, Rony Swennen, Brigitte Uwimana, Claudia F Ferreira, Delphine Amah, Edson P Amorim, Elizabeth Blisset, Ines Van den Houwe, Ivan K Arinaitwe, Liana Nice, Priver Bwesigye, Steve Tanksley, Subbaraya Uma, Backiyarani Suthanthiram, Marimuthu S Saraswathi, Hassan Mduma, Allan Brown","doi":"10.1002/tpg2.20497","DOIUrl":"https://doi.org/10.1002/tpg2.20497","url":null,"abstract":"<p><p>Bananas (Musa spp.) are one of the most highly consumed fruits globally, grown in the tropical and sub-tropical regions. We evaluated 856 Musa accessions from the breeding programs of the International Institute of Tropical Agriculture of Nigeria, Tanzania, and Uganda; the National Agricultural Research Organization of Uganda; the Brazilian Agricultural Research Corporation (Embrapa); and the National Research Centre for Banana of India. Accessions from the in vitro gene bank at the International Transit Centre in Belgium were included to provide a baseline of available global diversity. A total of 16,903 informative single nucleotide polymorphism markers were used to estimate and characterize the genetic diversity and population structure and identify overlaps and unique material among the breeding programs. Analysis of molecular variance displayed low genetic variation among accessions and diploids and a higher variation among tetraploids (p < 0.001). Structure analysis revealed two major clusters corresponding to genomic composition. The results indicate that there is potential for the banana breeding programs to increase the diversity in their breeding materials and should exploit this potential for parental improvement and to enhance genetic gains in future breeding efforts.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association studies on resistance to powdery mildew in cultivated emmer wheat. 关于栽培小麦白粉病抗性的全基因组关联研究。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-28 DOI: 10.1002/tpg2.20493
Dhondup Lhamo, Genqiao Li, George Song, Xuehui Li, Taner Z Sen, Yong-Qiang Gu, Xiangyang Xu, Steven S Xu

Powdery mildew, caused by the fungal pathogen Blumeria graminis (DC.) E. O. Speer f. sp. tritici Em. Marchal (Bgt), is a constant threat to global wheat (Triticum aestivum L.) production. Although ∼100 powdery mildew (Pm) resistance genes and alleles have been identified in wheat and its relatives, more is needed to minimize Bgt's fast evolving virulence. In tetraploid wheat (Triticum turgidum L.), wild emmer wheat [T. turgidum ssp. dicoccoides (Körn. ex Asch. & Graebn.) Thell.] accessions from Israel have contributed many Pm resistance genes. However, the diverse genetic reservoirs of cultivated emmer wheat [T. turgidum ssp. dicoccum (Schrank ex Schübl.) Thell.] have not been fully exploited. In the present study, we evaluated a diverse panel of 174 cultivated emmer accessions for their reaction to Bgt isolate OKS(14)-B-3-1 and found that 66% of accessions, particularly those of Ethiopian (30.5%) and Indian (6.3%) origins, exhibited high resistance. To determine the genetic basis of Bgt resistance in the panel, genome-wide association studies were performed using 46,383 single nucleotide polymorphisms (SNPs) from genotype-by-sequencing and 4331 SNPs from the 9K SNP Infinium array. Twenty-five significant SNP markers were identified to be associated with Bgt resistance, of which 21 SNPs are likely novel loci, whereas four possibly represent emmer derived Pm4a, Pm5a, PmG16, and Pm64. Most novel loci exhibited minor effects, whereas three novel loci on chromosome arms 2AS, 3BS, and 5AL had major effect on the phenotypic variance. This study demonstrates cultivated emmer as a rich source of powdery mildew resistance, and the resistant accessions and novel loci found herein can be utilized in wheat breeding programs to enhance Bgt resistance in wheat.

