首页 > 最新文献

Faraday Discussions最新文献

英文 中文
Novel perturbative and variational methods for stronger correlations: general discussion 更强相关性的新型微扰和变分方法:一般性讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-10-08 DOI: 10.1039/D4FD90041C
Vibin Abraham, Kemal Atalar, Kenneth O. Berard, George H. Booth, Hugh G. A. Burton, Garnet K.-L. Chan, Francesco A. Evangelista, Maria-Andreea Filip, Emmanuel Giner, Alexander Gunasekera, Peter J. Knowles, Marie-Bernadette Lepetit, Ke Liao, Pierre-François Loos, Erika Magnusson, Nicholas J. Mayhall, Carlos Mejuto-Zaera, Frank Neese, Verena A. Neufeld, Pinkie Ntola, Felix Plasser, Visagan Ravindran, Christian Schilling, Gustavo Scuseria, James Shee, Benjamin X. Shi, David P. Tew, Alex J. W. Thom, Zikuan Wang and Dominika Zgid
{"title":"Novel perturbative and variational methods for stronger correlations: general discussion","authors":"Vibin Abraham, Kemal Atalar, Kenneth O. Berard, George H. Booth, Hugh G. A. Burton, Garnet K.-L. Chan, Francesco A. Evangelista, Maria-Andreea Filip, Emmanuel Giner, Alexander Gunasekera, Peter J. Knowles, Marie-Bernadette Lepetit, Ke Liao, Pierre-François Loos, Erika Magnusson, Nicholas J. Mayhall, Carlos Mejuto-Zaera, Frank Neese, Verena A. Neufeld, Pinkie Ntola, Felix Plasser, Visagan Ravindran, Christian Schilling, Gustavo Scuseria, James Shee, Benjamin X. Shi, David P. Tew, Alex J. W. Thom, Zikuan Wang and Dominika Zgid","doi":"10.1039/D4FD90041C","DOIUrl":"10.1039/D4FD90041C","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"254 ","pages":" 191-215"},"PeriodicalIF":3.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and dynamics in dense ionic fluids: general discussion 致密离子液体的结构与动力学:一般性讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-10-07 DOI: 10.1039/D4FD90034K
Andrew P. Abbott, Rob Atkin, Muhammad Dabai Bala, Stuart J. Brown, Duncan W. Bruce, Paola Carbone, Franca Castiglione, Margarida Costa Gomes, Jean-François Dufrêche, Karen J. Edler, Andrew Feeney, Kateryna Goloviznina, Juan Luis Gómez-Estévez, Timothy S. Groves, Benworth Hansen, Rachel Hendrikse, Christian Holm, Pierre Illien, Roland Kjellander, Alexei Kornyshev, Claudio J. Margulis, Joshua Maurer, Shurui Miao, Susan Perkin, Elixabete Rezabal, Beatriz Rocha de Moraes, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Nicolas Schaeffer, Monika Schönhoff, Karina Shimizu, John M. Slattery, Neave Taylor, Yasuhiro Umebayashi, Adriaan van den Bruinhorst, Masayoshi Watanabe and Fabian Zills
{"title":"Structure and dynamics in dense ionic fluids: general discussion","authors":"Andrew P. Abbott, Rob Atkin, Muhammad Dabai Bala, Stuart J. Brown, Duncan W. Bruce, Paola Carbone, Franca Castiglione, Margarida Costa Gomes, Jean-François Dufrêche, Karen J. Edler, Andrew Feeney, Kateryna Goloviznina, Juan Luis Gómez-Estévez, Timothy S. Groves, Benworth Hansen, Rachel Hendrikse, Christian Holm, Pierre Illien, Roland Kjellander, Alexei Kornyshev, Claudio J. Margulis, Joshua Maurer, Shurui Miao, Susan Perkin, Elixabete Rezabal, Beatriz Rocha de Moraes, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Nicolas Schaeffer, Monika Schönhoff, Karina Shimizu, John M. Slattery, Neave Taylor, Yasuhiro Umebayashi, Adriaan van den Bruinhorst, Masayoshi Watanabe and Fabian Zills","doi":"10.1039/D4FD90034K","DOIUrl":"10.1039/D4FD90034K","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 146-180"},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic fluids out of equilibrium: electrodeposition, dissolution, electron transfer, driving forces: general discussion 失去平衡的离子液体:电沉积、溶解、电子转移、驱动力:一般讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-10-04 DOI: 10.1039/D4FD90036G
Andrew P. Abbott, Rob Atkin, Margarida Costa Gomes, Jean-François Dufrêche, Christopher E. Elgar, Y. K. Catherine Fung, Kateryna Goloviznina, Alexis Grimaud, Benworth Hansen, Jennifer M. Hartley, Christian Holm, Alexei Kornyshev, Kevin R. J. Lovelock, Daniel M. Markiewitz, Joshua Maurer, Shurui Miao, Susan Perkin, Frederik Philippi, Bernhard Roling, Nicolas Schaeffer, Monika Schönhoff, David J. Sconyers, Neave Taylor, Kazuhide Ueno, Adriaan van den Bruinhorst, Masayoshi Watanabe and Yuki Yamada
