首页 > 最新文献

Plant Genome最新文献

英文 中文
Transcriptomic and epigenetic responses shed light on soybean resistance to Phytophthora sansomeana. 转录组和表观遗传学反应揭示了大豆对 Phytophthora sansomeana 的抗性。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.1002/tpg2.20487
Gwonjin Lee, Charlotte N DiBiase, Beibei Liu, Tong Li, Austin G McCoy, Martin I Chilvers, Lianjun Sun, Dechun Wang, Feng Lin, Meixia Zhao

Phytophthora root rot, caused by oomycete pathogens in the Phytophthora genus, poses a significant threat to soybean productivity. While resistance mechanisms against Phytophthora sojae have been extensively studied in soybean, the molecular basis underlying immune responses to Phytophthora sansomeana remains unclear. In this study, we investigated transcriptomic and epigenetic responses of two resistant (Colfax and NE2701) and two susceptible (Williams 82 and Senaki) soybean lines at four time points (2, 4, 8, and 16 h post inoculation [hpi]) after P. sansomeana inoculation. Comparative transcriptomic analyses revealed a greater number of differentially expressed genes (DEGs) upon pathogen inoculation in resistant lines, particularly at 8 and 16 hpi. These DEGs were predominantly associated with defense response, ethylene, and reactive oxygen species-mediated defense pathways. Moreover, DE transposons were predominantly upregulated after inoculation, and more of them were enriched near genes in Colfax than other soybean lines. Notably, we identified a long non-coding RNA (lncRNA) within the mapped region of the resistance gene that exhibited exclusive upregulation in the resistant lines after inoculation, potentially regulating two flanking LURP-one-related genes. Furthermore, DNA methylation analysis revealed increased CHH (where H = A, T, or C) methylation levels in lncRNAs after inoculation, with delayed responses in Colfax compared to Williams 82. Overall, our results provide comprehensive insights into soybean responses to P. sansomeana, highlighting potential roles of lncRNAs and epigenetic regulation in plant defense.

疫霉根腐病是由疫霉属的卵菌病原体引起的,对大豆的产量构成严重威胁。虽然对大豆的疫霉抗性机制进行了广泛研究,但大豆疫霉免疫反应的分子基础仍不清楚。在本研究中,我们调查了两种抗性大豆品系(Colfax 和 NE2701)和两种易感性大豆品系(Williams 82 和 Senaki)在接种 P. sansomeana 后四个时间点(接种后 2、4、8 和 16 h[hpi])的转录组和表观遗传学反应。转录组比较分析表明,抗性品系在接种病原体后,特别是在接种后 8 和 16 小时,有更多的差异表达基因(DEGs)。这些 DEGs 主要与防御反应、乙烯和活性氧介导的防御途径有关。此外,DE 转座子在接种后主要上调,而且与其他大豆品系相比,更多的 DE 转座子富集在 Colfax 的基因附近。值得注意的是,我们在抗性基因的映射区域内发现了一种长非编码 RNA(lncRNA),该 RNA 在接种后的抗性品系中表现出独特的上调,可能调控两个侧翼的 LURP-one 相关基因。此外,DNA 甲基化分析表明,接种后 lncRNA 中的 CHH(H = A、T 或 C)甲基化水平升高,与威廉姆斯 82 相比,科尔法克斯的反应延迟。总之,我们的研究结果全面揭示了大豆对 P. sansomeana 的反应,突出了 lncRNAs 和表观遗传调控在植物防御中的潜在作用。
{"title":"Transcriptomic and epigenetic responses shed light on soybean resistance to Phytophthora sansomeana.","authors":"Gwonjin Lee, Charlotte N DiBiase, Beibei Liu, Tong Li, Austin G McCoy, Martin I Chilvers, Lianjun Sun, Dechun Wang, Feng Lin, Meixia Zhao","doi":"10.1002/tpg2.20487","DOIUrl":"10.1002/tpg2.20487","url":null,"abstract":"<p><p>Phytophthora root rot, caused by oomycete pathogens in the Phytophthora genus, poses a significant threat to soybean productivity. While resistance mechanisms against Phytophthora sojae have been extensively studied in soybean, the molecular basis underlying immune responses to Phytophthora sansomeana remains unclear. In this study, we investigated transcriptomic and epigenetic responses of two resistant (Colfax and NE2701) and two susceptible (Williams 82 and Senaki) soybean lines at four time points (2, 4, 8, and 16 h post inoculation [hpi]) after P. sansomeana inoculation. Comparative transcriptomic analyses revealed a greater number of differentially expressed genes (DEGs) upon pathogen inoculation in resistant lines, particularly at 8 and 16 hpi. These DEGs were predominantly associated with defense response, ethylene, and reactive oxygen species-mediated defense pathways. Moreover, DE transposons were predominantly upregulated after inoculation, and more of them were enriched near genes in Colfax than other soybean lines. Notably, we identified a long non-coding RNA (lncRNA) within the mapped region of the resistance gene that exhibited exclusive upregulation in the resistant lines after inoculation, potentially regulating two flanking LURP-one-related genes. Furthermore, DNA methylation analysis revealed increased CHH (where H = A, T, or C) methylation levels in lncRNAs after inoculation, with delayed responses in Colfax compared to Williams 82. Overall, our results provide comprehensive insights into soybean responses to P. sansomeana, highlighting potential roles of lncRNAs and epigenetic regulation in plant defense.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20487"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Globally deployed sorghum aphid resistance gene RMES1 is vulnerable to biotype shifts but is bolstered by RMES2. 勘误:全球部署的高粱蚜虫抗性基因 RMES1 易受生物型转变的影响,但 RMES2 可增强其抗性。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-01 Epub Date: 2024-07-29 DOI: 10.1002/tpg2.20499
Carl VanGessel, Brian Rice, Terry J Felderhoff, Jean Rigaud Charles, Gael Pressoir, Vamsi Nalam, Geoffrey P Morris
{"title":"Erratum to: Globally deployed sorghum aphid resistance gene RMES1 is vulnerable to biotype shifts but is bolstered by RMES2.","authors":"Carl VanGessel, Brian Rice, Terry J Felderhoff, Jean Rigaud Charles, Gael Pressoir, Vamsi Nalam, Geoffrey P Morris","doi":"10.1002/tpg2.20499","DOIUrl":"10.1002/tpg2.20499","url":null,"abstract":"","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20499"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic diversity and population structure in banana (Musa spp.) breeding germplasm. 香蕉(Musa spp.)育种种质的遗传多样性和种群结构。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-01 Epub Date: 2024-07-29 DOI: 10.1002/tpg2.20497
Violet Akech, Therése Bengtsson, Rodomiro Ortiz, Rony Swennen, Brigitte Uwimana, Claudia F Ferreira, Delphine Amah, Edson P Amorim, Elizabeth Blisset, Ines Van den Houwe, Ivan K Arinaitwe, Liana Nice, Priver Bwesigye, Steve Tanksley, Subbaraya Uma, Backiyarani Suthanthiram, Marimuthu S Saraswathi, Hassan Mduma, Allan Brown