由真菌病原体 Blumeria graminis (DC.) E. O. Speer f. sp. tritici Em.Marchal (Bgt) 引起的白粉病,是全球小麦(Triticum aestivum L. )生产的一个长期威胁。虽然已在小麦及其近缘种中鉴定出 100 ∼ 100 个白粉病(Pm)抗性基因和等位基因,但要最大限度地降低 Bgt 快速演变的毒力,还需要做更多的工作。在四倍体小麦(Triticum turgidum L.)中,来自以色列的野生emmer小麦[T. turgidum ssp. dicoccoides (Körn. ex Asch. & Graebn.) Thell.然而,栽培小麦[T. turgidum ssp. dicoccum (Schrank ex Schübl.) Thell.]的多种基因库尚未得到充分利用。在本研究中,我们评估了 174 个栽培珙桐品种对 Bgt 分离物 OKS(14)-B-3-1 的反应,发现 66% 的品种,尤其是埃塞俄比亚(30.5%)和印度(6.3%)的品种表现出高度抗性。为了确定面板中 Bgt 抗性的遗传基础,利用逐基因型测序的 46,383 个单核苷酸多态性(SNPs)和 9K SNP Infinium 阵列的 4331 个 SNPs 进行了全基因组关联研究。研究发现了 25 个与 Bgt 抗性相关的重要 SNP 标记,其中 21 个 SNP 可能是新的基因位点,而 4 个可能代表emmer 衍生的 Pm4a、Pm5a、PmG16 和 Pm64。大多数新基因位点的影响较小,而染色体臂 2AS、3BS 和 5AL 上的三个新基因位点对表型变异的影响较大。本研究表明,栽培小麦是白粉病抗性的丰富来源,本研究发现的抗性品种和新基因座可用于小麦育种计划,以提高小麦对白粉病的抗性。
{"title":"Genome-wide association studies on resistance to powdery mildew in cultivated emmer wheat.","authors":"Dhondup Lhamo, Genqiao Li, George Song, Xuehui Li, Taner Z Sen, Yong-Qiang Gu, Xiangyang Xu, Steven S Xu","doi":"10.1002/tpg2.20493","DOIUrl":"https://doi.org/10.1002/tpg2.20493","url":null,"abstract":"<p><p>Powdery mildew, caused by the fungal pathogen Blumeria graminis (DC.) E. O. Speer f. sp. tritici Em. Marchal (Bgt), is a constant threat to global wheat (Triticum aestivum L.) production. Although ∼100 powdery mildew (Pm) resistance genes and alleles have been identified in wheat and its relatives, more is needed to minimize Bgt's fast evolving virulence. In tetraploid wheat (Triticum turgidum L.), wild emmer wheat [T. turgidum ssp. dicoccoides (Körn. ex Asch. & Graebn.) Thell.] accessions from Israel have contributed many Pm resistance genes. However, the diverse genetic reservoirs of cultivated emmer wheat [T. turgidum ssp. dicoccum (Schrank ex Schübl.) Thell.] have not been fully exploited. In the present study, we evaluated a diverse panel of 174 cultivated emmer accessions for their reaction to Bgt isolate OKS(14)-B-3-1 and found that 66% of accessions, particularly those of Ethiopian (30.5%) and Indian (6.3%) origins, exhibited high resistance. To determine the genetic basis of Bgt resistance in the panel, genome-wide association studies were performed using 46,383 single nucleotide polymorphisms (SNPs) from genotype-by-sequencing and 4331 SNPs from the 9K SNP Infinium array. Twenty-five significant SNP markers were identified to be associated with Bgt resistance, of which 21 SNPs are likely novel loci, whereas four possibly represent emmer derived Pm4a, Pm5a, PmG16, and Pm64. Most novel loci exhibited minor effects, whereas three novel loci on chromosome arms 2AS, 3BS, and 5AL had major effect on the phenotypic variance. This study demonstrates cultivated emmer as a rich source of powdery mildew resistance, and the resistant accessions and novel loci found herein can be utilized in wheat breeding programs to enhance Bgt resistance in wheat.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping quantitative trait loci for seminal root angle in a selected durum wheat population. 在精选硬粒小麦群体中绘制精根角的数量性状位点图。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-23 DOI: 10.1002/tpg2.20490
Yichen Kang, Samir Alahmad, Shanice V Haeften, Oluwaseun Akinlade, Jingyang Tong, Eric Dinglasan, Kai P Voss-Fels, Andries B Potgieter, Andrew K Borrell, Manar Makhoul, Christian Obermeier, Rod Snowdon, Emma Mace, David R Jordan, Lee T Hickey

Seminal root angle (SRA) is an important root architectural trait associated with drought adaptation in cereal crops. To date, all attempts to dissect the genetic architecture of SRA in durum wheat (Triticum durum Desf.) have used large association panels or structured mapping populations. Identifying changes in allele frequency generated by selection provides an alternative genetic mapping approach that can increase the power and precision of QTL detection. This study aimed to map quantitative trait loci (QTL) for SRA by genotyping durum lines created through divergent selection using a combination of marker-assisted selection (MAS) for the major SRA QTL (qSRA-6A) and phenotypic selection for SRA over multiple generations. The created 11 lines (BC1F2:5) were genotyped with genome-wide single-nucleotide polymorphism (SNP) markers to map QTL by identifying markers that displayed segregation distortion significantly different from the Mendelian expectation. QTL regions were further assessed in an independent validation population to confirm their associations with SRA. The experiment revealed 14 genomic regions under selection, 12 of which have not previously been reported for SRA. Five regions, including qSRA-6A, were confirmed in the validation population. The genomic regions identified in this study indicate that the genetic control of SRA is more complex than previously anticipated. Our study demonstrates that selection mapping is a powerful approach to complement genome-wide association studies for QTL detection. Moreover, the verification of qSRA-6A in an elite genetic background highlights the potential for MAS, although it is necessary to combine additional QTL to develop new cultivars with extreme SRA phenotypes.

