首页 > 最新文献

Faraday Discussions最新文献

英文 中文
Poster list 海报列表
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-09-12
{"title":"Poster list","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"261 ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
List of participants 参会人员名单
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-09-12
{"title":"List of participants","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"261 ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfaces at the nano scale: general discussion 纳米尺度的界面:一般性讨论。
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-09-01 DOI: 10.1039/D5FD90036K
Oliver Ayre, Thierry Azaïs, Natercia Barbosa, Henrik Birkedal, Sofia Ceseri, Virginie Chamard, Kanmani Chandra Rajan, Daniel M. Chevrier, Thorbjørn Erik Køppen Christensen, Liliana D'Alba, Yannicke Dauphin, Joseph Deering, Raffaella Demichelis, Julien Duboisset, Melinda Duer, Michael Elbaum, Reham Gonnah, Laurie Gower, Tilman A. Grünewald, Lothar Houben, Benazir Khurshid, Roland Kröger, Frédéric Marin, Marc D. McKee, Fabio Nudelman, Julia E. Parker, Peter Rez, Natalie Reznikov, Andre Rossi, Katrein Sauer, Victoria Schemenz and Alexander Triccas
{"title":"Interfaces at the nano scale: general discussion","authors":"Oliver Ayre, Thierry Azaïs, Natercia Barbosa, Henrik Birkedal, Sofia Ceseri, Virginie Chamard, Kanmani Chandra Rajan, Daniel M. Chevrier, Thorbjørn Erik Køppen Christensen, Liliana D'Alba, Yannicke Dauphin, Joseph Deering, Raffaella Demichelis, Julien Duboisset, Melinda Duer, Michael Elbaum, Reham Gonnah, Laurie Gower, Tilman A. Grünewald, Lothar Houben, Benazir Khurshid, Roland Kröger, Frédéric Marin, Marc D. McKee, Fabio Nudelman, Julia E. Parker, Peter Rez, Natalie Reznikov, Andre Rossi, Katrein Sauer, Victoria Schemenz and Alexander Triccas","doi":"10.1039/D5FD90036K","DOIUrl":"10.1039/D5FD90036K","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"261 ","pages":" 312-339"},"PeriodicalIF":3.1,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144936546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass-resolved UV–Vis–GPC mapping diagnoses catalyst ageing in RCF lignin streams 质量分辨UV-Vis-GPC图谱诊断RCF木质素流中催化剂老化。
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-09-01 DOI: 10.1039/D5FD00109A
Siyuan Gao, Raul Rinken, Robert T. Woodward, Jie Bao and Roberto Rinaldi

Catalyst stability is central to the viability of lignin-first biorefineries, yet conventional characterisation often fails to detect the subtle deactivation processes that govern product quality. Here, we demonstrate that ultraviolet–visible (UV–Vis) spectroscopy, when combined with gel permeation chromatography (GPC), can serve as a sensitive diagnostic tool for detecting catalyst performance decline in Reductive Catalytic Fractionation (RCF). We introduce a concentration-independent spectral index (SI320), derived from the absorbance ratio at 280 and 320 nm, given by SI320 = 1 – A320/A280. Native-like lignins show negligible absorbance at 320 nm (SI320 ≈ 1), whereas condensation, benzylic oxidation, and extended π-conjugation depress SI320. As a ratio, SI320 is concentration-independent within the Beer–Lambert regime and can be profiled across the chromatogram to yield SI320(M) profiles, with M denoting apparent molar mass. SI320(M) profiles report directly on the formation of chromophores associated with catalyst ageing across the lignin apparent-M distribution. Utilising post-consumer cardboard as a substrate, we tracked RCF over RANEY® Ni across multiple recycling runs. A comparative analysis of fresh and recycled catalysts revealed systematic SI320 downshifts in oligomer fractions, indicating chromophore accumulation well before changes in bulk yield of low M products become evident. Linear regression of SI320(M) mean values (r2 = 0.95) enables a practical estimate of catalyst life. Under our conditions, it is estimated that RANEY® Ni can sustain lignin stabilisation for up to 15 runs of catalyst use (ca. 45 h operation), after which the chromophore density approaches that of organosolv lignin. Our findings reframe UV–Vis spectroscopy from a simple detection method for GPC analysis into a diagnostic platform of lignin-first catalysis. By funnelling apparent-M-resolved spectra into a simple index, GPC–UV–Vis enables rapid, non-destructive monitoring of catalyst performance, supports optimisation of RCF conditions and recycling protocols, and highlights the stabilising action of hydrogen-transfer catalysis. In the broader context, the approach is general to diverse feedstocks, catalysts, and lignin-first modalities, offering a practical route to correlate catalyst ageing with product quality and to guide development of durable, robust catalysts for circular economy and lignin valorisation.

