Pub Date : 2025-03-01Epub Date: 2024-07-28DOI: 10.1002/tpg2.20493
Dhondup Lhamo, Genqiao Li, George Song, Xuehui Li, Taner Z Sen, Yong-Qiang Gu, Xiangyang Xu, Steven S Xu
Powdery mildew, caused by the fungal pathogen Blumeria graminis (DC.) E. O. Speer f. sp. tritici Em. Marchal (Bgt), is a constant threat to global wheat (Triticum aestivum L.) production. Although ∼100 powdery mildew (Pm) resistance genes and alleles have been identified in wheat and its relatives, more is needed to minimize Bgt's fast evolving virulence. In tetraploid wheat (Triticum turgidum L.), wild emmer wheat [T. turgidum ssp. dicoccoides (Körn. ex Asch. & Graebn.) Thell.] accessions from Israel have contributed many Pm resistance genes. However, the diverse genetic reservoirs of cultivated emmer wheat [T. turgidum ssp. dicoccum (Schrank ex Schübl.) Thell.] have not been fully exploited. In the present study, we evaluated a diverse panel of 174 cultivated emmer accessions for their reaction to Bgt isolate OKS(14)-B-3-1 and found that 66% of accessions, particularly those of Ethiopian (30.5%) and Indian (6.3%) origins, exhibited high resistance. To determine the genetic basis of Bgt resistance in the panel, genome-wide association studies were performed using 46,383 single nucleotide polymorphisms (SNPs) from genotype-by-sequencing and 4331 SNPs from the 9K SNP Infinium array. Twenty-five significant SNP markers were identified to be associated with Bgt resistance, of which 21 SNPs are likely novel loci, whereas four possibly represent emmer derived Pm4a, Pm5a, PmG16, and Pm64. Most novel loci exhibited minor effects, whereas three novel loci on chromosome arms 2AS, 3BS, and 5AL had major effect on the phenotypic variance. This study demonstrates cultivated emmer as a rich source of powdery mildew resistance, and the resistant accessions and novel loci found herein can be utilized in wheat breeding programs to enhance Bgt resistance in wheat.
由真菌病原体 Blumeria graminis (DC.) E. O. Speer f. sp. tritici Em.Marchal (Bgt) 引起的白粉病,是全球小麦(Triticum aestivum L. )生产的一个长期威胁。虽然已在小麦及其近缘种中鉴定出 100 ∼ 100 个白粉病(Pm)抗性基因和等位基因,但要最大限度地降低 Bgt 快速演变的毒力,还需要做更多的工作。在四倍体小麦(Triticum turgidum L.)中,来自以色列的野生emmer小麦[T. turgidum ssp. dicoccoides (Körn. ex Asch. & Graebn.) Thell.然而,栽培小麦[T. turgidum ssp. dicoccum (Schrank ex Schübl.) Thell.]的多种基因库尚未得到充分利用。在本研究中,我们评估了 174 个栽培珙桐品种对 Bgt 分离物 OKS(14)-B-3-1 的反应,发现 66% 的品种,尤其是埃塞俄比亚(30.5%)和印度(6.3%)的品种表现出高度抗性。为了确定面板中 Bgt 抗性的遗传基础,利用逐基因型测序的 46,383 个单核苷酸多态性(SNPs)和 9K SNP Infinium 阵列的 4331 个 SNPs 进行了全基因组关联研究。研究发现了 25 个与 Bgt 抗性相关的重要 SNP 标记,其中 21 个 SNP 可能是新的基因位点,而 4 个可能代表emmer 衍生的 Pm4a、Pm5a、PmG16 和 Pm64。大多数新基因位点的影响较小,而染色体臂 2AS、3BS 和 5AL 上的三个新基因位点对表型变异的影响较大。本研究表明,栽培小麦是白粉病抗性的丰富来源,本研究发现的抗性品种和新基因座可用于小麦育种计划,以提高小麦对白粉病的抗性。
{"title":"Genome-wide association studies on resistance to powdery mildew in cultivated emmer wheat.","authors":"Dhondup Lhamo, Genqiao Li, George Song, Xuehui Li, Taner Z Sen, Yong-Qiang Gu, Xiangyang Xu, Steven S Xu","doi":"10.1002/tpg2.20493","DOIUrl":"10.1002/tpg2.20493","url":null,"abstract":"<p><p>Powdery mildew, caused by the fungal pathogen Blumeria graminis (DC.) E. O. Speer f. sp. tritici Em. Marchal (Bgt), is a constant threat to global wheat (Triticum aestivum L.) production. Although ∼100 powdery mildew (Pm) resistance genes and alleles have been identified in wheat and its relatives, more is needed to minimize Bgt's fast evolving virulence. In tetraploid wheat (Triticum turgidum L.), wild emmer wheat [T. turgidum ssp. dicoccoides (Körn. ex Asch. & Graebn.) Thell.] accessions from Israel have contributed many Pm resistance genes. However, the diverse genetic reservoirs of cultivated emmer wheat [T. turgidum ssp. dicoccum (Schrank ex Schübl.) Thell.] have not been fully exploited. In the present study, we evaluated a diverse panel of 174 cultivated emmer accessions for their reaction to Bgt isolate OKS(14)-B-3-1 and found that 66% of accessions, particularly those of Ethiopian (30.5%) and Indian (6.3%) origins, exhibited high resistance. To determine the genetic basis of Bgt resistance in the panel, genome-wide association studies were performed using 46,383 single nucleotide polymorphisms (SNPs) from genotype-by-sequencing and 4331 SNPs from the 9K SNP Infinium array. Twenty-five significant SNP markers were identified to be associated with Bgt resistance, of which 21 SNPs are likely novel loci, whereas four possibly represent emmer derived Pm4a, Pm5a, PmG16, and Pm64. Most novel loci exhibited minor effects, whereas three novel loci on chromosome arms 2AS, 3BS, and 5AL had major effect on the phenotypic variance. This study demonstrates cultivated emmer as a rich source of powdery mildew resistance, and the resistant accessions and novel loci found herein can be utilized in wheat breeding programs to enhance Bgt resistance in wheat.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20493"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-10-24DOI: 10.1002/tpg2.20519
Francisco González, Julián García-Abadillo, Diego Jarquín