半根角(SRA)是与谷类作物干旱适应性相关的重要根系结构性状。迄今为止,所有剖析硬质小麦(Triticum durum Desf.)SRA 遗传结构的尝试都使用了大型关联面板或结构化作图群体。识别由选择产生的等位基因频率变化提供了另一种遗传图谱绘制方法,可提高 QTL 检测的能力和精度。本研究的目的是通过对针对主要 SRA QTL(qSRA-6A)的标记辅助选择(MAS)和多代 SRA 表型选择相结合的方法,对通过发散选择创建的硬质小麦品系进行基因分型,从而绘制 SRA 的数量性状位点(QTL)图。利用全基因组单核苷酸多态性(SNP)标记对所创建的 11 个品系(BC1F2:5)进行基因分型,通过识别与孟德尔期望值明显不同的分离畸变标记来绘制 QTL。在一个独立的验证群体中进一步评估了 QTL 区域,以确认它们与 SRA 的关联。实验揭示了 14 个受选择的基因组区域,其中 12 个区域以前从未报道过与 SRA 有关。包括 qSRA-6A 在内的五个区域在验证群体中得到了确认。本研究发现的基因组区域表明,SRA 的遗传调控比以前预期的要复杂。我们的研究表明,选择图谱是一种强大的方法,可作为全基因组关联研究的补充,用于检测 QTL。此外,qSRA-6A 在精英遗传背景中的验证凸显了 MAS 的潜力,尽管有必要结合更多的 QTL 来培育具有极端 SRA 表型的新栽培品种。
{"title":"Mapping quantitative trait loci for seminal root angle in a selected durum wheat population.","authors":"Yichen Kang, Samir Alahmad, Shanice V Haeften, Oluwaseun Akinlade, Jingyang Tong, Eric Dinglasan, Kai P Voss-Fels, Andries B Potgieter, Andrew K Borrell, Manar Makhoul, Christian Obermeier, Rod Snowdon, Emma Mace, David R Jordan, Lee T Hickey","doi":"10.1002/tpg2.20490","DOIUrl":"https://doi.org/10.1002/tpg2.20490","url":null,"abstract":"<p><p>Seminal root angle (SRA) is an important root architectural trait associated with drought adaptation in cereal crops. To date, all attempts to dissect the genetic architecture of SRA in durum wheat (Triticum durum Desf.) have used large association panels or structured mapping populations. Identifying changes in allele frequency generated by selection provides an alternative genetic mapping approach that can increase the power and precision of QTL detection. This study aimed to map quantitative trait loci (QTL) for SRA by genotyping durum lines created through divergent selection using a combination of marker-assisted selection (MAS) for the major SRA QTL (qSRA-6A) and phenotypic selection for SRA over multiple generations. The created 11 lines (BC<sub>1</sub>F<sub>2:5</sub>) were genotyped with genome-wide single-nucleotide polymorphism (SNP) markers to map QTL by identifying markers that displayed segregation distortion significantly different from the Mendelian expectation. QTL regions were further assessed in an independent validation population to confirm their associations with SRA. The experiment revealed 14 genomic regions under selection, 12 of which have not previously been reported for SRA. Five regions, including qSRA-6A, were confirmed in the validation population. The genomic regions identified in this study indicate that the genetic control of SRA is more complex than previously anticipated. Our study demonstrates that selection mapping is a powerful approach to complement genome-wide association studies for QTL detection. Moreover, the verification of qSRA-6A in an elite genetic background highlights the potential for MAS, although it is necessary to combine additional QTL to develop new cultivars with extreme SRA phenotypes.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and implementation of nested single-nucleotide polymorphism (SNP) assays for breeding and genetic research applications. 开发和实施用于育种和基因研究的嵌套单核苷酸多态性(SNP)测定。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-22 DOI: 10.1002/tpg2.20491
Qijian Song, Charles Quigley, Ruifeng He, Dechun Wang, Henry Nguyen, Carrie Miranda, Zenglu Li

SoySNP50K and SoySNP6K are commonly used for soybean (Glycine max) genotyping. The SoySNP50K assay has been used to genetically analyze the entire USDA Soybean Germplasm Collection, while the SoySNP6K assay, containing a subset of 6000 single-nucleotide polymorphisms (SNPs) from SoySNP50K, has been used for quantitative trait loci mapping of different traits. To meet the needs for genomic selection, selection of parents for crosses, and characterization of breeding populations, especially early selection of ideal offspring from thousands of lines, we developed two assays, SoySNP3K and SoySNP1K, containing 3072 and 1252 SNPs, respectively, based on SoySNP50K and SoySNP6K mark sets. These two assays also contained the trait markers reported or contributed by soybean breeders. The SNPs in the SoySNP3K are a subset from SoySNP6K, while the SNPs in the SoySNP1K are a subset from SoySNP3K. These SNPs were chosen to reduce the SNP number in the large linkage blocks while capturing as much of the haplotype diversity as possible. They are highly polymorphic and of high quality. The mean minor allele frequencies of the SNPs in the southern and northern US elites were 0.25 and 0.27 for SoySNP3K, respectively, and 0.29 and 0.33 for SoySNP1K. The selected SNPs are a valuable source for developing targeted amplicon sequencing assay or beadchip assay in soybean. SoySNP3K and SoySNP1K assays are commercialized by Illumina Inc. and AgriPlex Genomics, respectively. Together with SoySNP50K and SoySNP6K, a series of nested assays with different marker densities will serve as additional low-cost genomic tools for genetic, genomic, and breeding research.