Bananas (Musa spp.) are one of the most highly consumed fruits globally, grown in the tropical and sub-tropical regions. We evaluated 856 Musa accessions from the breeding programs of the International Institute of Tropical Agriculture of Nigeria, Tanzania, and Uganda; the National Agricultural Research Organization of Uganda; the Brazilian Agricultural Research Corporation (Embrapa); and the National Research Centre for Banana of India. Accessions from the in vitro gene bank at the International Transit Centre in Belgium were included to provide a baseline of available global diversity. A total of 16,903 informative single nucleotide polymorphism markers were used to estimate and characterize the genetic diversity and population structure and identify overlaps and unique material among the breeding programs. Analysis of molecular variance displayed low genetic variation among accessions and diploids and a higher variation among tetraploids (p < 0.001). Structure analysis revealed two major clusters corresponding to genomic composition. The results indicate that there is potential for the banana breeding programs to increase the diversity in their breeding materials and should exploit this potential for parental improvement and to enhance genetic gains in future breeding efforts.

香蕉(麝香草属)是全球消费量最高的水果之一,生长在热带和亚热带地区。我们评估了来自尼日利亚、坦桑尼亚和乌干达国际热带农业研究所、乌干达国家农业研究组织、巴西农业研究公司(Embrapa)和印度国家香蕉研究中心育种项目的 856 个香蕉品种。比利时国际转运中心体外基因库中的加入品也包括在内,以提供全球现有多样性的基线。共使用了 16,903 个信息丰富的单核苷酸多态性标记来估计和描述遗传多样性和种群结构,并确定育种计划之间的重叠和独特材料。分子变异分析表明,加入品种和二倍体之间的遗传变异较低,而四倍体之间的变异较高(p
{"title":"Genetic diversity and population structure in banana (Musa spp.) breeding germplasm.","authors":"Violet Akech, Therése Bengtsson, Rodomiro Ortiz, Rony Swennen, Brigitte Uwimana, Claudia F Ferreira, Delphine Amah, Edson P Amorim, Elizabeth Blisset, Ines Van den Houwe, Ivan K Arinaitwe, Liana Nice, Priver Bwesigye, Steve Tanksley, Subbaraya Uma, Backiyarani Suthanthiram, Marimuthu S Saraswathi, Hassan Mduma, Allan Brown","doi":"10.1002/tpg2.20497","DOIUrl":"10.1002/tpg2.20497","url":null,"abstract":"<p><p>Bananas (Musa spp.) are one of the most highly consumed fruits globally, grown in the tropical and sub-tropical regions. We evaluated 856 Musa accessions from the breeding programs of the International Institute of Tropical Agriculture of Nigeria, Tanzania, and Uganda; the National Agricultural Research Organization of Uganda; the Brazilian Agricultural Research Corporation (Embrapa); and the National Research Centre for Banana of India. Accessions from the in vitro gene bank at the International Transit Centre in Belgium were included to provide a baseline of available global diversity. A total of 16,903 informative single nucleotide polymorphism markers were used to estimate and characterize the genetic diversity and population structure and identify overlaps and unique material among the breeding programs. Analysis of molecular variance displayed low genetic variation among accessions and diploids and a higher variation among tetraploids (p < 0.001). Structure analysis revealed two major clusters corresponding to genomic composition. The results indicate that there is potential for the banana breeding programs to increase the diversity in their breeding materials and should exploit this potential for parental improvement and to enhance genetic gains in future breeding efforts.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20497"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated meta-QTL and in silico transcriptome assessment pinpoint major genomic regions responsible for spike length in wheat (Triticum aestivum L.). 综合元 QTL 和默观转录组评估确定了小麦(Triticum aestivum L.)穗长的主要基因组区域。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-01 Epub Date: 2024-07-31 DOI: 10.1002/tpg2.20492
Changgang Yang, Xueting Zhang, Shihong Wang, Na Liu

