首页 > 最新文献

PLoS Genetics最新文献

英文 中文
A naturally occurring mitochondrial genome variant confers broad protection from infection in Drosophila. 一种天然存在的线粒体基因组变体赋予果蝇广泛的抗感染保护。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-11 DOI: 10.1371/journal.pgen.1011476
Tiina S Salminen, Laura Vesala, Yuliya Basikhina, Megan Kutzer, Tea Tuomela, Ryan Lucas, Katy Monteith, Arun Prakash, Tilman Tietz, Pedro F Vale

The role of mitochondria in immunity is increasingly recognized, but it is unclear how variation in mitochondrial DNA (mtDNA) contributes to variable infection outcomes. To quantify the effect of mtDNA variation on humoral and cell-mediated innate immune responses, we utilized a panel of fruit fly Drosophila melanogaster cytoplasmic hybrids (cybrids), where unique mtDNAs (mitotypes) were introgressed into a controlled isogenic nuclear background. We observed substantial heterogeneity in infection outcomes within the cybrid panel upon bacterial, viral and parasitoid infections, driven by the mitotype. One of the mitotypes, mtKSA2 protected against bacterial, parasitoid, and to a lesser extent, viral infections. Enhanced survival was not a result of improved bacterial clearance, suggesting mtKSA2 confers increased disease tolerance. Transcriptome sequencing showed that the mtKSA2 mitotype had an upregulation of genes related to mitochondrial respiration and phagocytosis in uninfected flies. Upon infection, mtKSA2 flies exhibited infection type and duration specific transcriptomic changes. Furthermore, uninfected mtKSA2 larvae showed immune activation of hemocytes (immune cells), increased hemocyte numbers and ROS production, and enhanced encapsulation response against parasitoid wasp eggs and larvae. Our results show that mtDNA variation acts as an immunomodulatory factor in both humoral and cell-mediated innate immunity and that specific mitotypes can provide broad protection against infections.

线粒体在免疫中的作用日益得到认可,但线粒体DNA(mtDNA)的变异如何导致不同的感染结果尚不清楚。为了量化线粒体DNA变异对体液和细胞介导的先天性免疫反应的影响,我们利用一组果蝇黑腹果蝇细胞质杂交种(杂交种),将独特的线粒体DNA(丝裂型)导入到受控的同源核背景中。我们观察到,在有丝分裂型的驱动下,杂交种在细菌、病毒和寄生虫感染时的感染结果具有很大的异质性。其中一种有丝分裂型 mtKSA2 能抵御细菌、寄生虫的感染,其次是病毒感染。存活率的提高并不是细菌清除率提高的结果,这表明 mtKSA2 赋予了更强的疾病耐受性。转录组测序显示,与未感染的苍蝇相比,mtKSA2有丝分裂型与线粒体呼吸和吞噬有关的基因上调。感染后,mtKSA2苍蝇表现出感染类型和持续时间特异性的转录组变化。此外,未感染的 mtKSA2 幼虫表现出血细胞(免疫细胞)的免疫激活、血细胞数量和 ROS 生成增加,以及对寄生蜂卵和幼虫的包裹反应增强。我们的研究结果表明,mtDNA变异是体液免疫和细胞介导的先天免疫中的一种免疫调节因子,特定的有丝分裂型可提供广泛的抗感染保护。
{"title":"A naturally occurring mitochondrial genome variant confers broad protection from infection in Drosophila.","authors":"Tiina S Salminen, Laura Vesala, Yuliya Basikhina, Megan Kutzer, Tea Tuomela, Ryan Lucas, Katy Monteith, Arun Prakash, Tilman Tietz, Pedro F Vale","doi":"10.1371/journal.pgen.1011476","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011476","url":null,"abstract":"<p><p>The role of mitochondria in immunity is increasingly recognized, but it is unclear how variation in mitochondrial DNA (mtDNA) contributes to variable infection outcomes. To quantify the effect of mtDNA variation on humoral and cell-mediated innate immune responses, we utilized a panel of fruit fly Drosophila melanogaster cytoplasmic hybrids (cybrids), where unique mtDNAs (mitotypes) were introgressed into a controlled isogenic nuclear background. We observed substantial heterogeneity in infection outcomes within the cybrid panel upon bacterial, viral and parasitoid infections, driven by the mitotype. One of the mitotypes, mtKSA2 protected against bacterial, parasitoid, and to a lesser extent, viral infections. Enhanced survival was not a result of improved bacterial clearance, suggesting mtKSA2 confers increased disease tolerance. Transcriptome sequencing showed that the mtKSA2 mitotype had an upregulation of genes related to mitochondrial respiration and phagocytosis in uninfected flies. Upon infection, mtKSA2 flies exhibited infection type and duration specific transcriptomic changes. Furthermore, uninfected mtKSA2 larvae showed immune activation of hemocytes (immune cells), increased hemocyte numbers and ROS production, and enhanced encapsulation response against parasitoid wasp eggs and larvae. Our results show that mtDNA variation acts as an immunomodulatory factor in both humoral and cell-mediated innate immunity and that specific mitotypes can provide broad protection against infections.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011476"},"PeriodicalIF":4.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. 葡糖脑苷脂缺乏症通过细胞免疫激活导致神经病理学。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-11 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pgen.1011105
Evelyn S Vincow, Ruth E Thomas, Gillian Milstein, Gautam Pareek, Theo K Bammler, James MacDonald, Leo J Pallanck

Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.