SoySNP50K 和 SoySNP6K 常用于大豆(Glycine max)基因分型。SoySNP50K 分析法已被用于对整个美国农业部大豆种质资源库进行基因分析,而 SoySNP6K 分析法则包含了 SoySNP50K 中的 6000 个单核苷酸多态性 (SNP) 子集,已被用于不同性状的数量性状位点图谱绘制。为了满足基因组选择、杂交亲本选择和育种群体特征描述的需要,特别是从数千个品系中早期选择理想后代的需要,我们在 SoySNP50K 和 SoySNP6K 标记集的基础上开发了 SoySNP3K 和 SoySNP1K 两种测定,分别包含 3072 和 1252 个 SNPs。这两个测定还包含大豆育种者报告或提供的性状标记。SoySNP3K 中的 SNPs 是 SoySNP6K 的子集,而 SoySNP1K 中的 SNPs 是 SoySNP3K 的子集。选择这些 SNP 是为了减少大连接区块中的 SNP 数量,同时尽可能多地捕获单倍型多样性。它们具有高度多态性和高质量。在美国南部和北部精英人群中,SoySNP3K 的平均小等位基因频率分别为 0.25 和 0.27,SoySNP1K 的平均小等位基因频率分别为 0.29 和 0.33。所选的 SNPs 是开发大豆定向扩增子测序分析或芯片分析的宝贵资源。SoySNP3K 和 SoySNP1K 检测方法分别由 Illumina Inc.连同 SoySNP50K 和 SoySNP6K,一系列具有不同标记密度的嵌套测定将成为遗传、基因组和育种研究的又一低成本基因组工具。
{"title":"Development and implementation of nested single-nucleotide polymorphism (SNP) assays for breeding and genetic research applications.","authors":"Qijian Song, Charles Quigley, Ruifeng He, Dechun Wang, Henry Nguyen, Carrie Miranda, Zenglu Li","doi":"10.1002/tpg2.20491","DOIUrl":"https://doi.org/10.1002/tpg2.20491","url":null,"abstract":"<p><p>SoySNP50K and SoySNP6K are commonly used for soybean (Glycine max) genotyping. The SoySNP50K assay has been used to genetically analyze the entire USDA Soybean Germplasm Collection, while the SoySNP6K assay, containing a subset of 6000 single-nucleotide polymorphisms (SNPs) from SoySNP50K, has been used for quantitative trait loci mapping of different traits. To meet the needs for genomic selection, selection of parents for crosses, and characterization of breeding populations, especially early selection of ideal offspring from thousands of lines, we developed two assays, SoySNP3K and SoySNP1K, containing 3072 and 1252 SNPs, respectively, based on SoySNP50K and SoySNP6K mark sets. These two assays also contained the trait markers reported or contributed by soybean breeders. The SNPs in the SoySNP3K are a subset from SoySNP6K, while the SNPs in the SoySNP1K are a subset from SoySNP3K. These SNPs were chosen to reduce the SNP number in the large linkage blocks while capturing as much of the haplotype diversity as possible. They are highly polymorphic and of high quality. The mean minor allele frequencies of the SNPs in the southern and northern US elites were 0.25 and 0.27 for SoySNP3K, respectively, and 0.29 and 0.33 for SoySNP1K. The selected SNPs are a valuable source for developing targeted amplicon sequencing assay or beadchip assay in soybean. SoySNP3K and SoySNP1K assays are commercialized by Illumina Inc. and AgriPlex Genomics, respectively. Together with SoySNP50K and SoySNP6K, a series of nested assays with different marker densities will serve as additional low-cost genomic tools for genetic, genomic, and breeding research.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating GWAS with a gene co-expression network better prioritizes candidate genes associated with root metaxylem phenes in maize. 将 GWAS 与基因共表达网络相结合,可更好地确定与玉米根部中木质部表征相关的候选基因的优先次序。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-22 DOI: 10.1002/tpg2.20489
Stephanie P Klein, Shawn M Kaeppler, Kathleen M Brown, Jonathan P Lynch

Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.