{"title":"Ionic fluids out of equilibrium: electrodeposition, dissolution, electron transfer, driving forces: general discussion","authors":"Andrew P. Abbott, Rob Atkin, Margarida Costa Gomes, Jean-François Dufrêche, Christopher E. Elgar, Y. K. Catherine Fung, Kateryna Goloviznina, Alexis Grimaud, Benworth Hansen, Jennifer M. Hartley, Christian Holm, Alexei Kornyshev, Kevin R. J. Lovelock, Daniel M. Markiewitz, Joshua Maurer, Shurui Miao, Susan Perkin, Frederik Philippi, Bernhard Roling, Nicolas Schaeffer, Monika Schönhoff, David J. Sconyers, Neave Taylor, Kazuhide Ueno, Adriaan van den Bruinhorst, Masayoshi Watanabe and Yuki Yamada","doi":"10.1039/D4FD90036G","DOIUrl":"10.1039/D4FD90036G","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 407-425"},"PeriodicalIF":3.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New directions in experiment and theory, interfaces, and interactions: general discussion 实验与理论、界面与互动的新方向:一般性讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-10-03 DOI: 10.1039/D4FD90037E
Rob Atkin, Duncan W. Bruce, Robert A. W. Dryfe, Emmanuelle Dubois, Karen J. Edler, Christopher E. Elgar, Andrew Feeney, Kateryna Goloviznina, Timothy S. Groves, Benworth Hansen, John D. Holbrey, Christian Holm, Alexei Kornyshev, Claudio J. Margulis, Daniel M. Markiewitz, Richard P. Matthews, Joshua Maurer, Shurui Miao, Frederik Philippi, Elixabete Rezabal, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Monika Schönhoff, John M. Slattery, Małgorzata Swadźba-Kwaśny, Neave Taylor, Masayoshi Watanabe and Jake Yang
{"title":"New directions in experiment and theory, interfaces, and interactions: general discussion","authors":"Rob Atkin, Duncan W. Bruce, Robert A. W. Dryfe, Emmanuelle Dubois, Karen J. Edler, Christopher E. Elgar, Andrew Feeney, Kateryna Goloviznina, Timothy S. Groves, Benworth Hansen, John D. Holbrey, Christian Holm, Alexei Kornyshev, Claudio J. Margulis, Daniel M. Markiewitz, Richard P. Matthews, Joshua Maurer, Shurui Miao, Frederik Philippi, Elixabete Rezabal, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Monika Schönhoff, John M. Slattery, Małgorzata Swadźba-Kwaśny, Neave Taylor, Masayoshi Watanabe and Jake Yang","doi":"10.1039/D4FD90037E","DOIUrl":"10.1039/D4FD90037E","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 493-509"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic fluids at equilibrium: thermodynamics, nanostructure, phase behaviour, activity: general discussion 处于平衡状态的离子液体:热力学、纳米结构、相行为、活性:一般性讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-10-03 DOI: 10.1039/D4FD90035A
Andrew P. Abbott, Rob Atkin, Duncan W. Bruce, Paola Carbone, Giacomo Damilano, Robert A. W. Dryfe, Jean-Francois Dufrêche, Karen J. Edler, Y. K. Catherine Fung, Kateryna Goloviznina, Margarida Costa Gomes, Alexis Grimaud, Timothy S. Groves, Jennifer M. Hartley, John D. Holbrey, Christian Holm, Pierre Illien, Roland Kjellander, Alexei Kornyshev, Kevin R. J. Lovelock, Daniel M. Markiewitz, Joshua Maurer, Shurui Miao, Naoya Nishi, Beatriz Rocha de Moraes, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Nicolas Schaeffer, Monika Schönhoff, David J. Sconyers, John M. Slattery, Małgorzata Swadźba-Kwaśny, Adriaan van den Bruinhorst and Tom Welton
{"title":"Ionic fluids at equilibrium: thermodynamics, nanostructure, phase behaviour, activity: general discussion","authors":"Andrew P. Abbott, Rob Atkin, Duncan W. Bruce, Paola Carbone, Giacomo Damilano, Robert A. W. Dryfe, Jean-Francois Dufrêche, Karen J. Edler, Y. K. Catherine Fung, Kateryna Goloviznina, Margarida Costa Gomes, Alexis Grimaud, Timothy S. Groves, Jennifer M. Hartley, John D. Holbrey, Christian Holm, Pierre Illien, Roland Kjellander, Alexei Kornyshev, Kevin R. J. Lovelock, Daniel M. Markiewitz, Joshua Maurer, Shurui Miao, Naoya Nishi, Beatriz Rocha de Moraes, Bernhard Roling, Benjamin Rotenberg, Joshua Sangoro, Nicolas Schaeffer, Monika Schönhoff, David J. Sconyers, John M. Slattery, Małgorzata Swadźba-Kwaśny, Adriaan van den Bruinhorst and Tom Welton","doi":"10.1039/D4FD90035A","DOIUrl":"10.1039/D4FD90035A","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 289-313"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concluding remarks: Faraday Discussion on NMR crystallography 结束语:法拉第核磁共振晶体学讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-10-01 DOI: 10.1039/D4FD00155A