Climate change represents a significant challenge to global food security by altering environmental conditions critical to crop growth. Plant breeders can play a key role in mitigating these challenges by developing more resilient crop varieties; however, these efforts require significant investments in resources and time. In response, it is imperative to use current technologies that assimilate large biological and environmental datasets into predictive models to accelerate the research, development, and release of new improved varieties that can be more resilient to the increasingly variable climatic conditions. Leveraging large and diverse datasets can improve the characterization of phenotypic responses due to environmental stimuli and genomic pulses. A better characterization of these signals holds the potential to enhance our ability to predict trait performance under changes in weather and/or soil conditions with high precision. This paper introduces characterization and integration of driven omics (CHiDO), an easy-to-use, no-code platform designed to integrate diverse omics datasets and effectively model their interactions. With its flexibility to integrate and process datasets, CHiDO's intuitive interface allows users to explore historical data, formulate hypotheses, and optimize data collection strategies for future scenarios. The platform's mission emphasizes global accessibility, democratizing statistical solutions for situations where professional ability in data processing and data analysis is not available.
{"title":"Introducing CHiDO-A No Code Genomic Prediction software implementation for the characterization and integration of driven omics.","authors":"Francisco González, Julián García-Abadillo, Diego Jarquín","doi":"10.1002/tpg2.20519","DOIUrl":"10.1002/tpg2.20519","url":null,"abstract":"<p><p>Climate change represents a significant challenge to global food security by altering environmental conditions critical to crop growth. Plant breeders can play a key role in mitigating these challenges by developing more resilient crop varieties; however, these efforts require significant investments in resources and time. In response, it is imperative to use current technologies that assimilate large biological and environmental datasets into predictive models to accelerate the research, development, and release of new improved varieties that can be more resilient to the increasingly variable climatic conditions. Leveraging large and diverse datasets can improve the characterization of phenotypic responses due to environmental stimuli and genomic pulses. A better characterization of these signals holds the potential to enhance our ability to predict trait performance under changes in weather and/or soil conditions with high precision. This paper introduces characterization and integration of driven omics (CHiDO), an easy-to-use, no-code platform designed to integrate diverse omics datasets and effectively model their interactions. With its flexibility to integrate and process datasets, CHiDO's intuitive interface allows users to explore historical data, formulate hypotheses, and optimize data collection strategies for future scenarios. The platform's mission emphasizes global accessibility, democratizing statistical solutions for situations where professional ability in data processing and data analysis is not available.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20519"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-11-13DOI: 10.1002/tpg2.20529
Harsimardeep S Gill, Emily Conley, Charlotte Brault, Linda Dykes, Jochum C Wiersma, Katherine Frels, James A Anderson
End-use and processing traits in wheat (Triticum aestivum L.) are crucial for varietal development but are often evaluated only in the advanced stages of the breeding program due to the amount of grain needed and the labor-intensive phenotyping assays. Advances in genomic resources have provided new tools to address the selection for these complex traits earlier in the breeding process. We used association mapping to identify key variants underlying various end-use quality traits and evaluate the usefulness of genomic prediction for these traits in hard red spring wheat from the Northern United States. A panel of 383 advanced breeding lines and cultivars representing the diversity of the University of Minnesota wheat breeding program was genotyped using the Illumina 90K single nucleotide polymorphism array and evaluated in multilocation trials using standard assessments of end-use quality. Sixty-three associations for grain or flour characteristics, mixograph, farinograph, and baking traits were identified. The majority of these associations were mapped in the vicinity of glutenin/gliadin or other known loci. In addition, a putative novel multi-trait association was identified on chromosome 6AL, and candidate gene analysis revealed eight genes of interest. Further, genomic prediction had a high predictive ability (PA) for mixograph and farinograph traits, with PA up to 0.62 and 0.50 in cross-validation and forward prediction, respectively. The deployment of 46 markers from GWAS to predict dough-rheology traits yielded low to moderate PA for various traits. The results of this study suggest that genomic prediction for end-use traits in early generations can be effective for mixograph and farinograph assays but not baking assays.