根部偏木质部是表型多样的结构,其功能在干旱胁迫下尤为重要。已有大量研究剖析了双子叶植物根部元木质部表型的遗传机制,但对单子叶植物根部元木质部表型的研究相对不足。在玉米(Zea mays)中,一个稳健的管道整合了在水分充足和水分胁迫条件下根部元木质部表型的全基因组关联研究(GWAS)和基因共表达网络,以优先选择最强的候选基因。我们通过 GWAS 发现了 244 个候选基因,其中 103 个位于与木质部发育最相关的基因共表达模块中。一些候选基因可能参与了与细胞壁、激素信号转导、氧化应激反应和干旱反应有关的生物合成过程。其中,有六个候选基因在水分充足和水分胁迫条件下的多个根元木质部表型中被检测到。我们认为,应根据基因的共表达情况(即枢纽或瓶颈)优先选择对网络功能更重要的候选基因,并将 33 个重要基因归为一类,以作进一步研究。我们的研究展示了一种识别有希望的候选基因的新策略,并提出了几个候选基因,它们可能会加深我们对谷物维管发育和对干旱反应的理解。
{"title":"Integrating GWAS with a gene co-expression network better prioritizes candidate genes associated with root metaxylem phenes in maize.","authors":"Stephanie P Klein, Shawn M Kaeppler, Kathleen M Brown, Jonathan P Lynch","doi":"10.1002/tpg2.20489","DOIUrl":"https://doi.org/10.1002/tpg2.20489","url":null,"abstract":"<p><p>Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic and epigenetic responses shed light on soybean resistance to Phytophthora sansomeana. 转录组和表观遗传学反应揭示了大豆对 Phytophthora sansomeana 的抗性。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-12 DOI: 10.1002/tpg2.20487
Gwonjin Lee, Charlotte N DiBiase, Beibei Liu, Tong Li, Austin G McCoy, Martin I Chilvers, Lianjun Sun, Dechun Wang, Feng Lin, Meixia Zhao

Phytophthora root rot, caused by oomycete pathogens in the Phytophthora genus, poses a significant threat to soybean productivity. While resistance mechanisms against Phytophthora sojae have been extensively studied in soybean, the molecular basis underlying immune responses to Phytophthora sansomeana remains unclear. In this study, we investigated transcriptomic and epigenetic responses of two resistant (Colfax and NE2701) and two susceptible (Williams 82 and Senaki) soybean lines at four time points (2, 4, 8, and 16 h post inoculation [hpi]) after P. sansomeana inoculation. Comparative transcriptomic analyses revealed a greater number of differentially expressed genes (DEGs) upon pathogen inoculation in resistant lines, particularly at 8 and 16 hpi. These DEGs were predominantly associated with defense response, ethylene, and reactive oxygen species-mediated defense pathways. Moreover, DE transposons were predominantly upregulated after inoculation, and more of them were enriched near genes in Colfax than other soybean lines. Notably, we identified a long non-coding RNA (lncRNA) within the mapped region of the resistance gene that exhibited exclusive upregulation in the resistant lines after inoculation, potentially regulating two flanking LURP-one-related genes. Furthermore, DNA methylation analysis revealed increased CHH (where H = A, T, or C) methylation levels in lncRNAs after inoculation, with delayed responses in Colfax compared to Williams 82. Overall, our results provide comprehensive insights into soybean responses to P. sansomeana, highlighting potential roles of lncRNAs and epigenetic regulation in plant defense.