Sharon E. Ashbrook

This Faraday Discussion explored the field of NMR crystallography, and considered recent developments in experimental and theoretical approaches, new advances in machine learning and in the generation and handling of large amounts of data. Applications to a wide range of disordered, amorphous and dynamic systems demonstrated the range and quality of information available from this approach and the challenges that are faced in exploiting automation and developing best practice. In these closing remarks I will reflect on the discussions on the current state of the art, questions about what we want from these studies, how accurate we need results to be, how we best generate models for complex materials and what machine learning approaches can offer. These remarks close with thoughts about the future direction of the field, who will be carrying out this type of research, how they might be doing it and what their focus will be, along with likely possible challenges and opportunities.

本次法拉第讨论会探讨了核磁共振晶体学领域,并审议了实验和理论方法的最新发展、机器学习的新进展以及大量数据的生成和处理。对各种无序、无定形和动态系统的应用展示了这种方法可提供的信息的范围和质量,以及在利用自动化和开发最佳实践方面所面临的挑战。在结束语中,我将反思有关当前技术水平的讨论、我们希望从这些研究中得到什么、我们需要多精确的结果、我们如何最好地为复杂材料生成模型以及机器学习方法可以提供什么等问题。最后,我将对该领域的未来发展方向、谁将开展此类研究、如何开展研究、研究重点以及可能面临的挑战和机遇进行思考。
{"title":"Concluding remarks: Faraday Discussion on NMR crystallography","authors":"Sharon E. Ashbrook","doi":"10.1039/D4FD00155A","DOIUrl":"10.1039/D4FD00155A","url":null,"abstract":"<p >This <em>Faraday Discussion</em> explored the field of NMR crystallography, and considered recent developments in experimental and theoretical approaches, new advances in machine learning and in the generation and handling of large amounts of data. Applications to a wide range of disordered, amorphous and dynamic systems demonstrated the range and quality of information available from this approach and the challenges that are faced in exploiting automation and developing best practice. In these closing remarks I will reflect on the discussions on the current state of the art, questions about what we want from these studies, how accurate we need results to be, how we best generate models for complex materials and what machine learning approaches can offer. These remarks close with thoughts about the future direction of the field, who will be carrying out this type of research, how they might be doing it and what their focus will be, along with likely possible challenges and opportunities.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":" 0","pages":" 583-601"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00155a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-reference coupled cluster theory using the normal ordered exponential ansatz 利用正序指数解析的多参考耦合聚类理论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-10-01 DOI: 10.1039/D4FD00044G
Alexander D. Gunasekera, Nicholas Lee and David P. Tew

Properly spin-adapted coupled-cluster theory for general open-shell configurations remains an active area of research in electronic structure theory. In this contribution we examine Lindgren's normal-ordered exponential ansatz to correlate specific spin states using spin-free excitation operators, with the aid of automatic equation generation software. We present an intermediately normalised and size-extensive reformulation of the unlinked working equations, and analyse the performance of the method with single and double excitations for simple molecular systems in terms of accuracy and size-consistency.