催化剂稳定性是木质素优先生物精炼厂可行性的核心,但传统的表征往往无法检测到控制产品质量的微妙失活过程。在这里,我们证明了紫外-可见(UV-Vis)光谱,当与凝胶渗透色谱(GPC)相结合时,可以作为一种敏感的诊断工具来检测还原催化分馏(RCF)中催化剂性能的下降。我们引入了一个与浓度无关的光谱指数(SI320),由280和320 nm处的吸光度比得出,SI320 = 1 - A320/A280。天然木质素在320 nm处的吸光度可忽略(SI320≈1),而缩合、苯氧化和扩展π共轭作用降低了SI320。作为一个比率,SI320在Beer-Lambert体系内与浓度无关,并且可以在色谱上进行剖面得到SI320(M)剖面,其中M表示表观摩尔质量。SI320(M)谱直接报告了木质素表面-M分布中与催化剂老化相关的发色团的形成。利用消费后纸板作为基材,我们在多个回收运行中跟踪RANEY®Ni上的RCF。对新鲜催化剂和回收催化剂的对比分析显示,低聚物组分SI320有系统的下降,这表明在低M产品的体积产率发生明显变化之前,发色团的积累就已经很明显了。SI320(M)均值的线性回归(r2 = 0.95)使催化剂寿命的实际估计成为可能。在我们的条件下,估计RANEY®Ni可以维持木质素稳定长达15次催化剂使用(约45小时操作),之后的发色团密度接近有机溶质木质素。我们的发现将UV-Vis光谱从GPC分析的简单检测方法重新构建为木质素优先催化的诊断平台。通过将明显的m分辨光谱汇集成一个简单的指数,GPC-UV-Vis能够快速、无损地监测催化剂性能,支持优化RCF条件和回收方案,并突出氢转移催化的稳定作用。在更广泛的背景下,该方法适用于各种原料、催化剂和木质素优先模式,为催化剂老化与产品质量之间的关联提供了一条实用途径,并指导了循环经济和木质素增值的耐用、强大催化剂的开发。
{"title":"Mass-resolved UV–Vis–GPC mapping diagnoses catalyst ageing in RCF lignin streams","authors":"Siyuan Gao, Raul Rinken, Robert T. Woodward, Jie Bao and Roberto Rinaldi","doi":"10.1039/D5FD00109A","DOIUrl":"10.1039/D5FD00109A","url":null,"abstract":"<p >Catalyst stability is central to the viability of lignin-first biorefineries, yet conventional characterisation often fails to detect the subtle deactivation processes that govern product quality. Here, we demonstrate that ultraviolet–visible (UV–Vis) spectroscopy, when combined with gel permeation chromatography (GPC), can serve as a sensitive diagnostic tool for detecting catalyst performance decline in Reductive Catalytic Fractionation (RCF). We introduce a concentration-independent spectral index (SI<small><sub>320</sub></small>), derived from the absorbance ratio at 280 and 320 nm, given by SI<small><sub>320</sub></small> = 1 – <em>A</em><small><sub>320</sub></small>/<em>A</em><small><sub>280</sub></small>. Native-like lignins show negligible absorbance at 320 nm (SI<small><sub>320</sub></small> ≈ 1), whereas condensation, benzylic oxidation, and extended π-conjugation depress SI<small><sub>320</sub></small>. As a ratio, SI<small><sub>320</sub></small> is concentration-independent within the Beer–Lambert regime and can be profiled across the chromatogram to yield SI<small><sub>320</sub></small>(<em>M</em>) profiles, with <em>M</em> denoting apparent molar mass. SI<small><sub>320</sub></small>(<em>M</em>) profiles report directly on the formation of chromophores associated with catalyst ageing across the lignin apparent-<em>M</em> distribution. Utilising post-consumer cardboard as a substrate, we tracked RCF over RANEY<small><sup>®</sup></small> Ni across multiple recycling runs. A comparative analysis of fresh and recycled catalysts revealed systematic SI<small><sub>320</sub></small> downshifts in oligomer fractions, indicating chromophore accumulation well before changes in bulk yield of low <em>M</em> products become evident. Linear regression of SI<small><sub>320</sub></small>(<em>M</em>) mean values (<em>r</em><small><sup>2</sup></small> = 0.95) enables a practical estimate of catalyst life. Under our conditions, it is estimated that RANEY<small><sup>®</sup></small> Ni can sustain lignin stabilisation for up to 15 runs of catalyst use (<em>ca.