首页 > 最新文献

Faraday Discussions最新文献

英文 中文
Observation of cavitation dynamics in viscous deep eutectic solvents during power ultrasound sonication† 在功率超声超声过程中观察粘性深共晶溶剂中的空化动力学
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-14 DOI: 10.1039/D4FD00031E
Ben Jacobson, Shida Li, Paul Daly, Christopher E. Elgar, Andrew P. Abbott, Andrew Feeney and Paul Prentice

Deep eutectic solvents (DESs) are a class of ionic liquid with emerging applications in ionometallurgy. The characteristic high viscosity of DESs, however, limit mass transport and result in slow dissolution kinetics. Through targeted application of high-power ultrasound, ionometallurgical processing time can be significantly accelerated. This acceleration is primarily mediated by the cavitation generated in the liquid surrounding the ultrasound source. In this work, we characterise the development of cavitation structure in three DESs of increasing viscosity, and water, via high-speed imaging and parallel acoustic detection. The intensity of the cavitation is characterised in each liquid as a function of input power of a commercially available ultrasonic horn across more than twenty input powers, by monitoring the bubble collapse shockwaves generated by intense, inertially collapsing bubbles. Through analysis of the acoustic emissions and bubble structure dynamics in each liquid, optimal driving powers are identified where cavitation is most effective. In each of the DESs, driving the ultrasonic horn at lower input powers (25%) was associated with greater cavitation performance than at double the driving power (50%).

深共晶溶剂(DES)是一类离子液体,在离子冶金方面的应用正在不断涌现。然而,DESs特有的高粘度限制了质量传输,导致溶解动力学缓慢。通过有针对性地应用高功率超声波,可以显著加快离子冶金处理时间。这种加速主要是由超声源周围液体中产生的空化作用促成的。在这项工作中,我们通过高速成像和平行声学检测,描述了三种粘度不断增加的 DES 和水的空化结构的发展特征。通过监测由强烈的惯性塌陷气泡产生的气泡塌陷冲击波,对每种液体中的空化强度进行了表征,该强度是市售超声波喇叭二十多种输入功率的函数。通过分析每种液体中的声发射和气泡结构动态,确定了空化最有效的最佳驱动功率。在每种 DES 中,以较低输入功率(25%)驱动超声波喇叭比以双倍驱动功率(50%)驱动超声波喇叭具有更高的空化性能。
{"title":"Observation of cavitation dynamics in viscous deep eutectic solvents during power ultrasound sonication†","authors":"Ben Jacobson, Shida Li, Paul Daly, Christopher E. Elgar, Andrew P. Abbott, Andrew Feeney and Paul Prentice","doi":"10.1039/D4FD00031E","DOIUrl":"10.1039/D4FD00031E","url":null,"abstract":"<p >Deep eutectic solvents (DESs) are a class of ionic liquid with emerging applications in ionometallurgy. The characteristic high viscosity of DESs, however, limit mass transport and result in slow dissolution kinetics. Through targeted application of high-power ultrasound, ionometallurgical processing time can be significantly accelerated. This acceleration is primarily mediated by the cavitation generated in the liquid surrounding the ultrasound source. In this work, we characterise the development of cavitation structure in three DESs of increasing viscosity, and water, <em>via</em> high-speed imaging and parallel acoustic detection. The intensity of the cavitation is characterised in each liquid as a function of input power of a commercially available ultrasonic horn across more than twenty input powers, by monitoring the bubble collapse shockwaves generated by intense, inertially collapsing bubbles. Through analysis of the acoustic emissions and bubble structure dynamics in each liquid, optimal driving powers are identified where cavitation is most effective. In each of the DESs, driving the ultrasonic horn at lower input powers (25%) was associated with greater cavitation performance than at double the driving power (50%).</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 458-477"},"PeriodicalIF":3.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00031e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overdetermination method for accurate dynamic ion correlations in highly concentrated electrolytes† 高浓度电解质中精确动态离子相关性的过量测定法
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-14 DOI: 10.1039/D4FD00034J
Tabita Pothmann, Maleen Middendorf, Christian Gerken, Pinchas Nürnberg, Monika Schönhoff and Bernhard Roling

Highly concentrated battery electrolytes exhibit a low flammability as well as a high thermal and electrochemical stability, and they typically form stable solid electrolyte interphases in contact with electrode materials. The transport properties of these electrolytes in batteries are strongly influenced by correlated movements of the ions. In the case of a binary electrolyte, the transport properties can be described by three Onsager coefficients and a thermodynamic factor. In order to determine these four target quantities, at least four experimental quantities are needed. Overdetermination by measuring five or more experimental quantities is uncommon. Here we have combined electrochemical impedance spectroscopy, electrophoretic NMR measurements and concentration cell measurements for characterizing two highly concentrated sulfolane/LiFSI electrolytes. Two sets of four experimental quantities and one set of five experimental quantities were compared with regard to the uncertainties of the resulting four target quantities. We show that the methods employing only four experimental quantities either lead to large uncertainties of the Onsager coefficients or to large uncertainties of the thermodynamic factor, while only the overdetermination by five experimental quantities leads to acceptable uncertainties of all four target quantities. The results for the Onsager coefficients are discussed with regard to dynamic ion correlations and to transport limitations in battery cells.