Spike length (SL) is one of the major contributors to wheat yield. Uncovering major genetic regions affecting SL is an integral part of elucidating the genetic basis of wheat yield traits and goes further pivotal for marker-assisted selection breeding. A genome-wide meta-quantitative trait locus (MQTL) analysis of wheat SL resulted in the refinement of 48 MQTLs using 227 initial QTLs retrieved from previous studies published over the past decades. The average confidence interval (CI) of these MQTLs amounted to a 5.16-fold reduction compared to the mean CI of the initial QTLs. As many as 2240 putative candidate genes (CGs) were identified from the MQTL intervals using transcriptomics data in silico of wheat, of which 58 CGs were identified based on wheat-rice homology analysis. For the key CG affecting SL, a functional kompetitive allele-specific PCR (KASP) marker, TaPP2C-3B-KASP, was developed to distinguish TaPP2C-3B-Hap I and TaPP2C-3B-Hap II based on the single nucleotide polymorphism at the 272 bp (A/G). The frequency of the elite allelic variation TaPP2C-3B-Hap II with high SL remained relatively stable at about 49.62% from the 1960s to 1990s. Integration of MQTL analysis and in silico transcriptome data led to a significant increase in the reliability of CGs for the genetic regulation of wheat SL, and the haplotype analysis for key CGs TaPP2C-3B of SL provided insights into the biological function of the TaPP2C-3B gene.

穗长(SL)是影响小麦产量的主要因素之一。揭示影响穗长的主要遗传区域是阐明小麦产量性状遗传基础不可或缺的一部分,也是标记辅助选择育种的关键。通过对小麦SL的全基因组元定量性状位点(MQTL)分析,利用从过去几十年发表的研究中检索到的227个初始QTL,提炼出了48个MQTL。与初始 QTLs 的平均置信区间(CI)相比,这些 MQTLs 的平均置信区间缩小了 5.16 倍。利用小麦默写转录组学数据,从MQTL区间确定了多达2240个推测候选基因(CG),其中58个CG是根据小麦-水稻同源性分析确定的。对于影响SL的关键CG,开发了一个功能性竞争等位基因特异性PCR(KASP)标记TaPP2C-3B-KASP,根据272 bp处的单核苷酸多态性(A/G)区分TaPP2C-3B-Hap I和TaPP2C-3B-Hap II。从 20 世纪 60 年代到 90 年代,具有高 SL 的精英等位基因变异 TaPP2C-3B-Hap II 的频率相对稳定,约为 49.62%。整合MQTL分析和默观转录组数据,显著提高了小麦SL遗传调控CGs的可靠性,而SL关键CGs TaPP2C-3B的单倍型分析为TaPP2C-3B基因的生物学功能提供了见解。
{"title":"Integrated meta-QTL and in silico transcriptome assessment pinpoint major genomic regions responsible for spike length in wheat (Triticum aestivum L.).","authors":"Changgang Yang, Xueting Zhang, Shihong Wang, Na Liu","doi":"10.1002/tpg2.20492","DOIUrl":"10.1002/tpg2.20492","url":null,"abstract":"<p><p>Spike length (SL) is one of the major contributors to wheat yield. Uncovering major genetic regions affecting SL is an integral part of elucidating the genetic basis of wheat yield traits and goes further pivotal for marker-assisted selection breeding. A genome-wide meta-quantitative trait locus (MQTL) analysis of wheat SL resulted in the refinement of 48 MQTLs using 227 initial QTLs retrieved from previous studies published over the past decades. The average confidence interval (CI) of these MQTLs amounted to a 5.16-fold reduction compared to the mean CI of the initial QTLs. As many as 2240 putative candidate genes (CGs) were identified from the MQTL intervals using transcriptomics data in silico of wheat, of which 58 CGs were identified based on wheat-rice homology analysis. For the key CG affecting SL, a functional kompetitive allele-specific PCR (KASP) marker, TaPP2C-3B-KASP, was developed to distinguish TaPP2C-3B-Hap I and TaPP2C-3B-Hap II based on the single nucleotide polymorphism at the 272 bp (A/G). The frequency of the elite allelic variation TaPP2C-3B-Hap II with high SL remained relatively stable at about 49.62% from the 1960s to 1990s. Integration of MQTL analysis and in silico transcriptome data led to a significant increase in the reliability of CGs for the genetic regulation of wheat SL, and the haplotype analysis for key CGs TaPP2C-3B of SL provided insights into the biological function of the TaPP2C-3B gene.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20492"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-trait multi-environment genomic prediction of preliminary yield trial in pulse crop. 脉冲作物初步产量试验的多性状多环境基因组预测
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-01 Epub Date: 2024-08-04 DOI: 10.1002/tpg2.20496
Rica Amor Saludares, Sikiru Adeniyi Atanda, Lisa Piche, Hannah Worral, Francoise Dariva, Kevin McPhee, Nonoy Bandillo