</em> 45 h operation), after which the chromophore density approaches that of organosolv lignin. Our findings reframe UV–Vis spectroscopy from a simple detection method for GPC analysis into a diagnostic platform of lignin-first catalysis. By funnelling apparent-<em>M</em>-resolved spectra into a simple index, GPC–UV–Vis enables rapid, non-destructive monitoring of catalyst performance, supports optimisation of RCF conditions and recycling protocols, and highlights the stabilising action of hydrogen-transfer catalysis. In the broader context, the approach is general to diverse feedstocks, catalysts, and lignin-first modalities, offering a practical route to correlate catalyst ageing with product quality and to guide development of durable, robust catalysts for circular economy and lignin valorisation.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"263 ","pages":" 221-244"},"PeriodicalIF":3.1,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145135933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
List of participants 参会人员名单
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-08-28
{"title":"List of participants","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"260 ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144909451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poster list 海报列表
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-08-28
{"title":"Poster list","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"260 ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144909452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spiers Memorial Lecture: organic, physical & polymer aspects pivotal in lignin valorization 斯皮尔纪念讲座:有机,物理和聚合物方面的木质素增值的关键。
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-08-27 DOI: 10.1039/D5FD00108K
Nicolò Pajer, Claudia Crestini and Dimitris S. Argyropoulos

This article addresses current challenges in lignin chemistry by exploring four thematic areas. We begin by examining the major chemical transformations that occur in lignin and discuss the emerging structural understanding of technical lignins. The discussion then shifts to lignin fractionation strategies, which are essential for reducing its inherent heterogeneity and complexity, thereby enabling its use in practical applications. Next, we delve into the chemical and physical behavior of lignin in solution, with particular emphasis on its self-assembly processes relevant to nanoparticle formation. The supramolecular interactions driving these assemblies – such as π–π stacking, hydrogen bonding, and solvent polarity – are analyzed to identify key parameters for designing lignin-based nanomaterials. These materials show promising applications across sectors including agriculture, packaging, cosmetics, and pharmaceuticals. We then consider the broader valorization of lignin, focusing on the rheological and antioxidant properties of lignin fractions. Particular attention is given to their role in forming polymer blends with polyethylene, highlighting their influence on thermal stability and mechanical performance. Finally, we explore lignin's potential as a non-petroleum precursor for carbon fiber production. We critically assess the main barriers in this field, such as lignin's relatively low molecular weight and thermal behavior, which hinder effective fiber formation and graphitization. Strategies to address these challenges, including the integration of fractionation techniques with chemical modifications, are discussed. The article concludes with a review of recent efforts to overcome the limitations of lignin graphitization and enhance its viability as a sustainable carbon fiber source.