{"title":"Association mapping and genomic prediction for processing and end-use quality traits in wheat (Triticum aestivum L.).","authors":"Harsimardeep S Gill, Emily Conley, Charlotte Brault, Linda Dykes, Jochum C Wiersma, Katherine Frels, James A Anderson","doi":"10.1002/tpg2.20529","DOIUrl":"10.1002/tpg2.20529","url":null,"abstract":"<p><p>End-use and processing traits in wheat (Triticum aestivum L.) are crucial for varietal development but are often evaluated only in the advanced stages of the breeding program due to the amount of grain needed and the labor-intensive phenotyping assays. Advances in genomic resources have provided new tools to address the selection for these complex traits earlier in the breeding process. We used association mapping to identify key variants underlying various end-use quality traits and evaluate the usefulness of genomic prediction for these traits in hard red spring wheat from the Northern United States. A panel of 383 advanced breeding lines and cultivars representing the diversity of the University of Minnesota wheat breeding program was genotyped using the Illumina 90K single nucleotide polymorphism array and evaluated in multilocation trials using standard assessments of end-use quality. Sixty-three associations for grain or flour characteristics, mixograph, farinograph, and baking traits were identified. The majority of these associations were mapped in the vicinity of glutenin/gliadin or other known loci. In addition, a putative novel multi-trait association was identified on chromosome 6AL, and candidate gene analysis revealed eight genes of interest. Further, genomic prediction had a high predictive ability (PA) for mixograph and farinograph traits, with PA up to 0.62 and 0.50 in cross-validation and forward prediction, respectively. The deployment of 46 markers from GWAS to predict dough-rheology traits yielded low to moderate PA for various traits. The results of this study suggest that genomic prediction for end-use traits in early generations can be effective for mixograph and farinograph assays but not baking assays.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20529"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-05DOI: 10.1002/tpg2.20526
Pablo Sipowicz, Mario Henrique Murad Leite Andrade, Claudio Carlos Fernandes Filho, Juliana Benevenuto, Patricio Muñoz, L Felipe V Ferrão, Marcio F R Resende, C Messina, Esteban F Rios
Alfalfa (Medicago sativa L.) is a perennial forage legume esteemed for its exceptional quality and dry matter yield (DMY); however, alfalfa has historically exhibited low genetic gain for DMY. Advances in genotyping platforms paved the way for a cost-effective application of genomic prediction in alfalfa family bulks. In this context, the optimization of marker density holds potential to reallocate resources within genomic prediction pipelines. This study aimed to (i) test two genotyping platforms for population structure discrimination and predictive ability (PA) of genomic prediction models (G-BLUP) for DMY, and (ii) explore optimal levels of marker density to predict DMY in family bulks. For this, 160 nondormant alfalfa families were phenotyped for DMY across 11 harvests and genotyped via targeted sequencing using Capture-seq with 17K probes and the DArTag 3K panel. Both platforms discriminated similarly against the population structure and resulted in comparable PA for DMY. For genotyping optimization, different levels of marker density were randomly extracted from each platform. In both cases, a plateau was achieved around 500 markers, yielding similar PA as the full set of markers. For phenotyping optimization, models with 500 markers built with data from five harvests resulted in similar PA compared to the full set of 11 harvests and full set of markers. Altogether, genotyping and phenotyping efforts were optimized in terms of number of markers and harvests. Capture-seq and DArTag yielded similar results and have the flexibility to adjust their panels to meet breeders' needs in terms of marker density.