疫霉根腐病是由疫霉属的卵菌病原体引起的,对大豆的产量构成严重威胁。虽然对大豆的疫霉抗性机制进行了广泛研究,但大豆疫霉免疫反应的分子基础仍不清楚。在本研究中,我们调查了两种抗性大豆品系(Colfax 和 NE2701)和两种易感性大豆品系(Williams 82 和 Senaki)在接种 P. sansomeana 后四个时间点(接种后 2、4、8 和 16 h[hpi])的转录组和表观遗传学反应。转录组比较分析表明,抗性品系在接种病原体后,特别是在接种后 8 和 16 小时,有更多的差异表达基因(DEGs)。这些 DEGs 主要与防御反应、乙烯和活性氧介导的防御途径有关。此外,DE 转座子在接种后主要上调,而且与其他大豆品系相比,更多的 DE 转座子富集在 Colfax 的基因附近。值得注意的是,我们在抗性基因的映射区域内发现了一种长非编码 RNA(lncRNA),该 RNA 在接种后的抗性品系中表现出独特的上调,可能调控两个侧翼的 LURP-one 相关基因。此外,DNA 甲基化分析表明,接种后 lncRNA 中的 CHH(H = A、T 或 C)甲基化水平升高,与威廉姆斯 82 相比,科尔法克斯的反应延迟。总之,我们的研究结果全面揭示了大豆对 P. sansomeana 的反应,突出了 lncRNAs 和表观遗传调控在植物防御中的潜在作用。
{"title":"Transcriptomic and epigenetic responses shed light on soybean resistance to Phytophthora sansomeana.","authors":"Gwonjin Lee, Charlotte N DiBiase, Beibei Liu, Tong Li, Austin G McCoy, Martin I Chilvers, Lianjun Sun, Dechun Wang, Feng Lin, Meixia Zhao","doi":"10.1002/tpg2.20487","DOIUrl":"https://doi.org/10.1002/tpg2.20487","url":null,"abstract":"<p><p>Phytophthora root rot, caused by oomycete pathogens in the Phytophthora genus, poses a significant threat to soybean productivity. While resistance mechanisms against Phytophthora sojae have been extensively studied in soybean, the molecular basis underlying immune responses to Phytophthora sansomeana remains unclear. In this study, we investigated transcriptomic and epigenetic responses of two resistant (Colfax and NE2701) and two susceptible (Williams 82 and Senaki) soybean lines at four time points (2, 4, 8, and 16 h post inoculation [hpi]) after P. sansomeana inoculation. Comparative transcriptomic analyses revealed a greater number of differentially expressed genes (DEGs) upon pathogen inoculation in resistant lines, particularly at 8 and 16 hpi. These DEGs were predominantly associated with defense response, ethylene, and reactive oxygen species-mediated defense pathways. Moreover, DE transposons were predominantly upregulated after inoculation, and more of them were enriched near genes in Colfax than other soybean lines. Notably, we identified a long non-coding RNA (lncRNA) within the mapped region of the resistance gene that exhibited exclusive upregulation in the resistant lines after inoculation, potentially regulating two flanking LURP-one-related genes. Furthermore, DNA methylation analysis revealed increased CHH (where H = A, T, or C) methylation levels in lncRNAs after inoculation, with delayed responses in Colfax compared to Williams 82. Overall, our results provide comprehensive insights into soybean responses to P. sansomeana, highlighting potential roles of lncRNAs and epigenetic regulation in plant defense.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic resources and genes/QTLs for gram pod borer (Helicoverpa armigera Hübner) resistance in chickpea from the Western Himalayas. 西喜马拉雅山鹰嘴豆抗禾本科豆荚螟(Helicoverpa armigera Hübner)的遗传资源和基因/QTLs。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-04 DOI: 10.1002/tpg2.20483
Sheikh Aafreen Rehman, Shaheen Gul, M Parthiban, Ishita Isha, M S Sai Reddy, Annapurna Chitikineni, Mahendar Thudi, R Varma Penmetsa, Rajeev Kumar Varshney, Reyazul Rouf Mir

Helicoverpa armigera (also known as gram pod borer) is a serious threat to chickpea production in the world. A set of 173 chickpea genotypes were evaluated for H. armigera resistance, including mean larval population (MLP), percentage pod damage (PPD), and pest resistance (PR) for 2 consecutive years (year 2020 and 2021). The same core set was also genotyped with 50K Axiom CicerSNP Array. The trait data and 50,000 single nucleotide polymorphism genotypic data were used together to work out marker-trait associations (MTAs) using different genome-wide association studies models. For MLP, a total of 53 MTAs were identified, including 25 MTAs in year 2020 and 28 MTAs in year 2021. A set of three MTAs was found common in both environments. For PPD, two MTAs in year 2020 and five MTAs in year 2021 were identified. A set of two MTAs were common in both environments. Similarly, for PR, only two MTAs common in both environments were identified. Interestingly, a common MTA (Affx_123255526) on chromosome 2 (Ca2) was found to be associated with all the three component traits (MLP, PPD, and PR) of pod borer resistance in chickpea. Further, we report key genes that encode SCAMPs (that facilitates the secretion of defense-related molecules), quinone oxidoreductase (enables the production of reactive oxygen species that promotes diapause of gram pod borer), and NB-LRR proteins that have been implicated in plant defense against H. armigera. The resistant chickpea genotypes, MTAs, and key genes reported in the present study may prove useful in the future for developing pod borer-resistant chickpea varieties.