本文通过探索四个主题领域来解决当前木质素化学面临的挑战。我们首先检查木质素中发生的主要化学转化,并讨论对技术木质素的新兴结构理解。然后讨论转向木质素分馏策略,这对于减少其固有的异质性和复杂性至关重要,从而使其能够在实际应用中使用。接下来,我们将深入研究木质素在溶液中的化学和物理行为,特别强调其与纳米颗粒形成相关的自组装过程。分析了驱动这些组装的超分子相互作用-如π-π堆叠,氢键和溶剂极性-以确定设计木质素基纳米材料的关键参数。这些材料在农业、包装、化妆品和制药等领域都有很好的应用前景。然后,我们考虑更广泛的木质素增值,重点关注木质素组分的流变学和抗氧化性能。特别注意它们在与聚乙烯形成聚合物共混物中的作用,突出它们对热稳定性和机械性能的影响。最后,我们探讨了木质素作为碳纤维生产的非石油前体的潜力。我们批判性地评估了该领域的主要障碍,例如木质素相对较低的分子量和热行为,这些障碍阻碍了有效的纤维形成和石墨化。讨论了应对这些挑战的策略,包括将分馏技术与化学改性相结合。文章最后回顾了最近的努力,克服木质素石墨化的局限性,提高其可行性作为可持续的碳纤维来源。
{"title":"Spiers Memorial Lecture: organic, physical & polymer aspects pivotal in lignin valorization","authors":"Nicolò Pajer, Claudia Crestini and Dimitris S. Argyropoulos","doi":"10.1039/D5FD00108K","DOIUrl":"10.1039/D5FD00108K","url":null,"abstract":"<p >This article addresses current challenges in lignin chemistry by exploring four thematic areas. We begin by examining the major chemical transformations that occur in lignin and discuss the emerging structural understanding of technical lignins. The discussion then shifts to lignin fractionation strategies, which are essential for reducing its inherent heterogeneity and complexity, thereby enabling its use in practical applications. Next, we delve into the chemical and physical behavior of lignin in solution, with particular emphasis on its self-assembly processes relevant to nanoparticle formation. The supramolecular interactions driving these assemblies – such as π–π stacking, hydrogen bonding, and solvent polarity – are analyzed to identify key parameters for designing lignin-based nanomaterials. These materials show promising applications across sectors including agriculture, packaging, cosmetics, and pharmaceuticals. We then consider the broader valorization of lignin, focusing on the rheological and antioxidant properties of lignin fractions. Particular attention is given to their role in forming polymer blends with polyethylene, highlighting their influence on thermal stability and mechanical performance. Finally, we explore lignin's potential as a non-petroleum precursor for carbon fiber production. We critically assess the main barriers in this field, such as lignin's relatively low molecular weight and thermal behavior, which hinder effective fiber formation and graphitization. Strategies to address these challenges, including the integration of fractionation techniques with chemical modifications, are discussed. The article concludes with a review of recent efforts to overcome the limitations of lignin graphitization and enhance its viability as a sustainable carbon fiber source.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"263 ","pages":" 9-51"},"PeriodicalIF":3.1,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2026/fd/d5fd00108k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145111569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal nucleation in biominerals: general discussion 生物矿物中的结晶成核:一般讨论。
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-08-21 DOI: 10.1039/D5FD90035B
Oliver Ayre, Thierry Azaïs, Natercia Barbosa, Luca Bertinetti, Henrik Birkedal, Virginie Chamard, Daniel M. Chevrier, Thorbjørn Erik Køppen Christensen, Yannicke Dauphin, Mason N. Dean, Joseph Deering, Raffaella Demichelis, Melinda Duer, Michael Elbaum, Reham Gonnah, Laurie Gower, Tilman A. Grünewald, Lothar Houben, Ya-Lan Hsu, Roland Kröger, Frédéric Marin, Marc D. McKee, Fabio Nudelman, Julia E. Parker, Kirsty Penkman, Alberto Perez-Huerta, Peter Rez, Natalie Reznikov, Adrian Rodriguez-Palomo, Andre Rossi, Victoria Schemenz, Alexander Triccas and Brian Wingender
{"title":"Crystal nucleation in biominerals: general discussion","authors":"Oliver Ayre, Thierry Azaïs, Natercia Barbosa, Luca Bertinetti, Henrik Birkedal, Virginie Chamard, Daniel M. Chevrier, Thorbjørn Erik Køppen Christensen, Yannicke Dauphin, Mason N. Dean, Joseph Deering, Raffaella Demichelis, Melinda Duer, Michael Elbaum, Reham Gonnah, Laurie Gower, Tilman A. Grünewald, Lothar Houben, Ya-Lan Hsu, Roland Kröger, Frédéric Marin, Marc D. McKee, Fabio Nudelman, Julia E. Parker, Kirsty Penkman, Alberto Perez-Huerta, Peter Rez, Natalie Reznikov, Adrian Rodriguez-Palomo, Andre Rossi, Victoria Schemenz, Alexander Triccas and Brian Wingender","doi":"10.1039/D5FD90035B","DOIUrl":"10.1039/D5FD90035B","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"261 ","pages":" 166-191"},"PeriodicalIF":3.1,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144936485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connecting length scales: general discussion 连接长度尺度:一般性讨论。