{"title":"Optimization of high-throughput marker systems for genomic prediction in alfalfa family bulks.","authors":"Pablo Sipowicz, Mario Henrique Murad Leite Andrade, Claudio Carlos Fernandes Filho, Juliana Benevenuto, Patricio Muñoz, L Felipe V Ferrão, Marcio F R Resende, C Messina, Esteban F Rios","doi":"10.1002/tpg2.20526","DOIUrl":"10.1002/tpg2.20526","url":null,"abstract":"<p><p>Alfalfa (Medicago sativa L.) is a perennial forage legume esteemed for its exceptional quality and dry matter yield (DMY); however, alfalfa has historically exhibited low genetic gain for DMY. Advances in genotyping platforms paved the way for a cost-effective application of genomic prediction in alfalfa family bulks. In this context, the optimization of marker density holds potential to reallocate resources within genomic prediction pipelines. This study aimed to (i) test two genotyping platforms for population structure discrimination and predictive ability (PA) of genomic prediction models (G-BLUP) for DMY, and (ii) explore optimal levels of marker density to predict DMY in family bulks. For this, 160 nondormant alfalfa families were phenotyped for DMY across 11 harvests and genotyped via targeted sequencing using Capture-seq with 17K probes and the DArTag 3K panel. Both platforms discriminated similarly against the population structure and resulted in comparable PA for DMY. For genotyping optimization, different levels of marker density were randomly extracted from each platform. In both cases, a plateau was achieved around 500 markers, yielding similar PA as the full set of markers. For phenotyping optimization, models with 500 markers built with data from five harvests resulted in similar PA compared to the full set of 11 harvests and full set of markers. Altogether, genotyping and phenotyping efforts were optimized in terms of number of markers and harvests. Capture-seq and DArTag yielded similar results and have the flexibility to adjust their panels to meet breeders' needs in terms of marker density.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20526"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kate E Jaggi, Karol Krak, Helena Štorchová, Bohumil Mandák, Ashley Marcheschi, Alexander Belyayev, Eric N Jellen, John Sproul, David Jarvis, Peter J Maughan
The genus Chenopodium L. is characterized by its wide geographic distribution and ecological adaptability. Species such as quinoa (Chenopodium quinoa Willd.) have served as domesticated staple crops for centuries. Wild Chenopodium species exhibit diverse niche adaptations and are important genetic reservoirs for beneficial agronomic traits, including disease resistance and climate hardiness. To harness the potential of the wild taxa for crop improvement, we developed a Chenopodium pangenome through the assembly and comparative analyses of 12 Chenopodium species that encompass the eight known genome types (A-H). Six of the species are new chromosome-scale assemblies, and many are polyploids; thus, a total of 20 genomes were included in the pangenome analyses. We show that the genomes vary dramatically in size with the D genome being the smallest (∼370 Mb) and the B genome being the largest (∼700 Mb) and that genome size was correlated with independent expansions of the Copia and Gypsy LTR retrotransposon families, suggesting that transposable elements have played a critical role in the evolution of the Chenopodium genomes. We annotated a total of 33,457 pan-Chenopodium gene families, of which ∼65% were classified as shell (2% private). Phylogenetic analysis clarified the evolutionary relationships among the genome lineages, notably resolving the taxonomic placement of the F genome while highlighting the uniqueness of the A genome in the Western Hemisphere. These genomic resources are particularly important for understanding the secondary and tertiary gene pools available for the improvement of the domesticated chenopods while furthering our understanding of the evolution and complexity within the genus.
藜属植物的特点是地理分布广、生态适应性强。几个世纪以来,藜(Chenopodium quinoa Willd.)等物种一直是驯化的主要作物。野生藜科物种表现出多种生态适应性,是有益农艺性状(包括抗病性和耐气候性)的重要基因库。为了利用野生类群的潜力进行作物改良,我们通过对 12 种陈腐植物(包括 8 种已知基因组类型(A-H))进行组装和比较分析,建立了陈腐植物泛基因组。其中 6 个物种是新的染色体级组装,许多物种是多倍体;因此,共有 20 个基因组被纳入庞基因组分析。我们发现,这些基因组的大小差异很大,其中 D 基因组最小(∼370 Mb),B 基因组最大(∼700 Mb),而且基因组大小与 Copia 和 Gypsy LTR 反转座子家族的独立扩展相关,这表明转座元件在藜科植物基因组的进化中发挥了关键作用。我们共注释了33,457个泛裙带菜基因家族,其中65%被归类为壳基因(2%为私有基因)。系统发育分析明确了基因组之间的进化关系,特别是解决了 F 基因组的分类定位问题,同时强调了 A 基因组在西半球的独特性。这些基因组资源对于了解改良驯化栉水母的二级和三级基因库尤为重要,同时也加深了我们对栉水母属内部进化和复杂性的了解。
