首页 > 最新文献

PLoS Genetics最新文献

英文 中文
Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes.
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-29 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011400
Joanatta G Shapiro, Neha Changela, Janet K Jang, Jay N Joshi, Kim S McKim

Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes do not induce increased SAC protein localization. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is not functional. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal from kinetochores and movement towards spindle poles, termed "streaming," is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that Spindly is required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.

{"title":"Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes.","authors":"Joanatta G Shapiro, Neha Changela, Janet K Jang, Jay N Joshi, Kim S McKim","doi":"10.1371/journal.pgen.1011400","DOIUrl":"10.1371/journal.pgen.1011400","url":null,"abstract":"<p><p>Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes do not induce increased SAC protein localization. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is not functional. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal from kinetochores and movement towards spindle poles, termed \"streaming,\" is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that Spindly is required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011400"},"PeriodicalIF":4.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated neuron-glia regeneration through Notch signaling in planarians.
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011577
M Lucila Scimone, Bryanna Isela-Inez Canales, Patrick Aoude, Kutay D Atabay, Peter W Reddien

Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood. In planarians, neurons and glia are regenerated from distinct progenitors. We found that planarians first regenerate neurons expressing a Delta-encoding gene, delta-2, at key positions in the central and peripheral nervous systems. Planarian glia are specified later from dispersed Notch-1-expressing mesoderm-like phagocytic progenitors. Inhibition of delta-2 or notch-1 severely reduced glia in planarians, but did not affect the specification of other phagocytic cell types. Loss of several delta-2-expressing neuron classes prevented differentiation of the glia associated with them, whereas transplantation of delta-2-expressing photoreceptor neurons was sufficient for glia formation at an ectopic location. Our results suggest a model in which patterned delta-2-expressing neurons instruct phagocytic progenitors to locally differentiate into glia, presenting a mechanism for coordinated regeneration of numbers and pattern of cell types.

{"title":"Coordinated neuron-glia regeneration through Notch signaling in planarians.","authors":"M Lucila Scimone, Bryanna Isela-Inez Canales, Patrick Aoude, Kutay D Atabay, Peter W Reddien","doi":"10.1371/journal.pgen.1011577","DOIUrl":"10.1371/journal.pgen.1011577","url":null,"abstract":"<p><p>Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood. In planarians, neurons and glia are regenerated from distinct progenitors. We found that planarians first regenerate neurons expressing a Delta-encoding gene, delta-2, at key positions in the central and peripheral nervous systems. Planarian glia are specified later from dispersed Notch-1-expressing mesoderm-like phagocytic progenitors. Inhibition of delta-2 or notch-1 severely reduced glia in planarians, but did not affect the specification of other phagocytic cell types. Loss of several delta-2-expressing neuron classes prevented differentiation of the glia associated with them, whereas transplantation of delta-2-expressing photoreceptor neurons was sufficient for glia formation at an ectopic location. Our results suggest a model in which patterned delta-2-expressing neurons instruct phagocytic progenitors to locally differentiate into glia, presenting a mechanism for coordinated regeneration of numbers and pattern of cell types.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011577"},"PeriodicalIF":4.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimization of the Bacillus subtilis divisome suggests FtsZ and SepF can form an active Z-ring, and reveals the amino acid transporter BraB as a new cell division influencing factor.
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011567
Ilkay Celik Gulsoy, Terrens N V Saaki, Michaela Wenzel, Simon Syvertsson, Taku Morimoto, Tjalling K Siersma, Leendert W Hamoen

Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal. Therefore, it is still not fully clear how the different protein components contribute to cell division, and whether there is a minimal set of proteins that can execute cell division. In this study, we tried to find the minimal set of proteins that is required to establish an active Z-ring in the model bacterium Bacillus subtilis. By making use of known suppressor mutations we were able to find a gene deletion route that eventually enabled us the remove eight conserved cell division proteins: ZapA, MinC, MinJ, UgtP, ClpX, Noc, EzrA and FtsA. Only FtsZ and its membrane anchor SepF appeared to be required for Z-ring formation. Interestingly, SepF is also the FtsZ anchor in archaea, and both proteins date back to the Last Universal Common Ancestor (LUCA). Viability of the multiple deletion mutant was not greatly affected, although the frequency of cell division was considerably reduced. Whole genome sequencing suggested that the construction of this minimal divisome strain was also possible due to the accumulation of suppressor mutations. After extensive phenotypic testing of these mutations, we found an unexpected cell division regulation function for the branched chain amino acid transporter BraB, which may be related to a change in fatty acid composition. The implications of these findings for the role of SepF, and the construction of a minimal cell division machinery are discussed.

{"title":"Minimization of the Bacillus subtilis divisome suggests FtsZ and SepF can form an active Z-ring, and reveals the amino acid transporter BraB as a new cell division influencing factor.","authors":"Ilkay Celik Gulsoy, Terrens N V Saaki, Michaela Wenzel, Simon Syvertsson, Taku Morimoto, Tjalling K Siersma, Leendert W Hamoen","doi":"10.1371/journal.pgen.1011567","DOIUrl":"10.1371/journal.pgen.1011567","url":null,"abstract":"<p><p>Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal. Therefore, it is still not fully clear how the different protein components contribute to cell division, and whether there is a minimal set of proteins that can execute cell division. In this study, we tried to find the minimal set of proteins that is required to establish an active Z-ring in the model bacterium Bacillus subtilis. By making use of known suppressor mutations we were able to find a gene deletion route that eventually enabled us the remove eight conserved cell division proteins: ZapA, MinC, MinJ, UgtP, ClpX, Noc, EzrA and FtsA. Only FtsZ and its membrane anchor SepF appeared to be required for Z-ring formation. Interestingly, SepF is also the FtsZ anchor in archaea, and both proteins date back to the Last Universal Common Ancestor (LUCA). Viability of the multiple deletion mutant was not greatly affected, although the frequency of cell division was considerably reduced. Whole genome sequencing suggested that the construction of this minimal divisome strain was also possible due to the accumulation of suppressor mutations. After extensive phenotypic testing of these mutations, we found an unexpected cell division regulation function for the branched chain amino acid transporter BraB, which may be related to a change in fatty acid composition. The implications of these findings for the role of SepF, and the construction of a minimal cell division machinery are discussed.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011567"},"PeriodicalIF":4.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mitochondria-to-nucleus regulation mediated by the nuclear-translocated mitochondrial lncRNAs.
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011580
Jia Li, Ruoling Bai, Yulian Zhou, Xu Song, Ling Li

A bidirectional nucleus-mitochondria communication is essential for homeostasis and stress. By acting as critical molecules, the nuclear-encoded lncRNAs (nulncRNAs) have been implicated in the nucleus-to-mitochondria anterograde regulation. However, role of mitochondrial-derived lncRNAs (mtlncRNAs) in the mitochondria-to-nucleus retrograde regulation remains elusive. Here, we identify functional implication of the mtlncRNAs MDL1AS, lncND5 and lncCyt b in retrograde regulation. Mediated by HuR and PNPT1 proteins, the mtlncRNAs undergo a mitochondria-to-nucleus traveling and then regulate a network of nuclear genes. Moreover, as an example of the functional consequence, we showed that the nuclear-translocated lncCyt b cooperates with the splicing factor hnRNPA2B1 to influence several aspects of cell metabolism including glycolysis, possibly through their regulatory effect on the post-transcriptional processing of related nuclear genes. This study advances our knowledge in mitochondrial biology and provides new insights into the role of mtlncRNAs in mitochondria-nucleus communications.