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-08-21 DOI: 10.1039/D5FD90038G
Oliver Ayre, Sofia Ceseri, Virginie Chamard, Kanmani Chandra Rajan, Thorbjørn Erik Køppen Christensen, Yannicke Dauphin, Joseph Deering, Melinda Duer, Michael Elbaum, Laurie Gower, Tilman A. Grünewald, Lise Guichaoua, Lothar Houben, Benazir Khurshid, Roland Kröger, Franco Lizzi, Frédéric Marin, Marc D. McKee, Fabio Nudelman, Julia E. Parker, Emeline Raguin, Peter Rez, Natalie Reznikov, Adrian Rodriguez-Palomo, Andre Rossi, Victoria Schemenz, Alexander Triccas and Brian Wingender
{"title":"Connecting length scales: general discussion","authors":"Oliver Ayre, Sofia Ceseri, Virginie Chamard, Kanmani Chandra Rajan, Thorbjørn Erik Køppen Christensen, Yannicke Dauphin, Joseph Deering, Melinda Duer, Michael Elbaum, Laurie Gower, Tilman A. Grünewald, Lise Guichaoua, Lothar Houben, Benazir Khurshid, Roland Kröger, Franco Lizzi, Frédéric Marin, Marc D. McKee, Fabio Nudelman, Julia E. Parker, Emeline Raguin, Peter Rez, Natalie Reznikov, Adrian Rodriguez-Palomo, Andre Rossi, Victoria Schemenz, Alexander Triccas and Brian Wingender","doi":"10.1039/D5FD90038G","DOIUrl":"10.1039/D5FD90038G","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"261 ","pages":" 542-568"},"PeriodicalIF":3.1,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144936522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of bottom-up and top-down precipitation strategies for lignin nanoparticle obtention from organosolv and ionosolv Eucalyptus globulus liquors 从有机溶剂和离子溶剂中提取木质素纳米颗粒的自下而上和自上而下的沉淀策略比较。
IF 3.1 3区 化学 Q2 Chemistry Pub Date : 2025-08-19 DOI: 10.1039/D5FD00070J
Victoria Rigual, Antonio Ovejero-Pérez, Antonio Martínez-Mangas, Beatriz García-Sánchez, Juan C. Domínguez, M. Virginia Alonso, Mercedes Oliet and Francisco Rodriguez

This work offers a side-by-side overview of the behaviour of two liquors obtained via two fractionation processes, ionosolv and organosolv, from Eucalyptus globulus wood, and how the precipitation strategy that follows may affect the final yield, morphology, and particle size of every kind of lignin nanoparticle. For lignin nanoparticle precipitation, two bottom-up techniques and two top-down approaches were employed to determine which combination of fractionation process and synthesis treatment would provide the nanoparticles with the best characteristics. The results demonstrated the importance of the fractionation process in the final lignin nanoparticle yield, as ionosolv fractionation gave enhanced yields of more than 60% lignin in the form of nanoparticles. However, sphericity, particle sizes, and non-agglomerated structures were easily obtained from organosolv liquors, in which precipitation was carried out progressively in the absence of sonication. The use of ultrasound mostly resulted in the breakage of particles into smaller and irregular pieces. However, in the case of ionosolv liquors, homogeneous spherical nanoparticles were fused, forming agglomerates of smaller particles through the top-down strategy of complete addition of the antisolvent followed by sonication. The highest precipitation yield of nanoparticles was obtained from ionosolv liquors in which the full amount of antisolvent was added in one step to precipitate lignin, and then sonication was applied. In contrast, the lignin nanoparticles (LNPs) precipitation strategy that resulted in more spherical LNPs was the bottom-up strategy of precipitation by progressive antisolvent addition, resulting in visually observed non-aggregated spherical particles with a particle size distribution of 200 nm < dp < 500 nm, molecular weight of Mw = 14 000 g mol−1, and thermal degradation property of T10% = 310 °C.