{"title":"A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium.","authors":"Kate E Jaggi, Karol Krak, Helena Štorchová, Bohumil Mandák, Ashley Marcheschi, Alexander Belyayev, Eric N Jellen, John Sproul, David Jarvis, Peter J Maughan","doi":"10.1002/tpg2.70010","DOIUrl":"10.1002/tpg2.70010","url":null,"abstract":"<p><p>The genus Chenopodium L. is characterized by its wide geographic distribution and ecological adaptability. Species such as quinoa (Chenopodium quinoa Willd.) have served as domesticated staple crops for centuries. Wild Chenopodium species exhibit diverse niche adaptations and are important genetic reservoirs for beneficial agronomic traits, including disease resistance and climate hardiness. To harness the potential of the wild taxa for crop improvement, we developed a Chenopodium pangenome through the assembly and comparative analyses of 12 Chenopodium species that encompass the eight known genome types (A-H). Six of the species are new chromosome-scale assemblies, and many are polyploids; thus, a total of 20 genomes were included in the pangenome analyses. We show that the genomes vary dramatically in size with the D genome being the smallest (∼370 Mb) and the B genome being the largest (∼700 Mb) and that genome size was correlated with independent expansions of the Copia and Gypsy LTR retrotransposon families, suggesting that transposable elements have played a critical role in the evolution of the Chenopodium genomes. We annotated a total of 33,457 pan-Chenopodium gene families, of which ∼65% were classified as shell (2% private). Phylogenetic analysis clarified the evolutionary relationships among the genome lineages, notably resolving the taxonomic placement of the F genome while highlighting the uniqueness of the A genome in the Western Hemisphere. These genomic resources are particularly important for understanding the secondary and tertiary gene pools available for the improvement of the domesticated chenopods while furthering our understanding of the evolution and complexity within the genus.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 1","pages":"e70010"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143525018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam Lampar, András Farkas, László Ivanizs, Kitti Szőke-Pázsi, Eszter Gaál, Mahmoud Said, Jan Bartoš, Jaroslav Doležel, Abraham Korol, Miroslav Valárik, István Molnár
Goatgrasses with U- and M-genomes are important sources of new alleles for wheat breeding to maintain yield and quality under extreme conditions. However, the introgression of beneficial traits from wild Aegilops species into wheat has been limited by poor knowledge of their genomes and scarcity of molecular tools. Here, we present the first linkage map of allotetraploid Aegilops biuncialis Vis., developed using 224 F2 individuals derived from a cross between MvGB382 and MvGB642 accessions. The map comprises 5663 DArTseq markers assigned to 15 linkage groups corresponding to 13 chromosomes. Chromosome 1Mb could not be constructed due to a lack of recombination caused by rearrangements in the MvGB382 accession. The genetic map spans 2518 cM with an average marker density of 2.79 cM. The skeleton map contains 920 segregating markers, divided between the Mb sub-genome (425 markers) and the Ub sub-genome (495 markers). Chromosomes of the Mb sub-genome, originating from Aegilops comosa Sm. in Sibth. et Sm., show well-preserved collinearity with Triticum aestivum L. chromosomes. In contrast, chromosomes of the Ub sub-genome, originating from Aegilops umbellulata Zhuk., exhibit a varying degree of collinearity, with 1Ub, 3Ub, and 5Ub retaining a substantial level of collinearity with Triticum aestivum, while 2Ub, 4Ub, 6Ub, and 7Ub show significant rearrangements. A quantitative trait locus affecting fertility was identified near the centromere on the long arm of chromosome 3Mb, explaining 23.5% of the variance. The genome structure of Aegilops biuncialis, highlighted by the genetic map, provides insights into the speciation within the species and will support alien gene transfer into wheat.