Phenotypic selection of complex traits such as seed yield and protein in the preliminary yield trial (PYT) is often constrained by limited seed availability, resulting in trials with few environments and minimal to no replications. Multi-trait multi-environment enabled genomic prediction (MTME-GP) offers a valuable alternative to predict missing phenotypes of selection candidates for multiple traits and diverse environments. In this study, we assessed the efficiency of MTME-GP for improving seed protein and seed yield in field pea, the top two breeding targets but highly antagonistic traits in pulse crop. We utilized a set of 300 selection candidates in the PYT that virtually represented all possible families of the North Dakota State University field pea breeding program. Selection candidates were evaluated in three diverse, contrasting environments, as indicated by a range of heritability. Using whole- and split-environment cross validation schemes, MTME-GP had higher predictive ability than a standard additive G-BLUP model. Integrating a range of overlapping genotypes in between environments showed improvement on the predictive ability of the MTME-GP model but tends to plateau at 50%-80% training set size. Regardless of the cross-validation scheme, accuracy was among the lowest in stressed environments, presumably due to low heritability for seed protein and yield. This study provided insights into the potential of MTME-GP in a public pulse crop breeding program. The MTME-GP framework can be further improved with more testing environments and integration of additional orthogonal information in the early stages of the breeding pipeline.

在初步产量试验(PYT)中,种子产量和蛋白质等复杂性状的表型选择往往受制于有限的种子供应,导致试验环境较少,重复次数极少甚至没有。多性状多环境基因组预测(MTME-GP)为预测多个性状和不同环境下候选品种的缺失表型提供了一种有价值的替代方法。在本研究中,我们评估了 MTME-GP 在提高大田豌豆籽粒蛋白和籽粒产量方面的效率。我们利用了PYT 中的一组 300 个候选品种,它们几乎代表了北达科他州立大学大田豌豆育种计划中所有可能的家系。候选品种在三种不同的、对比强烈的环境中进行了评估,这体现在遗传率的范围上。利用全环境和分环境交叉验证方案,MTME-GP 比标准加性 G-BLUP 模型具有更高的预测能力。在环境之间整合一系列重叠基因型可提高 MTME-GP 模型的预测能力,但在训练集规模达到 50%-80%时,预测能力趋于平稳。无论采用哪种交叉验证方案,受压环境下的准确率都是最低的,这可能是由于种子蛋白质和产量的遗传率较低。这项研究为 MTME-GP 在公共脉动作物育种计划中的应用潜力提供了启示。MTME-GP 框架可以通过更多的测试环境和在育种早期阶段整合更多的正交信息得到进一步改进。
{"title":"Multi-trait multi-environment genomic prediction of preliminary yield trial in pulse crop.","authors":"Rica Amor Saludares, Sikiru Adeniyi Atanda, Lisa Piche, Hannah Worral, Francoise Dariva, Kevin McPhee, Nonoy Bandillo","doi":"10.1002/tpg2.20496","DOIUrl":"10.1002/tpg2.20496","url":null,"abstract":"<p><p>Phenotypic selection of complex traits such as seed yield and protein in the preliminary yield trial (PYT) is often constrained by limited seed availability, resulting in trials with few environments and minimal to no replications. Multi-trait multi-environment enabled genomic prediction (MTME-GP) offers a valuable alternative to predict missing phenotypes of selection candidates for multiple traits and diverse environments. In this study, we assessed the efficiency of MTME-GP for improving seed protein and seed yield in field pea, the top two breeding targets but highly antagonistic traits in pulse crop. We utilized a set of 300 selection candidates in the PYT that virtually represented all possible families of the North Dakota State University field pea breeding program. Selection candidates were evaluated in three diverse, contrasting environments, as indicated by a range of heritability. Using whole- and split-environment cross validation schemes, MTME-GP had higher predictive ability than a standard additive G-BLUP model. Integrating a range of overlapping genotypes in between environments showed improvement on the predictive ability of the MTME-GP model but tends to plateau at 50%-80% training set size. Regardless of the cross-validation scheme, accuracy was among the lowest in stressed environments, presumably due to low heritability for seed protein and yield. This study provided insights into the potential of MTME-GP in a public pulse crop breeding program. The MTME-GP framework can be further improved with more testing environments and integration of additional orthogonal information in the early stages of the breeding pipeline.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20496"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic resources and genes/QTLs for gram pod borer (Helicoverpa armigera Hübner) resistance in chickpea from the Western Himalayas. 西喜马拉雅山鹰嘴豆抗禾本科豆荚螟(Helicoverpa armigera Hübner)的遗传资源和基因/QTLs。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-01 Epub Date: 2024-07-04 DOI: 10.1002/tpg2.20483
Sheikh Aafreen Rehman, Shaheen Gul, M Parthiban, Ishita Isha, M S Sai Reddy, Annapurna Chitikineni, Mahendar Thudi, R Varma Penmetsa, Rajeev Kumar Varshney, Reyazul Rouf Mir