针对一般开壳构型的适当自旋适配耦合簇理论仍然是电子结构理论中一个活跃的研究领域。在这篇论文中,我们借助自动方程生成软件,研究了林德格伦的正序指数解析法,以使用无自旋激发算子关联特定的自旋态。我们提出了非链接工作方程的中间归一化和尺寸扩展重述,并从准确性和尺寸一致性方面分析了该方法在简单分子系统的单激发和双激发下的性能。
{"title":"Multi-reference coupled cluster theory using the normal ordered exponential ansatz","authors":"Alexander D. Gunasekera, Nicholas Lee and David P. Tew","doi":"10.1039/D4FD00044G","DOIUrl":"10.1039/D4FD00044G","url":null,"abstract":"<p >Properly spin-adapted coupled-cluster theory for general open-shell configurations remains an active area of research in electronic structure theory. In this contribution we examine Lindgren's normal-ordered exponential ansatz to correlate specific spin states using spin-free excitation operators, with the aid of automatic equation generation software. We present an intermediately normalised and size-extensive reformulation of the unlinked working equations, and analyse the performance of the method with single and double excitations for simple molecular systems in terms of accuracy and size-consistency.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"254 ","pages":" 170-190"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large property models: a new generative machine-learning formulation for molecules 大型属性模型:一种新的分子生成机器学习公式。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-09-27 DOI: 10.1039/D4FD00113C
Tianfan Jin, Veerupaksh Singla, Hsuan-Hao Hsu and Brett M. Savoie

Generative models for the inverse design of molecules with particular properties have been heavily hyped, but have yet to demonstrate significant gains over machine-learning-augmented expert intuition. A major challenge of such models is their limited accuracy in predicting molecules with targeted properties in the data-scarce regime, which is the regime typical of the prized outliers that it is hoped inverse models will discover. For example, activity data for a drug target or stability data for a material may only number in the tens to hundreds of samples, which is insufficient to learn an accurate and reasonably general property-to-structure inverse mapping from scratch. We’ve hypothesized that the property-to-structure mapping becomes unique when a sufficient number of properties are supplied to the models during training. This hypothesis has several important corollaries if true. It would imply that data-scarce properties can be completely determined using a set of more accessible molecular properties. It would also imply that a generative model trained on multiple properties would exhibit an accuracy phase transition after achieving a sufficient size—a process analogous to what has been observed in the context of large language models. To interrogate these behaviors, we have built the first transformers trained on the property-to-molecular-graph task, which we dub “large property models” (LPMs). A key ingredient is supplementing these models during training with relatively basic but abundant chemical property data. The motivation for the large-property-model paradigm, the model architectures, and case studies are presented here.