{"title":"A linkage map of Aegilops biuncialis reveals significant genomic rearrangements compared to bread wheat.","authors":"Adam Lampar, András Farkas, László Ivanizs, Kitti Szőke-Pázsi, Eszter Gaál, Mahmoud Said, Jan Bartoš, Jaroslav Doležel, Abraham Korol, Miroslav Valárik, István Molnár","doi":"10.1002/tpg2.70009","DOIUrl":"10.1002/tpg2.70009","url":null,"abstract":"<p><p>Goatgrasses with U- and M-genomes are important sources of new alleles for wheat breeding to maintain yield and quality under extreme conditions. However, the introgression of beneficial traits from wild Aegilops species into wheat has been limited by poor knowledge of their genomes and scarcity of molecular tools. Here, we present the first linkage map of allotetraploid Aegilops biuncialis Vis., developed using 224 F<sub>2</sub> individuals derived from a cross between MvGB382 and MvGB642 accessions. The map comprises 5663 DArTseq markers assigned to 15 linkage groups corresponding to 13 chromosomes. Chromosome 1M<sup>b</sup> could not be constructed due to a lack of recombination caused by rearrangements in the MvGB382 accession. The genetic map spans 2518 cM with an average marker density of 2.79 cM. The skeleton map contains 920 segregating markers, divided between the M<sup>b</sup> sub-genome (425 markers) and the U<sup>b</sup> sub-genome (495 markers). Chromosomes of the M<sup>b</sup> sub-genome, originating from Aegilops comosa Sm. in Sibth. et Sm., show well-preserved collinearity with Triticum aestivum L. chromosomes. In contrast, chromosomes of the U<sup>b</sup> sub-genome, originating from Aegilops umbellulata Zhuk., exhibit a varying degree of collinearity, with 1U<sup>b</sup>, 3U<sup>b</sup>, and 5U<sup>b</sup> retaining a substantial level of collinearity with Triticum aestivum, while 2U<sup>b</sup>, 4U<sup>b</sup>, 6U<sup>b</sup>, and 7U<sup>b</sup> show significant rearrangements. A quantitative trait locus affecting fertility was identified near the centromere on the long arm of chromosome 3M<sup>b</sup>, explaining 23.5% of the variance. The genome structure of Aegilops biuncialis, highlighted by the genetic map, provides insights into the speciation within the species and will support alien gene transfer into wheat.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 1","pages":"e70009"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143505095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianling Ao, Ruoruo Wang, Wenzeng Li, Yanqing Ding, Jianxia Xu, Ning Cao, Xu Gao, Bin Cheng, Degang Zhao, Liyi Zhang
Panicle exsertion is essential for crop yield and quality, and understanding its molecular mechanisms is crucial for optimizing plant architecture. In this study, the sheathed panicle-I (shp-I) mutant was identified from the ethyl methane sulfonate mutant population of the sorghum [Sorghum bicolor (L.) Moench] variety Hongyingzi (HYZ). While phenotypically similar to the wild type during the seedling stage, shp-I exhibits a significantly shorter peduncle internode at the heading stage. Cytomorphological analysis revealed reduced parenchyma cell size within the mutant's peduncle internode. Phytohormonal profiling showed lower levels of indole-3-acetic acid and higher concentrations of brassinosteroid in the mutant compared to the wild type at the peduncle internode. Genetic analysis confirmed that the mutant phenotype was caused by a recessive single-gene mutation. Through bulked segregant analysis sequencing (BSA-seq) genetic mapping, the causative locus for the mutant phenotype was localized to a 59.65-59.92 Mb interval on chromosome 10, which contains 28 putative genes. Additionally, the gene SbiHYZ.10G230700, which encodes a BTB/POZ and MATH (BPM) domain protein, was identified as a candidate gene. Further analysis revealed that the non-synonymous mutations in the candidate gene were located within the MATH domain, affecting the 3D structure of the protein. In summary, this study provides a new genetic material and candidate genes for future research into the molecular regulation of sorghum peduncle length.
{"title":"Gene mapping and candidate gene analysis of a sorghum sheathed panicle-I mutant.","authors":"Jianling Ao, Ruoruo Wang, Wenzeng Li, Yanqing Ding, Jianxia Xu, Ning Cao, Xu Gao, Bin Cheng, Degang Zhao, Liyi Zhang","doi":"10.1002/tpg2.70007","DOIUrl":"10.1002/tpg2.70007","url":null,"abstract":"<p><p>Panicle exsertion is essential for crop yield and quality, and understanding its molecular mechanisms is crucial for optimizing plant architecture. In this study, the sheathed panicle-I (shp-I) mutant was identified from the ethyl methane sulfonate mutant population of the sorghum [Sorghum bicolor (L.) Moench] variety Hongyingzi (HYZ). While phenotypically similar to the wild type during the seedling stage, shp-I exhibits a significantly shorter peduncle internode at the heading stage. Cytomorphological analysis revealed reduced parenchyma cell size within the mutant's peduncle internode. Phytohormonal profiling showed lower levels of indole-3-acetic acid and higher concentrations of brassinosteroid in the mutant compared to the wild type at the peduncle internode. Genetic analysis confirmed that the mutant phenotype was caused by a recessive single-gene mutation. Through bulked segregant analysis sequencing (BSA-seq) genetic mapping, the causative locus for the mutant phenotype was localized to a 59.65-59.92 Mb interval on chromosome 10, which contains 28 putative genes. Additionally, the gene SbiHYZ.10G230700, which encodes a BTB/POZ and MATH (BPM) domain protein, was identified as a candidate gene. Further analysis revealed that the non-synonymous mutations in the candidate gene were located within the MATH domain, affecting the 3D structure of the protein. In summary, this study provides a new genetic material and candidate genes for future research into the molecular regulation of sorghum peduncle length.