Helicoverpa armigera (also known as gram pod borer) is a serious threat to chickpea production in the world. A set of 173 chickpea genotypes were evaluated for H. armigera resistance, including mean larval population (MLP), percentage pod damage (PPD), and pest resistance (PR) for 2 consecutive years (year 2020 and 2021). The same core set was also genotyped with 50K Axiom CicerSNP Array. The trait data and 50,000 single nucleotide polymorphism genotypic data were used together to work out marker-trait associations (MTAs) using different genome-wide association studies models. For MLP, a total of 53 MTAs were identified, including 25 MTAs in year 2020 and 28 MTAs in year 2021. A set of three MTAs was found common in both environments. For PPD, two MTAs in year 2020 and five MTAs in year 2021 were identified. A set of two MTAs were common in both environments. Similarly, for PR, only two MTAs common in both environments were identified. Interestingly, a common MTA (Affx_123255526) on chromosome 2 (Ca2) was found to be associated with all the three component traits (MLP, PPD, and PR) of pod borer resistance in chickpea. Further, we report key genes that encode SCAMPs (that facilitates the secretion of defense-related molecules), quinone oxidoreductase (enables the production of reactive oxygen species that promotes diapause of gram pod borer), and NB-LRR proteins that have been implicated in plant defense against H. armigera. The resistant chickpea genotypes, MTAs, and key genes reported in the present study may prove useful in the future for developing pod borer-resistant chickpea varieties.

Helicoverpa armigera(又称禾谷荚螟)严重威胁着全球鹰嘴豆的生产。对一组 173 个鹰嘴豆基因型进行了 H. armigera 抗性评估,包括平均幼虫数量(MLP)、豆荚损害百分比(PPD)和连续两年(2020 年和 2021 年)的抗虫性(PR)。同一核心组还使用 50K Axiom CicerSNP 阵列进行了基因分型。性状数据和 50,000 个单核苷酸多态性基因分型数据被一起用于利用不同的全基因组关联研究模型计算标记-性状关联(MTAs)。就 MLP 而言,共确定了 53 个 MTA,包括 2020 年的 25 个 MTA 和 2021 年的 28 个 MTA。在这两个环境中发现了一组三个共同的 MTA。就 PPD 而言,在 2020 年和 2021 年分别确定了 2 项和 5 项中期协议。在两个环境中都有一组共用的两个中期协议。同样,就 PR 而言,也只发现了两个在两种环境中常见的 MTA。有趣的是,我们发现 2 号染色体(Ca2)上的一个共同 MTA(Affx_123255526)与鹰嘴豆豆荚螟抗性的所有三个组成性状(MLP、PPD 和 PR)都有关联。此外,我们还报告了编码 SCAMPs(可促进防御相关分子的分泌)、醌氧化还原酶(可产生活性氧,促进豆荚螟的休眠)和 NB-LRR 蛋白的关键基因,这些基因与植物防御 H. armigera 有关。本研究中报告的抗性鹰嘴豆基因型、MTAs 和关键基因可能对未来开发抗豆荚螟鹰嘴豆品种有用。
{"title":"Genetic resources and genes/QTLs for gram pod borer (Helicoverpa armigera Hübner) resistance in chickpea from the Western Himalayas.","authors":"Sheikh Aafreen Rehman, Shaheen Gul, M Parthiban, Ishita Isha, M S Sai Reddy, Annapurna Chitikineni, Mahendar Thudi, R Varma Penmetsa, Rajeev Kumar Varshney, Reyazul Rouf Mir","doi":"10.1002/tpg2.20483","DOIUrl":"10.1002/tpg2.20483","url":null,"abstract":"<p><p>Helicoverpa armigera (also known as gram pod borer) is a serious threat to chickpea production in the world. A set of 173 chickpea genotypes were evaluated for H. armigera resistance, including mean larval population (MLP), percentage pod damage (PPD), and pest resistance (PR) for 2 consecutive years (year 2020 and 2021). The same core set was also genotyped with 50K Axiom CicerSNP Array. The trait data and 50,000 single nucleotide polymorphism genotypic data were used together to work out marker-trait associations (MTAs) using different genome-wide association studies models. For MLP, a total of 53 MTAs were identified, including 25 MTAs in year 2020 and 28 MTAs in year 2021. A set of three MTAs was found common in both environments. For PPD, two MTAs in year 2020 and five MTAs in year 2021 were identified. A set of two MTAs were common in both environments. Similarly, for PR, only two MTAs common in both environments were identified. Interestingly, a common MTA (Affx_123255526) on chromosome 2 (Ca2) was found to be associated with all the three component traits (MLP, PPD, and PR) of pod borer resistance in chickpea. Further, we report key genes that encode SCAMPs (that facilitates the secretion of defense-related molecules), quinone oxidoreductase (enables the production of reactive oxygen species that promotes diapause of gram pod borer), and NB-LRR proteins that have been implicated in plant defense against H. armigera. The resistant chickpea genotypes, MTAs, and key genes reported in the present study may prove useful in the future for developing pod borer-resistant chickpea varieties.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20483"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive molecular evolutionary analysis of small heat shock proteins in five diploid Gossypium species. 五种二倍体格桑花小型热休克蛋白的全面分子进化分析。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-01 Epub Date: 2024-06-12 DOI: 10.1002/tpg2.20478
Kai Fan, Zhengyi Qian, Yuxi He, Jiayuan Chen, Fangting Ye, Xiaogang Zhu, Wenxiong Lin, Lili Cui, Tao Lan, Zhaowei Li

The small heat shock proteins (sHSPs) are important components in plant growth and development, and stress response. However, a systematical understanding of the sHSP family is yet to be reported in five diploid Gossypium species. In this study, 34 GlsHSPs, 36 GrsHSPs, 37 GtsHSPs, 37 GasHSPs, and 38 GhesHSPs were identified in Gossypium longicalyx, Gossypium raimondii, Gossypium turneri, Gossypium arboreum, and Gossypium herbaceum, respectively. These sHSP members can be clustered into 10 subfamilies. Different subfamilies had different member numbers, motif distributions, gene structures, gene duplication events, gene loss numbers, and cis-regulatory elements. Besides, the paleohexaploidization event in cotton ancestor led to expanding the sHSP members and it was also inherited by five diploid Gossypium species. After the cotton ancestor divergence, the sHSP members had the relatively conserved evolution in five diploid Gossypium species. The comprehensive evolutionary history of the sHSP family was revealed in five diploid Gossypium species. Furthermore, several GasHSPs and GhesHSPs were important candidates in plant growth and development, and stress response. These current findings can provide valuable information for the molecular evolution and further functional research of the sHSP family in cotton.