具有特定性质的分子逆向设计的生成模型已经被大肆宣传,但尚未证明在机器学习增强的专家直觉方面取得了重大进展。这种模型的一个主要挑战是,在数据稀缺的情况下,它们在预测具有目标特性的分子方面的准确性有限,而数据稀缺正是人们希望逆模型能够发现的珍贵异常值的典型情况。例如,药物靶点的活性数据或材料的稳定性数据可能只有几十到几百个样本,这不足以从头开始学习准确而合理的一般性质-结构逆映射。我们假设,当在训练期间向模型提供了足够数量的属性时,属性到结构的映射就会变得唯一。如果这个假设是正确的,那么它有几个重要的推论。这意味着,数据稀缺的性质可以完全确定使用一组更容易获得的分子性质。这也意味着在多个属性上训练的生成模型在达到足够的大小后会表现出精确的相变——这一过程类似于在大型语言模型中观察到的过程。为了询问这些行为,我们已经构建了第一个在属性到分子图任务上训练的转换器,我们称之为“大型属性模型”(lpm)。一个关键的因素是在训练过程中用相对基本但丰富的化学性质数据来补充这些模型。本文介绍了大型属性模型范式、模型体系结构和案例研究的动机。
{"title":"Large property models: a new generative machine-learning formulation for molecules","authors":"Tianfan Jin, Veerupaksh Singla, Hsuan-Hao Hsu and Brett M. Savoie","doi":"10.1039/D4FD00113C","DOIUrl":"10.1039/D4FD00113C","url":null,"abstract":"<p >Generative models for the inverse design of molecules with particular properties have been heavily hyped, but have yet to demonstrate significant gains over machine-learning-augmented expert intuition. A major challenge of such models is their limited accuracy in predicting molecules with targeted properties in the data-scarce regime, which is the regime typical of the prized outliers that it is hoped inverse models will discover. For example, activity data for a drug target or stability data for a material may only number in the tens to hundreds of samples, which is insufficient to learn an accurate and reasonably general property-to-structure inverse mapping from scratch. We’ve hypothesized that the property-to-structure mapping becomes unique when a sufficient number of properties are supplied to the models during training. This hypothesis has several important corollaries if true. It would imply that data-scarce properties can be completely determined using a set of more accessible molecular properties. It would also imply that a generative model trained on multiple properties would exhibit an accuracy phase transition after achieving a sufficient size—a process analogous to what has been observed in the context of large language models. To interrogate these behaviors, we have built the first transformers trained on the property-to-molecular-graph task, which we dub “large property models” (LPMs). A key ingredient is supplementing these models during training with relatively basic but abundant chemical property data. The motivation for the large-property-model paradigm, the model architectures, and case studies are presented here.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"256 ","pages":" 104-119"},"PeriodicalIF":3.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00113c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of uncertainty of neural fingerprint-based models† 基于神经指纹模型的不确定性分析。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-09-25 DOI: 10.1039/D4FD00095A
Christian W. Feldmann, Jochen Sieg and Miriam Mathea

Machine learning has gained popularity for predicting molecular properties based on molecular structure. This study explores the uncertainty estimates of neural fingerprint-based models by comparing pure graph neural networks (GNN) to classical machine learning algorithms combined with neural fingerprints. We investigate the advantage of extracting the neural fingerprint from the GNN and integrating it into a method known for producing better-calibrated probability estimates. Comparisons are made using three classical machine learning methods and the Chemprop model, considering different molecular representations and calibration techniques. We utilize 19 datasets from Toxcast, reflecting real-world scenarios with balanced accuracies ranging from 0.6 to 0.8. Results demonstrate that neural fingerprints combined with classical machine learning methods exhibit a slight decrease in prediction performance compared to the native Chemprop model. However, these models provide significantly improved uncertainty estimates. Notably, uncertainty estimates of neural fingerprint-based methods remain relatively robust for molecules dissimilar to the training set. This suggests that methods like random forest with neural fingerprints can deliver strong prediction performance and reliable uncertainty estimates. When considering both performance and uncertainty, the calibrated Chemprop model and the combination of neural fingerprints with random forest or support vector classifier (SVC) yield comparable results. Surprisingly, the SVC method shows promising performance when combined with neural or count fingerprints. These findings are particularly relevant in real-world industrial projects where accurate predictions and reliable uncertainty estimates are crucial.