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 1","pages":"e70007"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sweetness is a main component of the table beet (Beta vulgaris L.) flavor profile and a key determinant of its market success for fresh consumption. Total dissolved solids (TDS) is a proxy for sugar content in produce and are easily measured through a refractometer, making TDS valuable in breeding programs focused on increasing sweetness. A diversity panel of 238 accessions from the Beta vulgaris crop complex and wild relatives was assembled and genotyped using genotyping-by-sequencing, yielding 10,237 single nucleotide polymorphisms (SNPs) from 226 full panel accessions and 9,847 SNPs from table beet only accessions after filtering. The panel was phenotyped in field trials over 2 years and mean values were adjusted using best linear unbiased estimates. TDS levels varied among crop types and a broad-sense heritability of 0.90 indicated that phenotypic differences can be attributed in large part to genetic variation. A genome-wide association study (GWAS) uncovered four quantitative trait loci (QTLs) identified across multiple models to significantly associate with TDS. A QTL on chromosome 2 was consistently identified among GWAS models, explaining 12.1%-62.6% of the phenotypic variation in the full panel. Bevul.2G176300, a gene directly involved in the sucrose biosynthesis pathway, was located downstream the significant marker. A second QTL identified on chromosome 7 revealed QTL alleles that may differentiate between table beet accessions, explaining nearly half the phenotypic variation, and is the first QTL reported in association with TDS unique to table beet. The QTL described can be used to efficiently breed for higher TDS levels in Beta vulgaris, avoiding intercrop type crosses and linkage drag.
{"title":"Variation for QTL alleles associated with total dissolved solids among crop types in a GWAS of a Beta vulgaris diversity panel.","authors":"Audrey Pelikan, Irwin L Goldman","doi":"10.1002/tpg2.70014","DOIUrl":"https://doi.org/10.1002/tpg2.70014","url":null,"abstract":"<p><p>Sweetness is a main component of the table beet (Beta vulgaris L.) flavor profile and a key determinant of its market success for fresh consumption. Total dissolved solids (TDS) is a proxy for sugar content in produce and are easily measured through a refractometer, making TDS valuable in breeding programs focused on increasing sweetness. A diversity panel of 238 accessions from the Beta vulgaris crop complex and wild relatives was assembled and genotyped using genotyping-by-sequencing, yielding 10,237 single nucleotide polymorphisms (SNPs) from 226 full panel accessions and 9,847 SNPs from table beet only accessions after filtering. The panel was phenotyped in field trials over 2 years and mean values were adjusted using best linear unbiased estimates. TDS levels varied among crop types and a broad-sense heritability of 0.90 indicated that phenotypic differences can be attributed in large part to genetic variation. A genome-wide association study (GWAS) uncovered four quantitative trait loci (QTLs) identified across multiple models to significantly associate with TDS. A QTL on chromosome 2 was consistently identified among GWAS models, explaining 12.1%-62.6% of the phenotypic variation in the full panel. Bevul.2G176300, a gene directly involved in the sucrose biosynthesis pathway, was located downstream the significant marker. A second QTL identified on chromosome 7 revealed QTL alleles that may differentiate between table beet accessions, explaining nearly half the phenotypic variation, and is the first QTL reported in association with TDS unique to table beet. The QTL described can be used to efficiently breed for higher TDS levels in Beta vulgaris, avoiding intercrop type crosses and linkage drag.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 1","pages":"e70014"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phytocytokines belong to a category of small secreted peptides with signaling functions that play pivotal roles in diverse plant physiological processes. However, due to low levels of sequence conservation across plant species and poorly understood biological functions, the accurate detection and annotation of corresponding genes is challenging. The availability of a high-quality apple (Malus domestica) genome has enabled the exploration of five phytocytokine gene families, selected on the basis of their altered expression profiles in response to biotic stresses. These include phytosulfokine, inflorescence deficient in abscission/-like, pathogen-associated molecular pattern induced secreted peptide, plant peptide containing sulfated tyrosine, and C-terminally encoded peptide. The genes encoding the precursors of these five families of signaling peptides were identified using a customized bioinformatics protocol combining genome mining, homology searches, and peptide motif detection. Transcriptomic analyses showed that these peptides were deregulated in response to Erwinia amylovora, the causal agent of fire blight in pome fruit trees, and in response to a chemical elicitor (acibenzolar-S-methyl). Finally, gene family evolution and the orthology relationships with Arabidopsis thaliana homologs were investigated.