这项工作提供了通过两个分馏过程获得的两种液体的行为的并排概述,从蓝桉木材中获得离子溶剂和有机溶剂,以及随后的沉淀策略如何影响最终产量,形态和每种木质素纳米颗粒的粒径。对于木质素纳米颗粒的沉淀,采用了两种自下而上和两种自上而下的方法来确定哪种分离工艺和合成处理的组合能使纳米颗粒具有最佳的特性。结果表明,分离过程在最终木质素纳米颗粒产率中的重要性,因为离子溶剂分离使木质素纳米颗粒的产率提高了60%以上。然而,球形、粒度和非凝聚结构很容易从有机溶剂液中获得,其中沉淀在没有超声的情况下逐步进行。超声波的使用主要导致颗粒破碎成更小和不规则的碎片。然而,在离子溶液的情况下,均匀的球形纳米颗粒被融合,通过自上而下的策略,即完全加入抗溶剂,然后超声波,形成更小颗粒的团聚体。在离子溶剂液中加入足量的抗溶剂一步沉淀木质素,然后进行超声处理,得到的纳米颗粒的析出率最高。相比之下,木质素纳米颗粒(LNPs)的析出策略是自下而上的逐步加入抗溶剂析出策略,得到的颗粒尺寸分布为200 nm < dp < 500 nm,分子量为Mw = 14 000 g mol-1,热降解性能为T10% = 310°C的非聚集球形颗粒。
{"title":"Comparison of bottom-up and top-down precipitation strategies for lignin nanoparticle obtention from organosolv and ionosolv Eucalyptus globulus liquors","authors":"Victoria Rigual, Antonio Ovejero-Pérez, Antonio Martínez-Mangas, Beatriz García-Sánchez, Juan C. Domínguez, M. Virginia Alonso, Mercedes Oliet and Francisco Rodriguez","doi":"10.1039/D5FD00070J","DOIUrl":"10.1039/D5FD00070J","url":null,"abstract":"<p >This work offers a side-by-side overview of the behaviour of two liquors obtained <em>via</em> two fractionation processes, ionosolv and organosolv, from <em>Eucalyptus globulus</em> wood, and how the precipitation strategy that follows may affect the final yield, morphology, and particle size of every kind of lignin nanoparticle. For lignin nanoparticle precipitation, two bottom-up techniques and two top-down approaches were employed to determine which combination of fractionation process and synthesis treatment would provide the nanoparticles with the best characteristics. The results demonstrated the importance of the fractionation process in the final lignin nanoparticle yield, as ionosolv fractionation gave enhanced yields of more than 60% lignin in the form of nanoparticles. However, sphericity, particle sizes, and non-agglomerated structures were easily obtained from organosolv liquors, in which precipitation was carried out progressively in the absence of sonication. The use of ultrasound mostly resulted in the breakage of particles into smaller and irregular pieces. However, in the case of ionosolv liquors, homogeneous spherical nanoparticles were fused, forming agglomerates of smaller particles through the top-down strategy of complete addition of the antisolvent followed by sonication. The highest precipitation yield of nanoparticles was obtained from ionosolv liquors in which the full amount of antisolvent was added in one step to precipitate lignin, and then sonication was applied. In contrast, the lignin nanoparticles (LNPs) precipitation strategy that resulted in more spherical LNPs was the bottom-up strategy of precipitation by progressive antisolvent addition, resulting in visually observed non-aggregated spherical particles with a particle size distribution of 200 nm &lt; <em>d</em><small><sub>p</sub></small> &lt; 500 nm, molecular weight of <em>M</em><small><sub>w</sub></small> = 14 000 g mol<small><sup>−1</sup></small>, and thermal degradation property of <em>T</em><small><sub>10%</sub></small> = 310 °C.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"263 ","pages":" 65-80"},"PeriodicalIF":3.1,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2026/fd/d5fd00070j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145084481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Faraday Discussions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1