小热休克蛋白(sHSPs)是植物生长发育和胁迫响应的重要组成部分。然而,对五种二倍体格桑花的 sHSP 家族的系统了解尚未见报道。本研究在 Gossypium longicalyx、Gossypium raimondii、Gossypium turneri、Gossypium arboreum 和 Gossypium herbaceum 中分别鉴定了 34 个 GlsHSPs、36 个 GrsHSPs、37 个 GtsHSPs、37 个 GasHSPs 和 38 个 GhesHSPs。这些 sHSP 成员可分为 10 个亚科。不同亚家族的成员数量、主题分布、基因结构、基因重复事件、基因缺失数量和顺式调控元件都各不相同。此外,棉花祖先的古六倍化事件导致了 sHSP 成员的扩大,它也被五个二倍体棉花物种所继承。棉花祖先分化后,sHSP 成员在五个二倍体棉花物种中经历了相对保守的进化。在五个二倍体棉花物种中揭示了sHSP家族的全面进化史。此外,一些 GasHSPs 和 GhesHSPs 是植物生长发育和胁迫响应中的重要候选分子。目前的这些发现可为棉花 sHSP 家族的分子进化和进一步的功能研究提供有价值的信息。
{"title":"Comprehensive molecular evolutionary analysis of small heat shock proteins in five diploid Gossypium species.","authors":"Kai Fan, Zhengyi Qian, Yuxi He, Jiayuan Chen, Fangting Ye, Xiaogang Zhu, Wenxiong Lin, Lili Cui, Tao Lan, Zhaowei Li","doi":"10.1002/tpg2.20478","DOIUrl":"10.1002/tpg2.20478","url":null,"abstract":"<p><p>The small heat shock proteins (sHSPs) are important components in plant growth and development, and stress response. However, a systematical understanding of the sHSP family is yet to be reported in five diploid Gossypium species. In this study, 34 GlsHSPs, 36 GrsHSPs, 37 GtsHSPs, 37 GasHSPs, and 38 GhesHSPs were identified in Gossypium longicalyx, Gossypium raimondii, Gossypium turneri, Gossypium arboreum, and Gossypium herbaceum, respectively. These sHSP members can be clustered into 10 subfamilies. Different subfamilies had different member numbers, motif distributions, gene structures, gene duplication events, gene loss numbers, and cis-regulatory elements. Besides, the paleohexaploidization event in cotton ancestor led to expanding the sHSP members and it was also inherited by five diploid Gossypium species. After the cotton ancestor divergence, the sHSP members had the relatively conserved evolution in five diploid Gossypium species. The comprehensive evolutionary history of the sHSP family was revealed in five diploid Gossypium species. Furthermore, several GasHSPs and GhesHSPs were important candidates in plant growth and development, and stress response. These current findings can provide valuable information for the molecular evolution and further functional research of the sHSP family in cotton.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20478"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging genomics and temporal high-throughput phenotyping to enhance association mapping and yield prediction in sesame. 利用基因组学和时间高通量表型技术加强芝麻的关联图谱绘制和产量预测。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-01 Epub Date: 2024-06-26 DOI: 10.1002/tpg2.20481
Idan Sabag, Ye Bi, Maitreya Mohan Sahoo, Ittai Herrmann, Gota Morota, Zvi Peleg

Sesame (Sesamum indicum) is an important oilseed crop with rising demand owing to its nutritional and health benefits. There is an urgent need to develop and integrate new genomic-based breeding strategies to meet these future demands. While genomic resources have advanced genetic research in sesame, the implementation of high-throughput phenotyping and genetic analysis of longitudinal traits remains limited. Here, we combined high-throughput phenotyping and random regression models to investigate the dynamics of plant height, leaf area index, and five spectral vegetation indices throughout the sesame growing seasons in a diversity panel. Modeling the temporal phenotypic and additive genetic trajectories revealed distinct patterns corresponding to the sesame growth cycle. We also conducted longitudinal genomic prediction and association mapping of plant height using various models and cross-validation schemes. Moderate prediction accuracy was obtained when predicting new genotypes at each time point, and moderate to high values were obtained when forecasting future phenotypes. Association mapping revealed three genomic regions in linkage groups 6, 8, and 11, conferring trait variation over time and growth rate. Furthermore, we leveraged correlations between the temporal trait and seed-yield and applied multi-trait genomic prediction. We obtained an improvement over single-trait analysis, especially when phenotypes from earlier time points were used, highlighting the potential of using a high-throughput phenotyping platform as a selection tool. Our results shed light on the genetic control of longitudinal traits in sesame and underscore the potential of high-throughput phenotyping to detect a wide range of traits and genotypes that can inform sesame breeding efforts to enhance yield.