{"title":"Phytocytokine genes newly discovered in Malus domestica and their regulation in response to Erwinia amylovora and acibenzolar-S-methyl.","authors":"Marie-Charlotte Guillou, Matthieu Gaucher, Emilie Vergne, Jean-Pierre Renou, Marie-Noëlle Brisset, Sébastien Aubourg","doi":"10.1002/tpg2.20540","DOIUrl":"10.1002/tpg2.20540","url":null,"abstract":"<p><p>Phytocytokines belong to a category of small secreted peptides with signaling functions that play pivotal roles in diverse plant physiological processes. However, due to low levels of sequence conservation across plant species and poorly understood biological functions, the accurate detection and annotation of corresponding genes is challenging. The availability of a high-quality apple (Malus domestica) genome has enabled the exploration of five phytocytokine gene families, selected on the basis of their altered expression profiles in response to biotic stresses. These include phytosulfokine, inflorescence deficient in abscission/-like, pathogen-associated molecular pattern induced secreted peptide, plant peptide containing sulfated tyrosine, and C-terminally encoded peptide. The genes encoding the precursors of these five families of signaling peptides were identified using a customized bioinformatics protocol combining genome mining, homology searches, and peptide motif detection. Transcriptomic analyses showed that these peptides were deregulated in response to Erwinia amylovora, the causal agent of fire blight in pome fruit trees, and in response to a chemical elicitor (acibenzolar-S-methyl). Finally, gene family evolution and the orthology relationships with Arabidopsis thaliana homologs were investigated.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20540"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2023-10-24DOI: 10.1002/tpg2.20398
Amanda R Peters Haugrud, Jyoti Saini Sharma, Qijun Zhang, Andrew J Green, Steven S Xu, Justin D Faris
Durum wheat (Triticum turgidum ssp. durum L.) is an important world food crop used to make pasta products. Compared to bread wheat (Triticum aestivum L.), fewer studies have been conducted to identify genetic loci governing yield-component traits in durum wheat. A potential source of diversity for durum is its immediate progenitor, cultivated emmer (T. turgidum ssp. dicoccum). We evaluated two biparental populations of recombinant inbred lines (RILs) derived from crosses between the durum lines Ben and Rusty and the cultivated emmer wheat accessions PI 41025 and PI 193883, referred to as the Ben × PI 41025 (BP025) and Rusty × PI 193883 (RP883) RIL populations, respectively. Both populations were evaluated under field conditions in three seasons with an aim to identify quantitative trait loci (QTLs) associated with yield components and seed morphology that were expressed in multiple environments. A total of 44 and 34 multi-environment QTLs were identified in the BP025 and RP883 populations, respectively. As expected, genetic loci known to govern domestication and development were associated with some of the QTLs, but novel QTLs derived from the cultivated emmer parents and associated with yield components including spikelet number, grain weight, and grain size were identified. These QTLs offer new target loci for durum wheat improvement, and toward that goal, we identified five RILs with increased grain weight and size compared to the durum parents. These materials along with the knowledge of stable QTLs and associated markers can help to expedite the development of superior durum varieties.
{"title":"Identification of robust yield quantitative trait loci derived from cultivated emmer for durum wheat improvement.","authors":"Amanda R Peters Haugrud, Jyoti Saini Sharma, Qijun Zhang, Andrew J Green, Steven S Xu, Justin D Faris","doi":"10.1002/tpg2.20398","DOIUrl":"10.1002/tpg2.20398","url":null,"abstract":"<p><p>Durum wheat (Triticum turgidum ssp. durum L.) is an important world food crop used to make pasta products. Compared to bread wheat (Triticum aestivum L.), fewer studies have been conducted to identify genetic loci governing yield-component traits in durum wheat. A potential source of diversity for durum is its immediate progenitor, cultivated emmer (T. turgidum ssp. dicoccum). We evaluated two biparental populations of recombinant inbred lines (RILs) derived from crosses between the durum lines Ben and Rusty and the cultivated emmer wheat accessions PI 41025 and PI 193883, referred to as the Ben × PI 41025 (BP025) and Rusty × PI 193883 (RP883) RIL populations, respectively. Both populations were evaluated under field conditions in three seasons with an aim to identify quantitative trait loci (QTLs) associated with yield components and seed morphology that were expressed in multiple environments. A total of 44 and 34 multi-environment QTLs were identified in the BP025 and RP883 populations, respectively. As expected, genetic loci known to govern domestication and development were associated with some of the QTLs, but novel QTLs derived from the cultivated emmer parents and associated with yield components including spikelet number, grain weight, and grain size were identified. These QTLs offer new target loci for durum wheat improvement, and toward that goal, we identified five RILs with increased grain weight and size compared to the durum parents. These materials along with the knowledge of stable QTLs and associated markers can help to expedite the development of superior durum varieties.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20398"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726405/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}