{"title":"A mitochondria-to-nucleus regulation mediated by the nuclear-translocated mitochondrial lncRNAs.","authors":"Jia Li, Ruoling Bai, Yulian Zhou, Xu Song, Ling Li","doi":"10.1371/journal.pgen.1011580","DOIUrl":"10.1371/journal.pgen.1011580","url":null,"abstract":"<p><p>A bidirectional nucleus-mitochondria communication is essential for homeostasis and stress. By acting as critical molecules, the nuclear-encoded lncRNAs (nulncRNAs) have been implicated in the nucleus-to-mitochondria anterograde regulation. However, role of mitochondrial-derived lncRNAs (mtlncRNAs) in the mitochondria-to-nucleus retrograde regulation remains elusive. Here, we identify functional implication of the mtlncRNAs MDL1AS, lncND5 and lncCyt b in retrograde regulation. Mediated by HuR and PNPT1 proteins, the mtlncRNAs undergo a mitochondria-to-nucleus traveling and then regulate a network of nuclear genes. Moreover, as an example of the functional consequence, we showed that the nuclear-translocated lncCyt b cooperates with the splicing factor hnRNPA2B1 to influence several aspects of cell metabolism including glycolysis, possibly through their regulatory effect on the post-transcriptional processing of related nuclear genes. This study advances our knowledge in mitochondrial biology and provides new insights into the role of mtlncRNAs in mitochondria-nucleus communications.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011580"},"PeriodicalIF":4.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wild-type bone marrow cells repopulate tissue resident macrophages and reverse the impacts of homozygous CSF1R mutation.
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011525
Dylan Carter-Cusack, Stephen Huang, Sahar Keshvari, Omkar Patkar, Anuj Sehgal, Rachel Allavena, Robert A J Byrne, B Paul Morgan, Stephen J Bush, Kim M Summers, Katharine M Irvine, David A Hume

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival. To dissect the phenotype and function of macrophages in postnatal development, we generated transcriptomic profiles of all major organs of wild-type and Csf1rko rats at weaning and in selected organs following rescue by BMT. The transcriptomic profiles revealed subtle effects of macrophage deficiency on development of all major organs. Network analysis revealed a common signature of CSF1R-dependent resident tissue macrophages that includes the components of complement C1Q (C1qa/b/c genes). Circulating C1Q was almost undetectable in Csf1rko rats and rapidly restored to normal levels following BMT. Tissue-specific macrophage signatures were also identified, notably including sinus macrophage populations in the lymph nodes. Their loss in Csf1rko rats was confirmed by immunohistochemical localisation of CD209B (SIGNR1). By 6-12 weeks, Csf1rko rats succumb to emphysema-like pathology associated with the selective loss of interstitial macrophages and granulocytosis. This pathology was reversed by BMT. Along with physiological rescue, BMT precisely regenerated the abundance and expression profiles of resident macrophages. The exception was the brain, where BM-derived microglia-like cells had a distinct expression profile compared to resident microglia. In addition, the transferred BM failed to restore blood monocyte or CSF1R-positive bone marrow progenitors. These studies provide a model for the pathology and treatment of CSF1R mutations in humans and the innate immune deficiency associated with prematurity.