芝麻(Sesamum indicum)是一种重要的油籽作物,由于其营养和健康益处,市场需求不断增加。目前迫切需要开发和整合新的基于基因组的育种策略,以满足未来的需求。虽然基因组资源推动了芝麻的遗传研究,但高通量表型分析和纵向性状遗传分析的实施仍然有限。在此,我们结合高通量表型分析和随机回归模型,研究了多样性面板中芝麻生长季中植株高度、叶面积指数和五个光谱植被指数的动态变化。对表型和加性遗传轨迹的时间建模揭示了与芝麻生长周期相对应的独特模式。我们还利用各种模型和交叉验证方案对植株高度进行了纵向基因组预测和关联图谱绘制。在预测每个时间点的新基因型时,我们获得了中等的预测准确率,而在预测未来表型时,我们获得了中等到较高的预测准确率。关联图谱揭示了连接组 6、8 和 11 中的三个基因组区域,它们赋予了随时间和生长速度变化的性状。此外,我们还利用了时间性状与种子产量之间的相关性,并应用了多性状基因组预测。与单性状分析相比,我们的结果有所改进,尤其是在使用较早时间点的表型时,这凸显了利用高通量表型平台作为选育工具的潜力。我们的研究结果揭示了芝麻纵向性状的遗传控制,并强调了高通量表型技术在检测各种性状和基因型方面的潜力,可为芝麻育种工作提供信息,以提高产量。
{"title":"Leveraging genomics and temporal high-throughput phenotyping to enhance association mapping and yield prediction in sesame.","authors":"Idan Sabag, Ye Bi, Maitreya Mohan Sahoo, Ittai Herrmann, Gota Morota, Zvi Peleg","doi":"10.1002/tpg2.20481","DOIUrl":"10.1002/tpg2.20481","url":null,"abstract":"<p><p>Sesame (Sesamum indicum) is an important oilseed crop with rising demand owing to its nutritional and health benefits. There is an urgent need to develop and integrate new genomic-based breeding strategies to meet these future demands. While genomic resources have advanced genetic research in sesame, the implementation of high-throughput phenotyping and genetic analysis of longitudinal traits remains limited. Here, we combined high-throughput phenotyping and random regression models to investigate the dynamics of plant height, leaf area index, and five spectral vegetation indices throughout the sesame growing seasons in a diversity panel. Modeling the temporal phenotypic and additive genetic trajectories revealed distinct patterns corresponding to the sesame growth cycle. We also conducted longitudinal genomic prediction and association mapping of plant height using various models and cross-validation schemes. Moderate prediction accuracy was obtained when predicting new genotypes at each time point, and moderate to high values were obtained when forecasting future phenotypes. Association mapping revealed three genomic regions in linkage groups 6, 8, and 11, conferring trait variation over time and growth rate. Furthermore, we leveraged correlations between the temporal trait and seed-yield and applied multi-trait genomic prediction. We obtained an improvement over single-trait analysis, especially when phenotypes from earlier time points were used, highlighting the potential of using a high-throughput phenotyping platform as a selection tool. Our results shed light on the genetic control of longitudinal traits in sesame and underscore the potential of high-throughput phenotyping to detect a wide range of traits and genotypes that can inform sesame breeding efforts to enhance yield.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20481"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating GWAS with a gene co-expression network better prioritizes candidate genes associated with root metaxylem phenes in maize. 将 GWAS 与基因共表达网络相结合,可更好地确定与玉米根部中木质部表征相关的候选基因的优先次序。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-01 Epub Date: 2024-07-22 DOI: 10.1002/tpg2.20489
Stephanie P Klein, Shawn M Kaeppler, Kathleen M Brown, Jonathan P Lynch

Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.

根部偏木质部是表型多样的结构,其功能在干旱胁迫下尤为重要。已有大量研究剖析了双子叶植物根部元木质部表型的遗传机制,但对单子叶植物根部元木质部表型的研究相对不足。在玉米(Zea mays)中,一个稳健的管道整合了在水分充足和水分胁迫条件下根部元木质部表型的全基因组关联研究(GWAS)和基因共表达网络,以优先选择最强的候选基因。我们通过 GWAS 发现了 244 个候选基因,其中 103 个位于与木质部发育最相关的基因共表达模块中。一些候选基因可能参与了与细胞壁、激素信号转导、氧化应激反应和干旱反应有关的生物合成过程。其中,有六个候选基因在水分充足和水分胁迫条件下的多个根元木质部表型中被检测到。我们认为,应根据基因的共表达情况(即枢纽或瓶颈)优先选择对网络功能更重要的候选基因,并将 33 个重要基因归为一类,以作进一步研究。我们的研究展示了一种识别有希望的候选基因的新策略,并提出了几个候选基因,它们可能会加深我们对谷物维管发育和对干旱反应的理解。
{"title":"Integrating GWAS with a gene co-expression network better prioritizes candidate genes associated with root metaxylem phenes in maize.","authors":"Stephanie P Klein, Shawn M Kaeppler, Kathleen M Brown, Jonathan P Lynch","doi":"10.1002/tpg2.20489","DOIUrl":"10.1002/tpg2.20489","url":null,"abstract":"<p><p>Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20489"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide identification, gene expression and haplotype analysis of the rhomboid-like gene family in wheat (Triticum aestivum L.). 小麦(Triticum aestivum L.)菱形样基因家族的全基因组鉴定、基因表达和单倍型分析。
IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-06-01 Epub Date: 2024-02-13 DOI: 10.1002/tpg2.20435
Yanyan Zhang, Xiaoya Huang, Long Zhang, Weidong Gao, Jingfu Ma, Tao Chen, Delong Yang