机器学习在基于分子结构预测分子特性方面越来越受欢迎。本研究通过比较纯图神经网络(GNN)与结合神经指纹的经典机器学习算法,探讨了基于神经指纹的模型的不确定性估计。我们研究了从 GNN 中提取神经指纹并将其整合到一种已知能产生更好校准概率估计值的方法中的优势。我们使用三种经典机器学习方法和 Chemprop 模型进行了比较,并考虑了不同的分子表征和校准技术。我们利用了来自 Toxcast 的 19 个数据集,这些数据集反映了现实世界中的各种情况,其平衡精度在 0.6 到 0.8 之间。结果表明,与原生 Chemprop 模型相比,神经指纹结合经典机器学习方法的预测性能略有下降。不过,这些模型提供的不确定性估计值有了明显改善。值得注意的是,对于与训练集不同的分子,基于神经指纹方法的不确定性估计仍然相对稳健。这表明,采用神经指纹的随机森林等方法可以提供强大的预测性能和可靠的不确定性估计。在同时考虑性能和不确定性时,经过校准的 Chemprop 模型和神经指纹与随机森林或支持向量分类器(SVC)的组合产生了不相上下的结果。令人惊讶的是,SVC 方法在与神经或计数指纹相结合时表现出了良好的性能。这些发现与现实世界中的工业项目尤其相关,因为在这些项目中,准确的预测和可靠的不确定性估计至关重要。
{"title":"Analysis of uncertainty of neural fingerprint-based models†","authors":"Christian W. Feldmann, Jochen Sieg and Miriam Mathea","doi":"10.1039/D4FD00095A","DOIUrl":"10.1039/D4FD00095A","url":null,"abstract":"<p >Machine learning has gained popularity for predicting molecular properties based on molecular structure. This study explores the uncertainty estimates of neural fingerprint-based models by comparing pure graph neural networks (GNN) to classical machine learning algorithms combined with neural fingerprints. We investigate the advantage of extracting the neural fingerprint from the GNN and integrating it into a method known for producing better-calibrated probability estimates. Comparisons are made using three classical machine learning methods and the Chemprop model, considering different molecular representations and calibration techniques. We utilize 19 datasets from Toxcast, reflecting real-world scenarios with balanced accuracies ranging from 0.6 to 0.8. Results demonstrate that neural fingerprints combined with classical machine learning methods exhibit a slight decrease in prediction performance compared to the native Chemprop model. However, these models provide significantly improved uncertainty estimates. Notably, uncertainty estimates of neural fingerprint-based methods remain relatively robust for molecules dissimilar to the training set. This suggests that methods like random forest with neural fingerprints can deliver strong prediction performance and reliable uncertainty estimates. When considering both performance and uncertainty, the calibrated Chemprop model and the combination of neural fingerprints with random forest or support vector classifier (SVC) yield comparable results. Surprisingly, the SVC method shows promising performance when combined with neural or count fingerprints. These findings are particularly relevant in real-world industrial projects where accurate predictions and reliable uncertainty estimates are crucial.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"256 ","pages":" 551-567"},"PeriodicalIF":3.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metastable layered lithium-rich niobium and tantalum oxides via nearly instantaneous cation exchange† 通过近乎瞬时的阳离子交换实现可蜕变的层状富锂铌和钽氧化物。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-09-20 DOI: 10.1039/D4FD00103F
Sarah L. Ko, Jordan A. Dorrell, Andrew J. Morris and Kent J. Griffith

Lithium-rich early transition metal oxides are the source of excess removeable lithium that affords high energy density to lithium-rich battery cathodes. They are also candidates for solid electrolytes in all-solid-state batteries. These highly ionic compounds are sparse on phase diagrams of thermodynamically stable oxides, but soft chemical routes offer an alternative to explore new alkali-rich crystal chemistries. In this work, a new layered polymorph of Li3NbO4 with coplanar [Nb4O16]12− clusters is discovered through ion exchange chemistry. A more detailed study of the ion exchange reaction reveals that it takes place almost instantaneously, changing the crystal volume by more than 22% within seconds. The transformation of coplanar [Nb4O16]12− in L-Li3NbO4 into the supertetrahedral [Nb4O16]12− clusters found in the stable cubic c-Li3NbO4 is also explored. Furthermore, this synthetic pathway is extended to access a new layered polymorph of Li3TaO4. NMR crystallography with 6,7Li, 23Na, and 93Nb NMR, X-ray diffraction, neutron diffraction, and first-principles calculations is applied to A3MO4 (A = Li, Na; M = Nb, Ta) to identify local and long-range atomic structure, to monitor the unusually rapid reaction progression, and to track the phase transitions from the metastable layered phases to the known compounds found using high-temperature synthesis. A mechanism is proposed whereby some sodium is retained at short reaction times, which then undergoes proton exchange during water washing, forming a phase with hydrogen bonds bridging the coplanar [Nb4O16]12− clusters. This study has implications for lithium-rich transition metal oxides and associated battery materials and for ion exchange chemistry in non-framework structures. The role of techniques that can detect light elements, local structure, and subtle structural changes in soft-chemical synthesis is emphasized.