{"title":"Wild-type bone marrow cells repopulate tissue resident macrophages and reverse the impacts of homozygous CSF1R mutation.","authors":"Dylan Carter-Cusack, Stephen Huang, Sahar Keshvari, Omkar Patkar, Anuj Sehgal, Rachel Allavena, Robert A J Byrne, B Paul Morgan, Stephen J Bush, Kim M Summers, Katharine M Irvine, David A Hume","doi":"10.1371/journal.pgen.1011525","DOIUrl":"10.1371/journal.pgen.1011525","url":null,"abstract":"<p><p>Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival. To dissect the phenotype and function of macrophages in postnatal development, we generated transcriptomic profiles of all major organs of wild-type and Csf1rko rats at weaning and in selected organs following rescue by BMT. The transcriptomic profiles revealed subtle effects of macrophage deficiency on development of all major organs. Network analysis revealed a common signature of CSF1R-dependent resident tissue macrophages that includes the components of complement C1Q (C1qa/b/c genes). Circulating C1Q was almost undetectable in Csf1rko rats and rapidly restored to normal levels following BMT. Tissue-specific macrophage signatures were also identified, notably including sinus macrophage populations in the lymph nodes. Their loss in Csf1rko rats was confirmed by immunohistochemical localisation of CD209B (SIGNR1). By 6-12 weeks, Csf1rko rats succumb to emphysema-like pathology associated with the selective loss of interstitial macrophages and granulocytosis. This pathology was reversed by BMT. Along with physiological rescue, BMT precisely regenerated the abundance and expression profiles of resident macrophages. The exception was the brain, where BM-derived microglia-like cells had a distinct expression profile compared to resident microglia. In addition, the transferred BM failed to restore blood monocyte or CSF1R-positive bone marrow progenitors. These studies provide a model for the pathology and treatment of CSF1R mutations in humans and the innate immune deficiency associated with prematurity.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011525"},"PeriodicalIF":4.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A versatile site-directed gene trap strategy to manipulate gene activity and control gene expression in Caenorhabditis elegans.
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011541
Haania Khan, Xinyu Huang, Vishnu Raj, Han Wang

The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C. elegans. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems' drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C. elegans, which will ultimately provide new insights into how genes in the genome control the biology of an organism.

{"title":"A versatile site-directed gene trap strategy to manipulate gene activity and control gene expression in Caenorhabditis elegans.","authors":"Haania Khan, Xinyu Huang, Vishnu Raj, Han Wang","doi":"10.1371/journal.pgen.1011541","DOIUrl":"10.1371/journal.pgen.1011541","url":null,"abstract":"<p><p>The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C. elegans. We designed a cGAL gene trap cassette and used CRISPR/Cas9 to insert it into the target gene, creating a bicistronic operon that simultaneously expresses a truncated endogenous protein and the cGAL driver in the cells expressing the target gene. We demonstrate that our cGAL gene trap strategy robustly generated loss-of-function alleles. Combining the cGAL gene trap lines with different UAS effector strains allowed us to rescue the loss-of-function phenotype, observe the gene expression pattern, and manipulate cell activity spatiotemporally. We show that, by recombinase-mediated cassette exchange (RMCE) via microinjection or genetic crossing, the cGAL gene trap lines can be further engineered in vivo to easily swap cGAL with other bipartite expression systems' drivers, including QF/QF2, Tet-On/Tet-Off, and LexA, to generate new gene trap lines with different drivers at the same genomic locus. These drivers can be combined with their corresponding effectors for orthogonal transgenic control. Thus, our cGAL-based gene trap is versatile and represents a powerful genetic tool for gene function analysis in C. elegans, which will ultimately provide new insights into how genes in the genome control the biology of an organism.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011541"},"PeriodicalIF":4.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cul3 ubiquitin ligase engages Insomniac as an adaptor to impact sleep and synaptic homeostasis.
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011574
Qiuling Li, Kayla Y Lim, Raad Altawell, Faith Verderose, Xiling Li, Wanying Dong, Joshua Martinez, Dion Dickman, Nicholas Stavropoulos

Mutations of the Cullin-3 (Cul3) E3 ubiquitin ligase are associated with autism and schizophrenia, neurological disorders characterized by sleep disturbances and altered synaptic function. Cul3 engages dozens of adaptor proteins to recruit hundreds of substrates for ubiquitination, but the adaptors that impact sleep and synapses remain ill-defined. Here we implicate Insomniac (Inc), a conserved protein required for normal sleep and synaptic homeostasis in Drosophila, as a Cul3 adaptor. Inc binds Cul3 in vivo, and mutations within the N-terminal BTB domain of Inc that weaken Inc-Cul3 associations impair Inc activity, suggesting that Inc function requires binding to the Cul3 complex. Deletion of the conserved C-terminus of Inc does not alter Cul3 binding but abolishes Inc activity in the context of sleep and synaptic homeostasis, indicating that the Inc C-terminus has the properties of a substrate recruitment domain. Mutation of a conserved, disease-associated arginine in the Inc C-terminus also abolishes Inc function, suggesting that this residue is vital for recruiting Inc targets. Inc levels are negatively regulated by Cul3 in neurons, consistent with Inc degradation by autocatalytic ubiquitination, a hallmark of Cullin adaptors. These findings link Inc and Cul3 in vivo and support the notion that Inc-Cul3 complexes are essential for normal sleep and synaptic function. Furthermore, these results indicate that dysregulation of conserved substrates of Inc-Cul3 complexes may contribute to altered sleep and synaptic function in autism and schizophrenia associated with Cul3 mutations.