编码溶酶体葡萄糖脑苷脂酶(GCase)的 GBA(葡萄糖甘油酶 beta)突变是神经退行性疾病帕金森病(PD)和路易体痴呆的最强遗传风险因素。最近的研究表明,神经炎症可能是 GBA 基因突变风险的一个重要因素。因此,我们在果蝇GCase缺乏症模型中系统检测了免疫相关基因对神经病理学的贡献。我们通过对GCase缺陷果蝇头部的RNA-Seq和蛋白质组学鉴定了目标免疫因子,结果显示体液因子丰度增加,巨噬细胞活化增加。然后,我们对已确定的免疫因子进行了操作,并测量了它们对头部蛋白聚集体(神经退行性疾病的标志)的影响。基因消融体液(分泌)免疫因子并不能抑制蛋白质聚集的发展。相反,在活化的巨噬细胞中重新表达 Gba1b 可抑制 Gba1b 突变体的头部蛋白聚集,并挽救其寿命和行为缺陷。此外,减少活化巨噬细胞中 GCase 底物葡萄糖甘油酰胺也能改善 Gba1b 突变体的表型。综上所述,我们的研究结果表明,GCase 缺乏导致的葡萄糖甘油酰胺积累会导致巨噬细胞活化,进而促进神经病理学的发展。
{"title":"Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation.","authors":"Evelyn S Vincow, Ruth E Thomas, Gillian Milstein, Gautam Pareek, Theo K Bammler, James MacDonald, Leo J Pallanck","doi":"10.1371/journal.pgen.1011105","DOIUrl":"10.1371/journal.pgen.1011105","url":null,"abstract":"<p><p>Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011105"},"PeriodicalIF":4.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of causal genes at GWAS loci with pleiotropic gene regulatory effects using sets of correlated instrumental variables. 利用相关工具变量集预测具有多向性基因调控效应的 GWAS 基因位点上的因果基因。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-11 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pgen.1011473
Mariyam Khan, Adriaan-Alexander Ludl, Sean Bankier, Johan L M Björkegren, Tom Michoel

Multivariate Mendelian randomization (MVMR) is a statistical technique that uses sets of genetic instruments to estimate the direct causal effects of multiple exposures on an outcome of interest. At genomic loci with pleiotropic gene regulatory effects, that is, loci where the same genetic variants are associated to multiple nearby genes, MVMR can potentially be used to predict candidate causal genes. However, consensus in the field dictates that the genetic instruments in MVMR must be independent (not in linkage disequilibrium), which is usually not possible when considering a group of candidate genes from the same locus. Here we used causal inference theory to show that MVMR with correlated instruments satisfies the instrumental set condition. This is a classical result by Brito and Pearl (2002) for structural equation models that guarantees the identifiability of individual causal effects in situations where multiple exposures collectively, but not individually, separate a set of instrumental variables from an outcome variable. Extensive simulations confirmed the validity and usefulness of these theoretical results. Importantly, the causal effect estimates remained unbiased and their variance small even when instruments are highly correlated, while bias introduced by horizontal pleiotropy or LD matrix sampling error was comparable to standard MR. We applied MVMR with correlated instrumental variable sets at genome-wide significant loci for coronary artery disease (CAD) risk using expression Quantitative Trait Loci (eQTL) data from seven vascular and metabolic tissues in the STARNET study. Our method predicts causal genes at twelve loci, each associated with multiple colocated genes in multiple tissues. We confirm causal roles for PHACTR1 and ADAMTS7 in arterial tissues, among others. However, the extensive degree of regulatory pleiotropy across tissues and the limited number of causal variants in each locus still require that MVMR is run on a tissue-by-tissue basis, and testing all gene-tissue pairs with cis-eQTL associations at a given locus in a single model to predict causal gene-tissue combinations remains infeasible. Our results show that within tissues, MVMR with dependent, as opposed to independent, sets of instrumental variables significantly expands the scope for predicting causal genes in disease risk loci with pleiotropic regulatory effects. However, considering risk loci with regulatory pleiotropy that also spans across tissues remains an unsolved problem.

多变量孟德尔随机化(Multivariate Mendelian randomization,MVMR)是一种统计技术,它利用成套的遗传工具来估计多种暴露因素对相关结果的直接因果效应。在具有多向基因调控效应的基因组位点,即相同的基因变异与附近多个基因相关的位点,MVMR 有可能用于预测候选因果基因。然而,该领域的共识规定,MVMR 中的遗传工具必须是独立的(不存在连锁不平衡),而在考虑来自同一基因座的一组候选基因时,这通常是不可能的。在这里,我们利用因果推理理论证明,具有相关工具的 MVMR 满足工具集条件。这是 Brito 和 Pearl(2002 年)针对结构方程模型得出的经典结果,它保证了在多种暴露共同而非单独地将一组工具变量与结果变量分开的情况下,个体因果效应的可识别性。大量的模拟证实了这些理论结果的有效性和实用性。重要的是,即使在工具高度相关的情况下,因果效应估计值仍然是无偏的,其方差也很小,而水平多效性或 LD 矩阵抽样误差带来的偏差与标准 MR 相当。我们利用 STARNET 研究中七个血管和代谢组织的表达定量性状位点(eQTL)数据,在冠状动脉疾病(CAD)风险的全基因组重要位点上应用了具有相关工具变量集的 MVMR。我们的方法预测了 12 个位点的因果基因,每个位点都与多个组织中的多个共位基因相关。我们证实了 PHACTR1 和 ADAMTS7 等基因在动脉组织中的因果作用。然而,由于不同组织间存在广泛的调控多效性,而每个基因位点上的因果变异体数量有限,因此 MVMR 仍需以组织为单位运行,在单一模型中测试特定基因位点上具有顺式-eQTL 关联的所有基因-组织对,以预测因果基因-组织组合仍不可行。我们的研究结果表明,在组织内,MVMR 与依赖性工具变量集(而非独立的工具变量集)大大扩展了预测具有多向调控效应的疾病风险基因座的因果基因的范围。然而,考虑具有跨组织多向调控效应的风险基因座仍然是一个尚未解决的问题。
{"title":"Prediction of causal genes at GWAS loci with pleiotropic gene regulatory effects using sets of correlated instrumental variables.","authors":"Mariyam Khan, Adriaan-Alexander Ludl, Sean Bankier, Johan L M Björkegren, Tom Michoel","doi":"10.1371/journal.pgen.1011473","DOIUrl":"10.1371/journal.pgen.1011473","url":null,"abstract":"<p><p>Multivariate Mendelian randomization (MVMR) is a statistical technique that uses sets of genetic instruments to estimate the direct causal effects of multiple exposures on an outcome of interest. At genomic loci with pleiotropic gene regulatory effects, that is, loci where the same genetic variants are associated to multiple nearby genes, MVMR can potentially be used to predict candidate causal genes. However, consensus in the field dictates that the genetic instruments in MVMR must be independent (not in linkage disequilibrium), which is usually not possible when considering a group of candidate genes from the same locus. Here we used causal inference theory to show that MVMR with correlated instruments satisfies the instrumental set condition. This is a classical result by Brito and Pearl (2002) for structural equation models that guarantees the identifiability of individual causal effects in situations where multiple exposures collectively, but not individually, separate a set of instrumental variables from an outcome variable. Extensive simulations confirmed the validity and usefulness of these theoretical results. Importantly, the causal effect estimates remained unbiased and their variance small even when instruments are highly correlated, while bias introduced by horizontal pleiotropy or LD matrix sampling error was comparable to standard MR. We applied MVMR with correlated instrumental variable sets at genome-wide significant loci for coronary artery disease (CAD) risk using expression Quantitative Trait Loci (eQTL) data from seven vascular and metabolic tissues in the STARNET study. Our method predicts causal genes at twelve loci, each associated with multiple colocated genes in multiple tissues. We confirm causal roles for PHACTR1 and ADAMTS7 in arterial tissues, among others. However, the extensive degree of regulatory pleiotropy across tissues and the limited number of causal variants in each locus still require that MVMR is run on a tissue-by-tissue basis, and testing all gene-tissue pairs with cis-eQTL associations at a given locus in a single model to predict causal gene-tissue combinations remains infeasible. Our results show that within tissues, MVMR with dependent, as opposed to independent, sets of instrumental variables significantly expands the scope for predicting causal genes in disease risk loci with pleiotropic regulatory effects. However, considering risk loci with regulatory pleiotropy that also spans across tissues remains an unsolved problem.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011473"},"PeriodicalIF":4.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of p53-dependent and -independent mechanisms to upregulation of p21 in Fanconi anemia. 依赖 p53 和不依赖 p53 的机制对范可尼贫血症中 p21 上调的影响
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-07 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pgen.1011474
Xavier Renaudin, Baraah Al Ahmad Nachar, Benedetta Mancini, Anna Gueiderikh, Noémie Louis-Joseph, Frédérique Maczkowiak-Chartois, Filippo Rosselli