Helicoverpa armigera(又称禾谷荚螟)严重威胁着全球鹰嘴豆的生产。对一组 173 个鹰嘴豆基因型进行了 H. armigera 抗性评估,包括平均幼虫数量(MLP)、豆荚损害百分比(PPD)和连续两年(2020 年和 2021 年)的抗虫性(PR)。同一核心组还使用 50K Axiom CicerSNP 阵列进行了基因分型。性状数据和 50,000 个单核苷酸多态性基因分型数据被一起用于利用不同的全基因组关联研究模型计算标记-性状关联(MTAs)。就 MLP 而言,共确定了 53 个 MTA,包括 2020 年的 25 个 MTA 和 2021 年的 28 个 MTA。在这两个环境中发现了一组三个共同的 MTA。就 PPD 而言,在 2020 年和 2021 年分别确定了 2 项和 5 项中期协议。在两个环境中都有一组共用的两个中期协议。同样,就 PR 而言,也只发现了两个在两种环境中常见的 MTA。有趣的是,我们发现 2 号染色体(Ca2)上的一个共同 MTA(Affx_123255526)与鹰嘴豆豆荚螟抗性的所有三个组成性状(MLP、PPD 和 PR)都有关联。此外,我们还报告了编码 SCAMPs(可促进防御相关分子的分泌)、醌氧化还原酶(可产生活性氧,促进豆荚螟的休眠)和 NB-LRR 蛋白的关键基因,这些基因与植物防御 H. armigera 有关。本研究中报告的抗性鹰嘴豆基因型、MTAs 和关键基因可能对未来开发抗豆荚螟鹰嘴豆品种有用。
{"title":"Genetic resources and genes/QTLs for gram pod borer (Helicoverpa armigera Hübner) resistance in chickpea from the Western Himalayas.","authors":"Sheikh Aafreen Rehman, Shaheen Gul, M Parthiban, Ishita Isha, M S Sai Reddy, Annapurna Chitikineni, Mahendar Thudi, R Varma Penmetsa, Rajeev Kumar Varshney, Reyazul Rouf Mir","doi":"10.1002/tpg2.20483","DOIUrl":"https://doi.org/10.1002/tpg2.20483","url":null,"abstract":"<p><p>Helicoverpa armigera (also known as gram pod borer) is a serious threat to chickpea production in the world. A set of 173 chickpea genotypes were evaluated for H. armigera resistance, including mean larval population (MLP), percentage pod damage (PPD), and pest resistance (PR) for 2 consecutive years (year 2020 and 2021). The same core set was also genotyped with 50K Axiom CicerSNP Array. The trait data and 50,000 single nucleotide polymorphism genotypic data were used together to work out marker-trait associations (MTAs) using different genome-wide association studies models. For MLP, a total of 53 MTAs were identified, including 25 MTAs in year 2020 and 28 MTAs in year 2021. A set of three MTAs was found common in both environments. For PPD, two MTAs in year 2020 and five MTAs in year 2021 were identified. A set of two MTAs were common in both environments. Similarly, for PR, only two MTAs common in both environments were identified. Interestingly, a common MTA (Affx_123255526) on chromosome 2 (Ca2) was found to be associated with all the three component traits (MLP, PPD, and PR) of pod borer resistance in chickpea. Further, we report key genes that encode SCAMPs (that facilitates the secretion of defense-related molecules), quinone oxidoreductase (enables the production of reactive oxygen species that promotes diapause of gram pod borer), and NB-LRR proteins that have been implicated in plant defense against H. armigera. The resistant chickpea genotypes, MTAs, and key genes reported in the present study may prove useful in the future for developing pod borer-resistant chickpea varieties.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning for genomic and pedigree prediction in sugarcane. 用于甘蔗基因组和血统预测的机器学习。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-06-26 DOI: 10.1002/tpg2.20486
Minoru Inamori, Tatsuro Kimura, Masaaki Mori, Yusuke Tarumoto, Taiichiro Hattori, Michiko Hayano, Makoto Umeda, Hiroyoshi Iwata

Sugarcane (Saccharum spp.) plays a crucial role in global sugar production; however, the efficiency of breeding programs has been hindered by its heterozygous polyploid genomes. Considering non-additive genetic effects is essential in genome prediction (GP) models of crops with highly heterozygous polyploid genomes. This study incorporates non-additive genetic effects and pedigree information using machine learning methods to track sugarcane breeding lines and enhance the prediction by assessing the degree of association between genotypes. This study measured the stalk biomass and sugar content of 297 clones from 87 families within a breeding population used in the Japanese sugarcane breeding program. Subsequently, we conducted analyses based on the marker genotypes of 33,149 single-nucleotide polymorphisms. To validate the accuracy of GP in the population, we first predicted the prediction accuracy of the best linear unbiased prediction (BLUP) based on a genomic relationship matrix. Prediction accuracy was assessed using two different cross-validation methods: repeated 10-fold cross-validation and leave-one-family-out cross-validation. The accuracy of GP of the first and second methods ranged from 0.36 to 0.74 and 0.15 to 0.63, respectively. Next, we compared the prediction accuracy of BLUP and two machine learning methods: random forests and simulation annealing ensemble (SAE), a newly developed machine learning method that explicitly models the interaction between variables. Both pedigree and genomic information were utilized as input in these methods. Through repeated 10-fold cross-validation, we found that the accuracy of the machine learning methods consistently surpassed that of BLUP in most cases. In leave-one-family-out cross-validation, SAE demonstrated the highest accuracy among the methods. These results underscore the effectiveness of GP in Japanese sugarcane breeding and highlight the significant potential of machine learning methods.