富锂早期过渡金属氧化物是过量可移除锂的来源,可为富锂电池正极提供高能量密度。它们也是全固态电池固态电解质的候选材料。这些高离子化合物在热力学稳定的氧化物相图中并不常见,但软化学路线为探索新的富碱晶体化学提供了另一种选择。在这项研究中,通过离子交换化学发现了一种具有共面[Nb4O16]12-团簇的新型层状多晶体 Li3NbO4。对离子交换反应的更详细研究表明,该反应几乎是瞬间发生的,在几秒钟内晶体体积就改变了 22% 以上。此外,还探讨了 L-Li3NbO4 中共面[Nb4O16]12-转变为稳定立方 c-Li3NbO4 中超四面体[Nb4O16]12- 簇的过程。此外,这一合成途径还扩展到了一种新的层状多晶体 Li3TaO4。利用 6,7Li、23Na 和 93Nb NMR、X 射线衍射、中子衍射和第一原理计算对 A3MO4(A = Li、Na;M = Nb、Ta)进行了核磁共振晶体学研究,以确定局部和长程原子结构,监控异常快速的反应进程,并跟踪从可蜕变层状相到利用高温合成发现的已知化合物的相变过程。研究提出了一种机制,即在短反应时间内保留了一些钠,然后在水洗过程中进行质子交换,形成以氢键桥接共面[Nb4O16]12-团簇的相。这项研究对富锂过渡金属氧化物和相关电池材料以及非框架结构中的离子交换化学具有重要意义。该研究强调了可检测轻元素、局部结构和微妙结构变化的技术在软化学合成中的作用。
{"title":"Metastable layered lithium-rich niobium and tantalum oxides via nearly instantaneous cation exchange†","authors":"Sarah L. Ko, Jordan A. Dorrell, Andrew J. Morris and Kent J. Griffith","doi":"10.1039/D4FD00103F","DOIUrl":"10.1039/D4FD00103F","url":null,"abstract":"<p >Lithium-rich early transition metal oxides are the source of excess removeable lithium that affords high energy density to lithium-rich battery cathodes. They are also candidates for solid electrolytes in all-solid-state batteries. These highly ionic compounds are sparse on phase diagrams of thermodynamically stable oxides, but soft chemical routes offer an alternative to explore new alkali-rich crystal chemistries. In this work, a new layered polymorph of Li<small><sub>3</sub></small>NbO<small><sub>4</sub></small> with coplanar [Nb<small><sub>4</sub></small>O<small><sub>16</sub></small>]<small><sup>12−</sup></small> clusters is discovered through ion exchange chemistry. A more detailed study of the ion exchange reaction reveals that it takes place almost instantaneously, changing the crystal volume by more than 22% within seconds. The transformation of coplanar [Nb<small><sub>4</sub></small>O<small><sub>16</sub></small>]<small><sup>12−</sup></small> in L-Li<small><sub>3</sub></small>NbO<small><sub>4</sub></small> into the supertetrahedral [Nb<small><sub>4</sub></small>O<small><sub>16</sub></small>]<small><sup>12−</sup></small> clusters found in the stable cubic c-Li<small><sub>3</sub></small>NbO<small><sub>4</sub></small> is also explored. Furthermore, this synthetic pathway is extended to access a new layered polymorph of Li<small><sub>3</sub></small>TaO<small><sub>4</sub></small>. NMR crystallography with <small><sup>6,7</sup></small>Li, <small><sup>23</sup></small>Na, and <small><sup>93</sup></small>Nb NMR, X-ray diffraction, neutron diffraction, and first-principles calculations is applied to A<small><sub>3</sub></small>MO<small><sub>4</sub></small> (A = Li, Na; M = Nb, Ta) to identify local and long-range atomic structure, to monitor the unusually rapid reaction progression, and to track the phase transitions from the metastable layered phases to the known compounds found using high-temperature synthesis. A mechanism is proposed whereby some sodium is retained at short reaction times, which then undergoes proton exchange during water washing, forming a phase with hydrogen bonds bridging the coplanar [Nb<small><sub>4</sub></small>O<small><sub>16</sub></small>]<small><sup>12−</sup></small> clusters. This study has implications for lithium-rich transition metal oxides and associated battery materials and for ion exchange chemistry in non-framework structures. The role of techniques that can detect light elements, local structure, and subtle structural changes in soft-chemical synthesis is emphasized.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":" 0","pages":" 429-450"},"PeriodicalIF":3.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Faraday Discussions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1