Abnormal expression of the cell cycle inhibitor and p53 target CDKN1A/p21 has been associated with paradoxical outcomes, such as hyperproliferation in p53-deficient cancer cells or hypoproliferation that affects hematopoietic stem cell behavior, leading to bone marrow failure (BMF). Notably, p21 is known to be overexpressed in Fanconi anemia (FA), which is a rare syndrome that predisposes patients to BMF and cancer. However, why p21 is overexpressed in FA and how it contributes to the FA phenotype(s) are still poorly understood. Here, we revealed that while the upregulation of p21 is largely dependent on p53, it also depends on the transcription factor microphthalmia (MITF) as well as on its interaction with the nucleolar protein NPM1. Upregulation of p21 expression in FA cells leads to p21 accumulation in the chromatin fraction, p21 immunoprecipitation with PCNA, S-phase lengthening and genetic instability. p21 depletion in FA cells rescues the S-phase abnormalities and reduces their genetic instability. In addition, we observed that reactive oxygen species (ROS) accumulation, another key feature of FA cells, is required to trigger an increase in PCNA/chromatin-associated p21 and to impact replication progression. Therefore, we propose a mechanism by which p21 and ROS cooperate to induce replication abnormalities that fuel genetic instability.

细胞周期抑制剂和p53靶标CDKN1A/p21的异常表达与一些自相矛盾的结果有关,如p53缺陷癌细胞的过度增殖或影响造血干细胞行为的低增殖,从而导致骨髓衰竭(BMF)。值得注意的是,已知p21在范可尼贫血症(FA)中过度表达,这是一种罕见的综合征,患者易患骨髓衰竭和癌症。然而,p21 为什么会在范可尼贫血症中过表达,以及它是如何导致范可尼贫血症表型的,目前仍不甚明了。在这里,我们揭示了p21的上调主要依赖于p53,但它也依赖于转录因子微眼(MITF)以及它与核小体蛋白NPM1的相互作用。FA 细胞中 p21 表达的上调导致染色质部分中 p21 的积累、p21 与 PCNA 的免疫沉淀、S 期延长和遗传不稳定性。此外,我们还观察到,FA 细胞的另一个主要特征--活性氧(ROS)的积累,是引发 PCNA/染色质相关 p21 增加并影响复制进展的必要条件。因此,我们提出了一种机制,通过这种机制,p21 和 ROS 相互合作,诱导复制异常,从而加剧遗传不稳定性。
{"title":"Contribution of p53-dependent and -independent mechanisms to upregulation of p21 in Fanconi anemia.","authors":"Xavier Renaudin, Baraah Al Ahmad Nachar, Benedetta Mancini, Anna Gueiderikh, Noémie Louis-Joseph, Frédérique Maczkowiak-Chartois, Filippo Rosselli","doi":"10.1371/journal.pgen.1011474","DOIUrl":"10.1371/journal.pgen.1011474","url":null,"abstract":"<p><p>Abnormal expression of the cell cycle inhibitor and p53 target CDKN1A/p21 has been associated with paradoxical outcomes, such as hyperproliferation in p53-deficient cancer cells or hypoproliferation that affects hematopoietic stem cell behavior, leading to bone marrow failure (BMF). Notably, p21 is known to be overexpressed in Fanconi anemia (FA), which is a rare syndrome that predisposes patients to BMF and cancer. However, why p21 is overexpressed in FA and how it contributes to the FA phenotype(s) are still poorly understood. Here, we revealed that while the upregulation of p21 is largely dependent on p53, it also depends on the transcription factor microphthalmia (MITF) as well as on its interaction with the nucleolar protein NPM1. Upregulation of p21 expression in FA cells leads to p21 accumulation in the chromatin fraction, p21 immunoprecipitation with PCNA, S-phase lengthening and genetic instability. p21 depletion in FA cells rescues the S-phase abnormalities and reduces their genetic instability. In addition, we observed that reactive oxygen species (ROS) accumulation, another key feature of FA cells, is required to trigger an increase in PCNA/chromatin-associated p21 and to impact replication progression. Therefore, we propose a mechanism by which p21 and ROS cooperate to induce replication abnormalities that fuel genetic instability.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011474"},"PeriodicalIF":4.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repeat mediated excision of gene drive elements for restoring wild-type populations. 通过基因驱动元件的重复介导切除来恢复野生型种群。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-07 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pgen.1011450
Pratima R Chennuri, Josef Zapletal, Raquel D Monfardini, Martial Loth Ndeffo-Mbah, Zach N Adelman, Kevin M Myles