甘蔗(Saccharum spp.)在全球蔗糖生产中发挥着至关重要的作用;然而,其杂合多倍体基因组阻碍了育种计划的效率。考虑非加性遗传效应对于具有高度杂合多倍体基因组的作物基因组预测(GP)模型至关重要。本研究利用机器学习方法将非加性遗传效应和血统信息纳入甘蔗育种系的跟踪,并通过评估基因型之间的关联程度来加强预测。本研究测量了日本甘蔗育种计划中一个育种群体中 87 个家系的 297 个克隆的茎秆生物量和含糖量。随后,我们根据 33,149 个单核苷酸多态性的标记基因型进行了分析。为了验证群体中 GP 的准确性,我们首先根据基因组关系矩阵预测了最佳线性无偏预测(BLUP)的预测准确性。预测准确性的评估采用了两种不同的交叉验证方法:重复 10 倍交叉验证和排除一族交叉验证。第一种和第二种方法的 GP 预测准确率分别为 0.36 至 0.74 和 0.15 至 0.63。接下来,我们比较了 BLUP 和两种机器学习方法的预测准确率:随机森林和模拟退火集合(SAE),后者是一种新开发的机器学习方法,可明确模拟变量之间的相互作用。血统和基因组信息都被用作这些方法的输入。通过反复的 10 倍交叉验证,我们发现机器学习方法的准确性在大多数情况下都超过了 BLUP。在一族淘汰交叉验证中,SAE 的准确率是所有方法中最高的。这些结果凸显了 GP 在日本甘蔗育种中的有效性,并彰显了机器学习方法的巨大潜力。
{"title":"Machine learning for genomic and pedigree prediction in sugarcane.","authors":"Minoru Inamori, Tatsuro Kimura, Masaaki Mori, Yusuke Tarumoto, Taiichiro Hattori, Michiko Hayano, Makoto Umeda, Hiroyoshi Iwata","doi":"10.1002/tpg2.20486","DOIUrl":"https://doi.org/10.1002/tpg2.20486","url":null,"abstract":"<p><p>Sugarcane (Saccharum spp.) plays a crucial role in global sugar production; however, the efficiency of breeding programs has been hindered by its heterozygous polyploid genomes. Considering non-additive genetic effects is essential in genome prediction (GP) models of crops with highly heterozygous polyploid genomes. This study incorporates non-additive genetic effects and pedigree information using machine learning methods to track sugarcane breeding lines and enhance the prediction by assessing the degree of association between genotypes. This study measured the stalk biomass and sugar content of 297 clones from 87 families within a breeding population used in the Japanese sugarcane breeding program. Subsequently, we conducted analyses based on the marker genotypes of 33,149 single-nucleotide polymorphisms. To validate the accuracy of GP in the population, we first predicted the prediction accuracy of the best linear unbiased prediction (BLUP) based on a genomic relationship matrix. Prediction accuracy was assessed using two different cross-validation methods: repeated 10-fold cross-validation and leave-one-family-out cross-validation. The accuracy of GP of the first and second methods ranged from 0.36 to 0.74 and 0.15 to 0.63, respectively. Next, we compared the prediction accuracy of BLUP and two machine learning methods: random forests and simulation annealing ensemble (SAE), a newly developed machine learning method that explicitly models the interaction between variables. Both pedigree and genomic information were utilized as input in these methods. Through repeated 10-fold cross-validation, we found that the accuracy of the machine learning methods consistently surpassed that of BLUP in most cases. In leave-one-family-out cross-validation, SAE demonstrated the highest accuracy among the methods. These results underscore the effectiveness of GP in Japanese sugarcane breeding and highlight the significant potential of machine learning methods.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Genome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1