The rhomboid-like (RBL) gene encodes serine protease, which plays an important role in the response to cell development and diverse stresses. However, genome-wide identification, expression profiles, and haplotype analysis of the RBL family genes have not been performed in wheat (Triticum aestivum L.). This study investigated the phylogeny and diversity of the RBL family genes in the wheat genome through various approaches, including gene structure analysis, evolutionary relationship analysis, promoter cis-acting element analysis, expression pattern analysis, and haplotype analysis. The 41 TaRBL genes were identified and divided into five subfamilies in the wheat genome. RBL family genes were expanded through segmented duplication and purification selection. The cis-element analysis revealed their involvement in various stress responses and plant development. The results of RNA-seq and quantitative real-time-PCR showed that TaRBL genes displayed higher expression levels in developing spike/grain and were differentially regulated under polyethylene glycol, NaCl, and abscisic acid treatments, indicating their roles in grain development and abiotic stress response. A kompetitive allele-specific PCR molecular marker was developed to confirm the single nucleotide polymorphism of TaRBL14a gene in 263 wheat accessions. We found that the elite haplotype TaRBL14a-Hap2 showed a significantly higher 1000-grain weight than TaRBL14a-Hap11 in at least three environments, and the TaRBL14a-Hap2 was positively selected in wheat breeding. The findings will provide a good insight into the evolutionary and functional characteristics of the TaRBL genes family in wheat and lay the foundation for future exploration of the regulatory mechanisms of TaRBL genes in plant growth and development, as well as their response to abiotic stresses.

Rhomboid-like(RBL)基因编码丝氨酸蛋白酶,在应对细胞发育和各种胁迫方面发挥着重要作用。然而,在小麦(Triticum aestivum L.)中尚未对 RBL 家族基因进行全基因组鉴定、表达谱分析和单倍型分析。本研究通过基因结构分析、进化关系分析、启动子顺式作用元件分析、表达模式分析和单倍型分析等多种方法,研究了小麦基因组中RBL家族基因的系统发育和多样性。在小麦基因组中鉴定出41个TaRBL基因,并将其分为五个亚家族。通过分段复制和纯化选择,扩增了RBL家族基因。顺式元素分析表明,这些基因参与了各种胁迫反应和植物发育。RNA-seq和real-time-PCR定量分析结果表明,TaRBL基因在发育中的穗/粒中表达水平较高,并在聚乙二醇、氯化钠和脱落酸处理下受到差异调控,表明它们在谷粒发育和非生物胁迫响应中的作用。我们开发了一种竞争性等位基因特异性PCR分子标记,以确认263个小麦品种中TaRBL14a基因的单核苷酸多态性。我们发现,精英单倍型TaRBL14a-Hap2在至少三种环境中的千粒重显著高于TaRBL14a-Hap11,TaRBL14a-Hap2在小麦育种中被积极选育。这些发现将有助于深入了解小麦TaRBL基因家族的进化和功能特征,为今后探索TaRBL基因在植物生长发育中的调控机制及其对非生物胁迫的响应奠定基础。
{"title":"Genome-wide identification, gene expression and haplotype analysis of the rhomboid-like gene family in wheat (Triticum aestivum L.).","authors":"Yanyan Zhang, Xiaoya Huang, Long Zhang, Weidong Gao, Jingfu Ma, Tao Chen, Delong Yang","doi":"10.1002/tpg2.20435","DOIUrl":"10.1002/tpg2.20435","url":null,"abstract":"<p><p>The rhomboid-like (RBL) gene encodes serine protease, which plays an important role in the response to cell development and diverse stresses. However, genome-wide identification, expression profiles, and haplotype analysis of the RBL family genes have not been performed in wheat (Triticum aestivum L.). This study investigated the phylogeny and diversity of the RBL family genes in the wheat genome through various approaches, including gene structure analysis, evolutionary relationship analysis, promoter cis-acting element analysis, expression pattern analysis, and haplotype analysis. The 41 TaRBL genes were identified and divided into five subfamilies in the wheat genome. RBL family genes were expanded through segmented duplication and purification selection. The cis-element analysis revealed their involvement in various stress responses and plant development. The results of RNA-seq and quantitative real-time-PCR showed that TaRBL genes displayed higher expression levels in developing spike/grain and were differentially regulated under polyethylene glycol, NaCl, and abscisic acid treatments, indicating their roles in grain development and abiotic stress response. A kompetitive allele-specific PCR molecular marker was developed to confirm the single nucleotide polymorphism of TaRBL14a gene in 263 wheat accessions. We found that the elite haplotype TaRBL14a-Hap2 showed a significantly higher 1000-grain weight than TaRBL14a-Hap11 in at least three environments, and the TaRBL14a-Hap2 was positively selected in wheat breeding. The findings will provide a good insight into the evolutionary and functional characteristics of the TaRBL genes family in wheat and lay the foundation for future exploration of the regulatory mechanisms of TaRBL genes in plant growth and development, as well as their response to abiotic stresses.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20435"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Genome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1