Here, we demonstrate that single strand annealing (SSA) can be co-opted for the precise autocatalytic excision of a drive element. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). By engineering direct repeats flanking the drive allele and inducing a double-strand DNA break (DSB) at a second endonuclease target site within the allele, we increased the utilization of SSA repair. ReMEDE was incorporated into the mutagenic chain reaction (MCR) gene drive targeting the yellow gene of Drosophila melanogaster, successfully replacing drive alleles with wild-type alleles. Sequencing across the Cas9 target site confirmed transgene excision by SSA after pair-mated outcrosses with yReMEDE females, revealing ~4% inheritance of an engineered silent TcG marker sequence. However, phenotypically wild-type flies with alleles of indeterminate biogenesis also were observed, retaining the TGG sequence (~16%) or harboring a silent gGG mutation (~0.5%) at the PAM site. Additionally, ~14% of alleles in the F2 flies were intact or uncut paternally inherited alleles, indicating limited maternal deposition of Cas9 RNP. Although ReMEDE requires further research and development, the technology has some promising features as a gene drive mitigation strategy, notably its potential to restore wild-type populations without additional transgenic releases or large-scale environmental modifications.

在这里,我们证明了单链退火(SSA)可用于驱动元件的精确自催化切除。我们将这项技术称为驱动元件的重复介导切除(ReMEDE)。通过在驱动等位基因侧翼设计直接重复序列,并在等位基因的第二个内切酶靶点诱导双链 DNA 断裂(DSB),我们提高了 SSA 修复的利用率。我们将 ReMEDE 加入了针对黑腹果蝇黄色基因的诱变连锁反应(MCR)基因驱动中,成功地用野生型等位基因替换了驱动等位基因。与yReMEDE雌性果蝇配对杂交后,Cas9靶标位点上的测序证实了SSA对转基因的切除,发现工程沉默TcG标记序列的遗传率约为4%。然而,在表型上也观察到野生型蝇具有不确定生物发生的等位基因,保留了 TGG 序列(约 16%)或在 PAM 位点上携带了沉默的 gGG 突变(约 0.5%)。此外,F2蝇中约14%的等位基因是完整的或未切割的父系遗传等位基因,这表明Cas9 RNP的母体沉积有限。尽管 ReMEDE 还需要进一步的研究和开发,但作为一种基因驱动缓解策略,该技术具有一些很有前景的特点,尤其是它具有在不进行额外转基因释放或大规模环境改造的情况下恢复野生型种群的潜力。
{"title":"Repeat mediated excision of gene drive elements for restoring wild-type populations.","authors":"Pratima R Chennuri, Josef Zapletal, Raquel D Monfardini, Martial Loth Ndeffo-Mbah, Zach N Adelman, Kevin M Myles","doi":"10.1371/journal.pgen.1011450","DOIUrl":"10.1371/journal.pgen.1011450","url":null,"abstract":"<p><p>Here, we demonstrate that single strand annealing (SSA) can be co-opted for the precise autocatalytic excision of a drive element. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). By engineering direct repeats flanking the drive allele and inducing a double-strand DNA break (DSB) at a second endonuclease target site within the allele, we increased the utilization of SSA repair. ReMEDE was incorporated into the mutagenic chain reaction (MCR) gene drive targeting the yellow gene of Drosophila melanogaster, successfully replacing drive alleles with wild-type alleles. Sequencing across the Cas9 target site confirmed transgene excision by SSA after pair-mated outcrosses with yReMEDE females, revealing ~4% inheritance of an engineered silent TcG marker sequence. However, phenotypically wild-type flies with alleles of indeterminate biogenesis also were observed, retaining the TGG sequence (~16%) or harboring a silent gGG mutation (~0.5%) at the PAM site. Additionally, ~14% of alleles in the F2 flies were intact or uncut paternally inherited alleles, indicating limited maternal deposition of Cas9 RNP. Although ReMEDE requires further research and development, the technology has some promising features as a gene drive mitigation strategy, notably its potential to restore wild-type populations without additional transgenic releases or large-scale environmental modifications.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011450"},"PeriodicalIF":4.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Foxf1-Wnt-Nr2f1 cascade promotes atrial cardiomyocyte differentiation in zebrafish. Foxf1-Wnt-Nr2f1级联促进斑马鱼心房心肌细胞分化
IF 5.4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-04 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pgen.1011222
Ugo Coppola, Bitan Saha, Jennifer Kenney, Joshua S Waxman

Nr2f transcription factors (TFs) are conserved regulators of vertebrate atrial cardiomyocyte (AC) differentiation. However, little is known about the mechanisms directing Nr2f expression in ACs. Here, we identified a conserved enhancer 3' to the nr2f1a locus, which we call 3'reg1-nr2f1a (3'reg1), that can promote Nr2f1a expression in ACs. Sequence analysis of the enhancer identified putative Lef/Tcf and Foxf TF binding sites. Mutation of the Lef/Tcf sites within the 3'reg1 reporter, knockdown of Tcf7l1a, and manipulation of canonical Wnt signaling support that Tcf7l1a is derepressed via Wnt signaling to activate the transgenic enhancer and promote AC differentiation. Similarly, mutation of the Foxf binding sites in the 3'reg1 reporter, coupled with gain- and loss-of-function analysis supported that Foxf1 promotes expression of the enhancer and AC differentiation. Functionally, we find that Wnt signaling acts downstream of Foxf1 to promote expression of the 3'reg1 reporter within ACs and, importantly, both Foxf1 and Wnt signaling require Nr2f1a to promote a surplus of differentiated ACs. CRISPR-mediated deletion of the endogenous 3'reg1 abrogates the ability of Foxf1 and Wnt signaling to produce surplus ACs in zebrafish embryos. Together, our data support that downstream members of a conserved regulatory network involving Wnt signaling and Foxf1 function on a nr2f1a enhancer to promote AC differentiation in the zebrafish heart.