{"title":"The Cul3 ubiquitin ligase engages Insomniac as an adaptor to impact sleep and synaptic homeostasis.","authors":"Qiuling Li, Kayla Y Lim, Raad Altawell, Faith Verderose, Xiling Li, Wanying Dong, Joshua Martinez, Dion Dickman, Nicholas Stavropoulos","doi":"10.1371/journal.pgen.1011574","DOIUrl":"10.1371/journal.pgen.1011574","url":null,"abstract":"<p><p>Mutations of the Cullin-3 (Cul3) E3 ubiquitin ligase are associated with autism and schizophrenia, neurological disorders characterized by sleep disturbances and altered synaptic function. Cul3 engages dozens of adaptor proteins to recruit hundreds of substrates for ubiquitination, but the adaptors that impact sleep and synapses remain ill-defined. Here we implicate Insomniac (Inc), a conserved protein required for normal sleep and synaptic homeostasis in Drosophila, as a Cul3 adaptor. Inc binds Cul3 in vivo, and mutations within the N-terminal BTB domain of Inc that weaken Inc-Cul3 associations impair Inc activity, suggesting that Inc function requires binding to the Cul3 complex. Deletion of the conserved C-terminus of Inc does not alter Cul3 binding but abolishes Inc activity in the context of sleep and synaptic homeostasis, indicating that the Inc C-terminus has the properties of a substrate recruitment domain. Mutation of a conserved, disease-associated arginine in the Inc C-terminus also abolishes Inc function, suggesting that this residue is vital for recruiting Inc targets. Inc levels are negatively regulated by Cul3 in neurons, consistent with Inc degradation by autocatalytic ubiquitination, a hallmark of Cullin adaptors. These findings link Inc and Cul3 in vivo and support the notion that Inc-Cul3 complexes are essential for normal sleep and synaptic function. Furthermore, these results indicate that dysregulation of conserved substrates of Inc-Cul3 complexes may contribute to altered sleep and synaptic function in autism and schizophrenia associated with Cul3 mutations.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011574"},"PeriodicalIF":4.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
F-box protein Fbx23 acts as a transcriptional coactivator to recognize and activate transcription factor Ace1. F-box蛋白Fbx23作为转录辅激活因子识别和激活转录因子Ace1。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011539
Zhongjiao Liu, Kexuan Ma, Panpan Zhang, Siqi Zhang, Xin Song, Yuqi Qin

Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity. The limited number of identified ubiquitin ligase-substrate pairs is a major bottleneck in the ubiquitination field. Penicillium oxalicum contains many transcription factors, such as BrlA, CreA, XlnR, and Ace1, conserved in filamentous fungi that regulate the fungal development and transcription of (hemi)cellulase genes. Transcription factor Ace1 (also known as SltA) positively correlated with fungal growth and conidiation and negatively correlated with the expression of (hemi)cellulase genes. A ubiquitin ligase-substrate pair, SCFFbx23-Ace1, is identified in P. oxalicum. Most of PoFbx23 is present in free form within the nucleus. A small portion of PoFbx23 associates with Skp1 to form PoFbx23-Skp1 heterodimer or assembles with the three invariable core components (Skp1, Cul1, and Rbx1) of SCF to form the SCFFbx23 complex. Under glucose signal, PoFbx23 absence (Δfbx23) results in decreased transcription levels of the brlA gene which encodes the master regulator for asexual development and six spore pigmentation genes (abrB→abrA→aygB→arpA→arpB→albA) which encode the proteins in the dihydroxynaphthalene-melanin pathway, along with impaired conidiation. Under cellulose signal, transcription levels of (hemi)cellulase genes in the Δfbx23 mutant are significantly upregulated. When PoFbx23 is present, PoAce1 exists as a full-length version and several low-molecular-weight degraded versions. PoAce1 has polyubiquitin modification. Deleting the Pofbx23 gene does not affect Poace1 gene transcription but results in the remarkable accumulation of all versions of the PoAce1 protein. Accumulated PoAce1 protein is a dysfunctional form that no longer binds promoters of the target gene, including the cellulase genes cbh1 and eg1, the hemicellulase gene xyn11A, and the pigmentation-related gene abrB. PoFbx23 acts as a transcriptional coactivator, recognizing and activating PoAce1, allowing the latter to regulate the transcription of target genes with different effects (activating or repressing) under different signals.

蛋白质泛素化通常伴随着蛋白酶体降解,在调节蛋白质质量中起着至关重要的作用。E3泛素蛋白连接酶SCF (Skp1-Cullin-F-box)复合体通过F-box蛋白与底物之间的相互作用直接识别目标底物。F-box蛋白是底物特异性的决定因素。已鉴定的泛素连接酶-底物对数量有限是泛素化领域的主要瓶颈。草酸青霉含有多种转录因子,如BrlA、CreA、XlnR和Ace1,这些转录因子在丝状真菌中保守,调控真菌发育和(半)纤维素酶基因的转录。转录因子Ace1(也称为SltA)与真菌生长和分生呈正相关,与(半)纤维素酶基因的表达负相关。在草藻中发现了一个泛素连接酶底物对SCFFbx23-Ace1。大多数PoFbx23以自由形式存在于细胞核内。一小部分PoFbx23与Skp1结合形成PoFbx23-Skp1异源二聚体,或与SCF的三个不变核心组分(Skp1, Cul1和Rbx1)组装形成SCFFbx23复合物。在葡萄糖信号下,PoFbx23缺失(Δfbx23)导致编码无性发育主调控因子brlA基因和编码二羟苯-黑色素通路蛋白的6个孢子色素沉着基因(abrB→abrA→aygB→arpA→arpB→albA)的转录水平降低,同时孢子萌发受损。在纤维素信号下,Δfbx23突变体(半)纤维素酶基因的转录水平显著上调。当PoFbx23存在时,PoAce1以全长版本和几个低分子量的降级版本存在。PoAce1有多泛素修饰。删除Pofbx23基因不会影响Poace1基因的转录,但会导致Poace1蛋白所有版本的显著积累。积累的PoAce1蛋白是一种功能失调的形式,它不再结合靶基因的启动子,包括纤维素酶基因cbh1和eg1、半纤维素酶基因xyn11A和色素相关基因abrB。PoFbx23作为转录辅激活因子,识别并激活PoAce1,使后者在不同信号下以不同作用(激活或抑制)调节靶基因的转录。
{"title":"F-box protein Fbx23 acts as a transcriptional coactivator to recognize and activate transcription factor Ace1.","authors":"Zhongjiao Liu, Kexuan Ma, Panpan Zhang, Siqi Zhang, Xin Song, Yuqi Qin","doi":"10.1371/journal.pgen.1011539","DOIUrl":"10.1371/journal.pgen.1011539","url":null,"abstract":"<p><p>Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity. The limited number of identified ubiquitin ligase-substrate pairs is a major bottleneck in the ubiquitination field. Penicillium oxalicum contains many transcription factors, such as BrlA, CreA, XlnR, and Ace1, conserved in filamentous fungi that regulate the fungal development and transcription of (hemi)cellulase genes. Transcription factor Ace1 (also known as SltA) positively correlated with fungal growth and conidiation and negatively correlated with the expression of (hemi)cellulase genes. A ubiquitin ligase-substrate pair, SCFFbx23-Ace1, is identified in P. oxalicum. Most of PoFbx23 is present in free form within the nucleus. A small portion of PoFbx23 associates with Skp1 to form PoFbx23-Skp1 heterodimer or assembles with the three invariable core components (Skp1, Cul1, and Rbx1) of SCF to form the SCFFbx23 complex. Under glucose signal, PoFbx23 absence (Δfbx23) results in decreased transcription levels of the brlA gene which encodes the master regulator for asexual development and six spore pigmentation genes (abrB→abrA→aygB→arpA→arpB→albA) which encode the proteins in the dihydroxynaphthalene-melanin pathway, along with impaired conidiation. Under cellulose signal, transcription levels of (hemi)cellulase genes in the Δfbx23 mutant are significantly upregulated. When PoFbx23 is present, PoAce1 exists as a full-length version and several low-molecular-weight degraded versions. PoAce1 has polyubiquitin modification. Deleting the Pofbx23 gene does not affect Poace1 gene transcription but results in the remarkable accumulation of all versions of the PoAce1 protein. Accumulated PoAce1 protein is a dysfunctional form that no longer binds promoters of the target gene, including the cellulase genes cbh1 and eg1, the hemicellulase gene xyn11A, and the pigmentation-related gene abrB. PoFbx23 acts as a transcriptional coactivator, recognizing and activating PoAce1, allowing the latter to regulate the transcription of target genes with different effects (activating or repressing) under different signals.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011539"},"PeriodicalIF":4.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence specificity of an essential nuclear localization sequence in Mcm3. Mcm3中一个关键核定位序列的序列特异性。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011499
Ziyi Wang, Yun Jing Zhang, Qian-Yi Zhang, Kate Bilsborrow, Matthew Leslie, Raymond T Suhandynata, Huilin Zhou

Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of the MCM complex and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.

具有核定位序列(NLS)的蛋白通过NLS与输入蛋白的相互作用进入细胞核。NLSs通常是富含碱性氨基酸的短基序;然而,由于缺乏普遍保守的序列,鉴定NLSs可能具有挑战性。在这项研究中,我们表征了Mcm3(复制DNA解旋酶的一个亚基)中一个必需且保守的NLS的序列特异性。通过诱变和AlphaFold 3 (AF3)模型,我们证明了NLS内基本残基的精确定位对于Mcm3通过与输入蛋白的最佳相互作用进行核转运至关重要。破坏这些相互作用会损害Mcm3的核输入,导致MCM复合物的染色质装载缺陷和细胞生长不良。我们的研究结果为预测和分析单分子NLSs提供了一个结构指导框架,尽管缺乏单一的共识序列,但保留了Mcm3和SV40大T抗原NLSs之间共享的关键特征。
{"title":"Sequence specificity of an essential nuclear localization sequence in Mcm3.","authors":"Ziyi Wang, Yun Jing Zhang, Qian-Yi Zhang, Kate Bilsborrow, Matthew Leslie, Raymond T Suhandynata, Huilin Zhou","doi":"10.1371/journal.pgen.1011499","DOIUrl":"10.1371/journal.pgen.1011499","url":null,"abstract":"<p><p>Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of the MCM complex and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011499"},"PeriodicalIF":4.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development. SEM-2/SoxC调控秀丽隐杆线虫胚胎后中胚层发育的多个方面。
IF 4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI: 10.1371/journal.pgen.1011361
Marissa Baccas, Vanathi Ganesan, Amy Leung, Lucas R Pineiro, Alexandra N McKillop, Jun Liu

Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C. elegans contains a sole SoxC protein, SEM-2. SEM-2 is essential for embryonic development, and for specifying the sex myoblast (SM) fate in the postembryonic mesoderm, the M lineage. We have identified a novel partial loss-of-function sem-2 allele that has a proline to serine change in the C-terminal tail of the highly conserved DNA-binding domain. Detailed analyses of mutant animals harboring this point mutation uncovered new functions of SEM-2 in the M lineage. First, SEM-2 functions antagonistically with LET-381, the sole C. elegans FoxF/C forkhead transcription factor, to regulate dorsoventral patterning of the M lineage. Second, in addition to specifying the SM fate, SEM-2 is essential for the proliferation and diversification of the SM lineage. Finally, SEM-2 appears to directly regulate the expression of hlh-8, which encodes a basic helix-loop-helix Twist transcription factor and plays critical roles in proper patterning of the M lineage. Our data, along with previous studies, suggest an evolutionarily conserved relationship between SoxC and Twist proteins. Furthermore, our work identified new interactions in the gene regulatory network (GRN) underlying C. elegans postembryonic development and adds to the general understanding of the structure-function relationship of SoxC proteins.

多细胞生物的发展需要细胞内在转录因子和细胞-细胞信号之间的良好相互作用。SoxC组是一组高度保守的转录因子,在发育过程中发挥着不同的作用。秀丽隐杆线虫含有唯一的SoxC蛋白SEM-2。SEM-2对于胚胎发育和确定胚胎后中胚层(M系)性别成肌细胞(SM)的命运至关重要。我们已经确定了一个新的部分功能丧失的sem-2等位基因,在高度保守的dna结合域的c端尾部有脯氨酸到丝氨酸的变化。对携带该点突变的突变动物的详细分析揭示了M谱系中SEM-2的新功能。首先,SEM-2与唯一的秀丽隐杆线虫FoxF/C叉头转录因子LET-381拮抗作用,调节M谱系的背腹模式。其次,除了确定SM的命运外,SEM-2对SM谱系的增殖和多样化至关重要。最后,SEM-2似乎直接调节hlh-8的表达,hlh-8编码一个基本的螺旋-环-螺旋扭曲转录因子,在M谱系的正确模式中起关键作用。我们的数据以及之前的研究表明,SoxC和Twist蛋白之间存在进化上保守的关系。此外,我们的工作发现了秀丽隐杆线虫胚胎后发育的基因调控网络(GRN)中的新相互作用,并增加了对SoxC蛋白结构-功能关系的一般理解。
{"title":"SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development.","authors":"Marissa Baccas, Vanathi Ganesan, Amy Leung, Lucas R Pineiro, Alexandra N McKillop, Jun Liu","doi":"10.1371/journal.pgen.1011361","DOIUrl":"10.1371/journal.pgen.1011361","url":null,"abstract":"<p><p>Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C. elegans contains a sole SoxC protein, SEM-2. SEM-2 is essential for embryonic development, and for specifying the sex myoblast (SM) fate in the postembryonic mesoderm, the M lineage. We have identified a novel partial loss-of-function sem-2 allele that has a proline to serine change in the C-terminal tail of the highly conserved DNA-binding domain. Detailed analyses of mutant animals harboring this point mutation uncovered new functions of SEM-2 in the M lineage. First, SEM-2 functions antagonistically with LET-381, the sole C. elegans FoxF/C forkhead transcription factor, to regulate dorsoventral patterning of the M lineage. Second, in addition to specifying the SM fate, SEM-2 is essential for the proliferation and diversification of the SM lineage. Finally, SEM-2 appears to directly regulate the expression of hlh-8, which encodes a basic helix-loop-helix Twist transcription factor and plays critical roles in proper patterning of the M lineage. Our data, along with previous studies, suggest an evolutionarily conserved relationship between SoxC and Twist proteins. Furthermore, our work identified new interactions in the gene regulatory network (GRN) underlying C. elegans postembryonic development and adds to the general understanding of the structure-function relationship of SoxC proteins.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011361"},"PeriodicalIF":4.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
PLoS Genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1