Nr2f 转录因子(TF)是脊椎动物心房心肌细胞(AC)分化的保守调节因子。然而,人们对 Nr2f 在 AC 中的表达机制知之甚少。在这里,我们发现了一个位于 nr2f1a 基因座 3' 的保守增强子,我们称之为 3'reg1-nr2f1a(3'reg1),它能促进 Nr2f1a 在 ACs 中的表达。对该增强子的序列分析发现了推定的 Lef/Tcf 和 Foxf TF 结合位点。3'reg1报告基因中Lef/Tcf位点的突变、Tcf7l1a的敲除以及对典型Wnt信号的操作都支持Tcf7l1a通过Wnt信号被去抑制,从而激活转基因增强子并促进AC分化。同样,3'reg1报告基因中的Foxf结合位点突变以及功能增益和功能缺失分析也支持Foxf1促进增强子的表达和AC分化。在功能上,我们发现 Wnt 信号作用于 Foxf1 的下游,促进 3'reg1 报告基因在 ACs 中的表达,而且重要的是,Foxf1 和 Wnt 信号作用都需要 Nr2f1a 来促进分化 ACs 的过剩。CRISPR 介导的内源性 3'reg1 缺失会削弱 Foxf1 和 Wnt 信号在斑马鱼胚胎中产生过剩 AC 的能力。总之,我们的数据支持涉及 Wnt 信号和 Foxf1 的保守调控网络的下游成员在 nr2f1a 增强子上发挥作用,促进斑马鱼心脏中 AC 的分化。
{"title":"A Foxf1-Wnt-Nr2f1 cascade promotes atrial cardiomyocyte differentiation in zebrafish.","authors":"Ugo Coppola, Bitan Saha, Jennifer Kenney, Joshua S Waxman","doi":"10.1371/journal.pgen.1011222","DOIUrl":"10.1371/journal.pgen.1011222","url":null,"abstract":"<p><p>Nr2f transcription factors (TFs) are conserved regulators of vertebrate atrial cardiomyocyte (AC) differentiation. However, little is known about the mechanisms directing Nr2f expression in ACs. Here, we identified a conserved enhancer 3' to the nr2f1a locus, which we call 3'reg1-nr2f1a (3'reg1), that can promote Nr2f1a expression in ACs. Sequence analysis of the enhancer identified putative Lef/Tcf and Foxf TF binding sites. Mutation of the Lef/Tcf sites within the 3'reg1 reporter, knockdown of Tcf7l1a, and manipulation of canonical Wnt signaling support that Tcf7l1a is derepressed via Wnt signaling to activate the transgenic enhancer and promote AC differentiation. Similarly, mutation of the Foxf binding sites in the 3'reg1 reporter, coupled with gain- and loss-of-function analysis supported that Foxf1 promotes expression of the enhancer and AC differentiation. Functionally, we find that Wnt signaling acts downstream of Foxf1 to promote expression of the 3'reg1 reporter within ACs and, importantly, both Foxf1 and Wnt signaling require Nr2f1a to promote a surplus of differentiated ACs. CRISPR-mediated deletion of the endogenous 3'reg1 abrogates the ability of Foxf1 and Wnt signaling to produce surplus ACs in zebrafish embryos. Together, our data support that downstream members of a conserved regulatory network involving Wnt signaling and Foxf1 function on a nr2f1a enhancer to promote AC differentiation in the zebrafish heart.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011222"},"PeriodicalIF":5.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Bayesian Linear Regression models for gene set prioritization in complex diseases. 贝叶斯线性回归模型对复杂疾病基因集优先级排序的评估。
IF 5.4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-11-04 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pgen.1011463
Tahereh Gholipourshahraki, Zhonghao Bai, Merina Shrestha, Astrid Hjelholt, Sile Hu, Mads Kjolby, Palle Duun Rohde, Peter Sørensen

Genome-wide association studies (GWAS) provide valuable insights into the genetic architecture of complex traits, yet interpreting their results remains challenging due to the polygenic nature of most traits. Gene set analysis offers a solution by aggregating genetic variants into biologically relevant pathways, enhancing the detection of coordinated effects across multiple genes. In this study, we present and evaluate a gene set prioritization approach utilizing Bayesian Linear Regression (BLR) models to uncover shared genetic components among different phenotypes and facilitate biological interpretation. Through extensive simulations and analyses of real traits, we demonstrate the efficacy of the BLR model in prioritizing pathways for complex traits. Simulation studies reveal insights into the model's performance under various scenarios, highlighting the impact of factors such as the number of causal genes, proportions of causal variants, heritability, and disease prevalence. Comparative analyses with MAGMA (Multi-marker Analysis of GenoMic Annotation) demonstrate BLR's superior performance, especially in highly overlapped gene sets. Application of both single-trait and multi-trait BLR models to real data, specifically GWAS summary data for type 2 diabetes (T2D) and related phenotypes, identifies significant associations with T2D-related pathways. Furthermore, comparison between single- and multi-trait BLR analyses highlights the superior performance of the multi-trait approach in identifying associated pathways, showcasing increased statistical power when analyzing multiple traits jointly. Additionally, enrichment analysis with integrated data from various public resources supports our results, confirming significant enrichment of diabetes-related genes within the top T2D pathways resulting from the multi-trait analysis. The BLR model's ability to handle diverse genomic features, perform regularization, conduct variable selection, and integrate information from multiple traits, genders, and ancestries demonstrates its utility in understanding the genetic architecture of complex traits. Our study provides insights into the potential of the BLR model to prioritize gene sets, offering a flexible framework applicable to various datasets. This model presents opportunities for advancing personalized medicine by exploring the genetic underpinnings of multifactorial traits.

全基因组关联研究(GWAS)为了解复杂性状的遗传结构提供了宝贵的见解,但由于大多数性状具有多基因性,解释其结果仍然具有挑战性。基因组分析提供了一种解决方案,它将基因变异聚合到生物学相关的途径中,从而提高了对跨多个基因的协调效应的检测。在本研究中,我们介绍并评估了一种利用贝叶斯线性回归(BLR)模型进行基因组优先排序的方法,以发现不同表型之间的共有遗传成分并促进生物学解释。通过对实际性状的大量模拟和分析,我们证明了贝叶斯线性回归模型在确定复杂性状通路优先顺序方面的功效。模拟研究揭示了该模型在各种情况下的表现,突出了因果基因数量、因果变异比例、遗传率和疾病流行率等因素的影响。与 MAGMA(Multi-marker Analysis of GenoMic Annotation)的比较分析表明,BLR 性能优越,尤其是在高度重叠的基因集中。将单性状和多性状 BLR 模型应用于真实数据,特别是 2 型糖尿病(T2D)和相关表型的 GWAS 总结数据,发现了与 T2D 相关通路的显著关联。此外,单性状和多性状 BLR 分析之间的比较凸显了多性状方法在确定相关通路方面的优越性能,显示了联合分析多个性状时统计能力的提高。此外,利用来自各种公共资源的综合数据进行的富集分析也支持我们的结果,证实了多性状分析得出的顶级 T2D 通路中糖尿病相关基因的显著富集。BLR 模型能够处理不同的基因组特征、执行正则化、进行变量选择以及整合来自多个性状、性别和祖先的信息,这证明了它在理解复杂性状的遗传结构方面的实用性。我们的研究深入揭示了 BLR 模型确定基因集优先次序的潜力,提供了一个适用于各种数据集的灵活框架。该模型通过探索多因素性状的遗传基础,为推进个性化医疗提供了机会。
{"title":"Evaluation of Bayesian Linear Regression models for gene set prioritization in complex diseases.","authors":"Tahereh Gholipourshahraki, Zhonghao Bai, Merina Shrestha, Astrid Hjelholt, Sile Hu, Mads Kjolby, Palle Duun Rohde, Peter Sørensen","doi":"10.1371/journal.pgen.1011463","DOIUrl":"10.1371/journal.pgen.1011463","url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) provide valuable insights into the genetic architecture of complex traits, yet interpreting their results remains challenging due to the polygenic nature of most traits. Gene set analysis offers a solution by aggregating genetic variants into biologically relevant pathways, enhancing the detection of coordinated effects across multiple genes. In this study, we present and evaluate a gene set prioritization approach utilizing Bayesian Linear Regression (BLR) models to uncover shared genetic components among different phenotypes and facilitate biological interpretation. Through extensive simulations and analyses of real traits, we demonstrate the efficacy of the BLR model in prioritizing pathways for complex traits. Simulation studies reveal insights into the model's performance under various scenarios, highlighting the impact of factors such as the number of causal genes, proportions of causal variants, heritability, and disease prevalence. Comparative analyses with MAGMA (Multi-marker Analysis of GenoMic Annotation) demonstrate BLR's superior performance, especially in highly overlapped gene sets. Application of both single-trait and multi-trait BLR models to real data, specifically GWAS summary data for type 2 diabetes (T2D) and related phenotypes, identifies significant associations with T2D-related pathways. Furthermore, comparison between single- and multi-trait BLR analyses highlights the superior performance of the multi-trait approach in identifying associated pathways, showcasing increased statistical power when analyzing multiple traits jointly. Additionally, enrichment analysis with integrated data from various public resources supports our results, confirming significant enrichment of diabetes-related genes within the top T2D pathways resulting from the multi-trait analysis. The BLR model's ability to handle diverse genomic features, perform regularization, conduct variable selection, and integrate information from multiple traits, genders, and ancestries demonstrates its utility in understanding the genetic architecture of complex traits. Our study provides insights into the potential of the BLR model to prioritize gene sets, offering a flexible framework applicable to various datasets. This model presents opportunities for advancing personalized medicine by exploring the genetic underpinnings of multifactorial traits.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 11","pages":"e1011463"},"PeriodicalIF":5.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the novel regulatory roles of RpoD-family sigma factors in Salmonella Typhimurium heat shock response through systems biology approaches. 通过系统生物学方法揭示 RpoD 家族 sigma 因子在鼠伤寒沙门氏菌热休克反应中的新型调控作用。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-29 eCollection Date: 2024-10-01 DOI: 10.1371/journal.pgen.1011464
Joon Young Park, Minchang Jang, Sang-Mok Lee, Jihoon Woo, Eun-Jin Lee, Donghyuk Kim

Three RpoD-family sigma factors, RpoD, RpoS, and RpoH, play critical roles in transcriptional regulation in Salmonella enterica serovar Typhimurium under heat shock conditions. However, the genome-wide regulatory mechanisms of these sigma factors in response to heat stress have remained elusive. In this study, we comprehensively identified 2,319, 2,226, and 213 genome-wide binding sites for RpoD, RpoS, and RpoH, respectively, under sublethal heat shock conditions (42°C). Machine learning-based transcriptome analysis was employed to infer the relative activity of iModulons, providing valuable insights into the transcriptional impact of heat shock. Integrative data analysis enabled the reconstruction of the transcriptional regulatory network of sigma factors, revealing how they modulate gene expression to adapt to heat stress, including responses to anaerobic and oxidative stresses. Notably, we observed a significant expansion of the RpoS sigmulon from 97 to 301 genes in response to heat shock, underscoring the crucial role of RpoS in regulating various metabolic processes. Moreover, we uncovered a competition mechanism between RpoD and RpoS within RpoS sigmulons, where RpoS significantly increases its binding within promoter regions shared with RpoD under heat shock conditions. These findings illuminate how three RpoD-family sigma factors coordinate multiple cellular processes to orchestrate the overall response of S. Typhimurium to heat stress.

在热休克条件下,肠炎沙门氏菌(Salmonella enterica serovar Typhimurium)的三个 RpoD 家族 sigma 因子 RpoD、RpoS 和 RpoH 在转录调控中发挥着关键作用。然而,这些σ因子在热应激反应中的全基因组调控机制仍然难以捉摸。在本研究中,我们全面鉴定了亚致死热休克条件(42°C)下 RpoD、RpoS 和 RpoH 分别有 2319、2226 和 213 个全基因组结合位点。利用基于机器学习的转录组分析来推断 iModulons 的相对活性,为了解热休克对转录的影响提供了宝贵的信息。通过整合数据分析,我们重建了西格玛因子的转录调控网络,揭示了它们如何调节基因表达以适应热休克,包括对厌氧和氧化休克的反应。值得注意的是,我们观察到在热休克反应中,RpoS sigmulon 从 97 个基因显著扩展到 301 个基因,这凸显了 RpoS 在调节各种代谢过程中的关键作用。此外,我们还发现了 RpoD 和 RpoS 在 RpoS sigmulons 中的竞争机制,即在热休克条件下,RpoS 在与 RpoD 共享的启动子区域内的结合显著增加。这些发现阐明了三个 RpoD 家族西格玛因子如何协调多个细胞过程,以协调伤寒杆菌对热应激的整体反应。
{"title":"Unveiling the novel regulatory roles of RpoD-family sigma factors in Salmonella Typhimurium heat shock response through systems biology approaches.","authors":"Joon Young Park, Minchang Jang, Sang-Mok Lee, Jihoon Woo, Eun-Jin Lee, Donghyuk Kim","doi":"10.1371/journal.pgen.1011464","DOIUrl":"10.1371/journal.pgen.1011464","url":null,"abstract":"<p><p>Three RpoD-family sigma factors, RpoD, RpoS, and RpoH, play critical roles in transcriptional regulation in Salmonella enterica serovar Typhimurium under heat shock conditions. However, the genome-wide regulatory mechanisms of these sigma factors in response to heat stress have remained elusive. In this study, we comprehensively identified 2,319, 2,226, and 213 genome-wide binding sites for RpoD, RpoS, and RpoH, respectively, under sublethal heat shock conditions (42°C). Machine learning-based transcriptome analysis was employed to infer the relative activity of iModulons, providing valuable insights into the transcriptional impact of heat shock. Integrative data analysis enabled the reconstruction of the transcriptional regulatory network of sigma factors, revealing how they modulate gene expression to adapt to heat stress, including responses to anaerobic and oxidative stresses. Notably, we observed a significant expansion of the RpoS sigmulon from 97 to 301 genes in response to heat shock, underscoring the crucial role of RpoS in regulating various metabolic processes. Moreover, we uncovered a competition mechanism between RpoD and RpoS within RpoS sigmulons, where RpoS significantly increases its binding within promoter regions shared with RpoD under heat shock conditions. These findings illuminate how three RpoD-family sigma factors coordinate multiple cellular processes to orchestrate the overall response of S. Typhimurium to heat stress.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 10","pages":"e1011464"},"PeriodicalIF":4.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STIL overexpression shortens lifespan and reduces tumor formation in mice. STIL 过表达会缩短小鼠的寿命并减少肿瘤的形成。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-28 eCollection Date: 2024-10-01 DOI: 10.1371/journal.pgen.1011460
Amira-Talaat Moussa, Marco R Cosenza, Timothy Wohlfromm, Katharina Brobeil, Anthony Hill, Annarita Patrizi, Karin Müller-Decker, Tim Holland-Letz, Anna Jauch, Bianca Kraft, Alwin Krämer

Centrosomes are the major microtubule organizing centers of animal cells. Supernumerary centrosomes are a common feature of human tumors and associated with karyotype abnormalities and aggressive disease, but whether they are cause or consequence of cancer remains controversial. Here, we analyzed the consequences of centrosome amplification by generating transgenic mice in which centrosome numbers can be increased by overexpression of the structural centrosome protein STIL. We show that STIL overexpression induces centrosome amplification and aneuploidy, leading to senescence, apoptosis, and impaired proliferation in mouse embryonic fibroblasts, and microcephaly with increased perinatal lethality and shortened lifespan in mice. Importantly, both overall tumor formation in mice with constitutive, global STIL overexpression and chemical skin carcinogenesis in animals with inducible, skin-specific STIL overexpression were reduced, an effect that was not rescued by concomitant interference with p53 function. These results suggest that supernumerary centrosomes impair proliferation in vitro as well as in vivo, resulting in reduced lifespan and delayed spontaneous as well as carcinogen-induced tumor formation.

中心体是动物细胞的主要微管组织中心。超数中心体是人类肿瘤的常见特征,与核型异常和侵袭性疾病有关,但它们是癌症的原因还是结果仍存在争议。在这里,我们通过产生转基因小鼠来分析中心体扩增的后果,在转基因小鼠中,中心体结构蛋白 STIL 的过表达可以增加中心体的数量。我们发现,STIL 过表达会诱导中心体扩增和非整倍体,导致小鼠胚胎成纤维细胞衰老、凋亡和增殖受损,并导致小鼠小头畸形、围产期致死率增加和寿命缩短。重要的是,构成性、全局性 STIL 过表达的小鼠总体肿瘤形成和诱导性、皮肤特异性 STIL 过表达的动物的化学皮肤癌发生率都降低了,而同时干扰 p53 功能并不能挽救这种效应。这些结果表明,数目过多的中心体会损害体外和体内的增殖,导致寿命缩短、自发性肿瘤形成延迟以及致癌物质诱导的肿瘤形成延迟。
{"title":"STIL overexpression shortens lifespan and reduces tumor formation in mice.","authors":"Amira-Talaat Moussa, Marco R Cosenza, Timothy Wohlfromm, Katharina Brobeil, Anthony Hill, Annarita Patrizi, Karin Müller-Decker, Tim Holland-Letz, Anna Jauch, Bianca Kraft, Alwin Krämer","doi":"10.1371/journal.pgen.1011460","DOIUrl":"10.1371/journal.pgen.1011460","url":null,"abstract":"<p><p>Centrosomes are the major microtubule organizing centers of animal cells. Supernumerary centrosomes are a common feature of human tumors and associated with karyotype abnormalities and aggressive disease, but whether they are cause or consequence of cancer remains controversial. Here, we analyzed the consequences of centrosome amplification by generating transgenic mice in which centrosome numbers can be increased by overexpression of the structural centrosome protein STIL. We show that STIL overexpression induces centrosome amplification and aneuploidy, leading to senescence, apoptosis, and impaired proliferation in mouse embryonic fibroblasts, and microcephaly with increased perinatal lethality and shortened lifespan in mice. Importantly, both overall tumor formation in mice with constitutive, global STIL overexpression and chemical skin carcinogenesis in animals with inducible, skin-specific STIL overexpression were reduced, an effect that was not rescued by concomitant interference with p53 function. These results suggest that supernumerary centrosomes impair proliferation in vitro as well as in vivo, resulting in reduced lifespan and delayed spontaneous as well as carcinogen-induced tumor formation.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 10","pages":"e1011460"},"PeriodicalIF":4.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A drug repurposing screen reveals dopamine signaling as a critical pathway underlying potential therapeutics for the rare disease DPAGT1-CDG. 药物再利用筛选发现多巴胺信号传导是治疗罕见病 DPAGT1-CDG 的潜在疗法的关键途径。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-28 eCollection Date: 2024-10-01 DOI: 10.1371/journal.pgen.1011458
Hans M Dalton, Naomi J Young, Alexys R Berman, Heather D Evans, Sydney J Peterson, Kaylee A Patterson, Clement Y Chow

DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that lacks effective therapies. It is caused by mutations in the gene DPAGT1 which encodes the first enzyme in N-linked glycosylation. We used a Drosophila rough eye model of DPAGT1-CDG with an improperly developed, small eye phenotype. We performed a drug repurposing screen on this model using 1,520 small molecules that are 98% FDA/EMA-approved to find drugs that improved its eye. We identified 42 candidate drugs that improved the DPAGT1-CDG model. Notably from this screen, we found that pharmacological and genetic inhibition of the dopamine D2 receptor partially rescued the DPAGT1-CDG model. Loss of both dopamine synthesis and recycling partially rescued the model, suggesting that dopaminergic flux and subsequent binding to D2 receptors is detrimental under DPAGT1 deficiency. This links dopamine signaling to N-glycosylation and represents a new potential therapeutic target for treating DPAGT1-CDG. We also genetically validate other top drug categories including acetylcholine-related drugs, COX inhibitors, and an inhibitor of NKCC1. These drugs and subsequent analyses reveal novel biology in DPAGT1 mechanisms, and they may represent new therapeutic options for DPAGT1-CDG.

DPAGT1-CDG 是一种缺乏有效疗法的先天性糖基化紊乱(CDG)。它是由编码 N-连接糖基化第一酶的 DPAGT1 基因突变引起的。我们使用了一种果蝇粗眼模型,该模型中的DPAGT1-CDG具有发育不全的小眼睛表型。我们对该模型进行了药物再利用筛选,使用了 1,520 种 98% 已获 FDA/EMA 批准的小分子药物,以寻找能改善其眼睛的药物。我们发现了 42 种可改善 DPAGT1-CDG 模型的候选药物。值得注意的是,在这次筛选中,我们发现多巴胺 D2 受体的药理和基因抑制可部分挽救 DPAGT1-CDG 模型。多巴胺合成和再循环的缺失也部分挽救了该模型,这表明在 DPAGT1 缺乏的情况下,多巴胺能通量以及随后与 D2 受体的结合是有害的。这将多巴胺信号转导与 N-糖基化联系起来,成为治疗 DPAGT1-CDG 的一个新的潜在治疗靶点。我们还从基因上验证了其他顶级药物类别,包括乙酰胆碱相关药物、COX 抑制剂和 NKCC1 抑制剂。这些药物和后续分析揭示了 DPAGT1 机制中的新生物学特性,它们可能是 DPAGT1-CDG 的新治疗方案。
{"title":"A drug repurposing screen reveals dopamine signaling as a critical pathway underlying potential therapeutics for the rare disease DPAGT1-CDG.","authors":"Hans M Dalton, Naomi J Young, Alexys R Berman, Heather D Evans, Sydney J Peterson, Kaylee A Patterson, Clement Y Chow","doi":"10.1371/journal.pgen.1011458","DOIUrl":"10.1371/journal.pgen.1011458","url":null,"abstract":"<p><p>DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that lacks effective therapies. It is caused by mutations in the gene DPAGT1 which encodes the first enzyme in N-linked glycosylation. We used a Drosophila rough eye model of DPAGT1-CDG with an improperly developed, small eye phenotype. We performed a drug repurposing screen on this model using 1,520 small molecules that are 98% FDA/EMA-approved to find drugs that improved its eye. We identified 42 candidate drugs that improved the DPAGT1-CDG model. Notably from this screen, we found that pharmacological and genetic inhibition of the dopamine D2 receptor partially rescued the DPAGT1-CDG model. Loss of both dopamine synthesis and recycling partially rescued the model, suggesting that dopaminergic flux and subsequent binding to D2 receptors is detrimental under DPAGT1 deficiency. This links dopamine signaling to N-glycosylation and represents a new potential therapeutic target for treating DPAGT1-CDG. We also genetically validate other top drug categories including acetylcholine-related drugs, COX inhibitors, and an inhibitor of NKCC1. These drugs and subsequent analyses reveal novel biology in DPAGT1 mechanisms, and they may represent new therapeutic options for DPAGT1-CDG.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 10","pages":"e1011458"},"PeriodicalIF":4.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
PLoS Genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1