高浓度电池电解质具有低可燃性、高热稳定性和电化学稳定性,在与电极材料接触时通常会形成稳定的固态电解质相。这些电解质在电池中的传输特性深受离子相关运动的影响。在二元电解质的情况下,传输特性可以用三个昂赛格系数和一个热力学系数来描述。为了确定这四个目标量,至少需要四个实验量。通过测量五个或更多实验量来进行过度测定的情况并不常见。在这里,我们将电化学阻抗光谱、电泳核磁共振测量和浓缩池测量结合起来,对两种高浓度砜/锂氟硅烷电解质进行了表征。我们比较了两组四个实验量和一组五个实验量所产生的四个目标量的不确定性。结果表明,只采用四组实验量的方法要么会导致昂萨格系数的不确定性增大,要么会导致热力学因子的不确定性增大,而只有采用五组实验量的过度确定方法才会导致所有四个目标量的不确定性均可接受。欧氏系数的结果与动态离子相关性和电池中的传输限制有关。
{"title":"Overdetermination method for accurate dynamic ion correlations in highly concentrated electrolytes†","authors":"Tabita Pothmann, Maleen Middendorf, Christian Gerken, Pinchas Nürnberg, Monika Schönhoff and Bernhard Roling","doi":"10.1039/D4FD00034J","DOIUrl":"10.1039/D4FD00034J","url":null,"abstract":"<p >Highly concentrated battery electrolytes exhibit a low flammability as well as a high thermal and electrochemical stability, and they typically form stable solid electrolyte interphases in contact with electrode materials. The transport properties of these electrolytes in batteries are strongly influenced by correlated movements of the ions. In the case of a binary electrolyte, the transport properties can be described by three Onsager coefficients and a thermodynamic factor. In order to determine these four target quantities, at least four experimental quantities are needed. Overdetermination by measuring five or more experimental quantities is uncommon. Here we have combined electrochemical impedance spectroscopy, electrophoretic NMR measurements and concentration cell measurements for characterizing two highly concentrated sulfolane/LiFSI electrolytes. Two sets of four experimental quantities and one set of five experimental quantities were compared with regard to the uncertainties of the resulting four target quantities. We show that the methods employing only four experimental quantities either lead to large uncertainties of the Onsager coefficients or to large uncertainties of the thermodynamic factor, while only the overdetermination by five experimental quantities leads to acceptable uncertainties of all four target quantities. The results for the Onsager coefficients are discussed with regard to dynamic ion correlations and to transport limitations in battery cells.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 100-117"},"PeriodicalIF":3.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00034j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of reaction intermediates in the decomposition of formic acid on Pd† 钯上甲酸分解反应中间体的鉴定
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-13 DOI: 10.1039/D3FD00174A
Jan Fingerhut, Loïc Lecroart, Michael Schwarzer, Stefan Hörandl, Dmitriy Borodin, Alexander Kandratsenka, Theofanis N. Kitsopoulos, Daniel J. Auerbach and Alec M. Wodtke

Uncovering the role of reaction intermediates is crucial to developing an understanding of heterogeneous catalysis because catalytic reactions often involve complex networks of elementary steps. Identifying the reaction intermediates is often difficult because their short lifetimes and low concentrations make it difficult to observe them with surface sensitive spectroscopic techniques. In this paper we report a different approach to identify intermediates for the formic acid decomposition reaction on Pd(111) and Pd(332) based on accurate measurements of isotopologue specific thermal reaction rates. At low surface temperatures (∼400 K) CO2 formation is the major reaction pathway. The CO2 kinetic data show this occurs via two temporally resolved reaction processes. Thus, there must be two parallel pathways which we attribute to the participation of two intermediate species in the reaction. Isotopic substitution reveals large and isotopologue specific kinetic isotope effects that allow us to identify the two key intermediates as bidentate formate and carboxyl. The decomposition of the bidentate formate is substantially slower than that of carboxyl. On Pd(332), at high surface temperatures (643 K to 693 K) we observe both CO and CO2 production. The observation of CO formation reinforces the conclusion of calculations that suggest the carboxyl intermediate plays a major role in the water–gas shift reaction, where carboxyl exhibits temperature dependent branching between CO2 and CO.

由于催化反应通常涉及复杂的基本步骤网络,因此揭示反应中间产物的作用对于理解异相催化反应至关重要。遗憾的是,反应过程中出现的中间产物寿命短、浓度低,因此用表面敏感光谱观测和识别它们往往具有实验挑战性。在本文中,我们报告了一种基于钯(111)和钯(332)上甲酸分解的同位素特定热反应速率来识别中间产物的不同方法。在低表面温度(约 400 K)下,二氧化碳的形成是这两个面上的主要反应途径。动力学数据显示,这是通过两个时间分辨的反应过程发生的,这表明一定有两条平行的途径,强烈暗示有两个中间物种参与其中。同位素置换揭示了巨大的、特定于同位素的动力学同位素效应,使我们能够确定这两种中间体为双叉甲酸酯和羧基。我们证明,双叉甲酸酯中间体分解缓慢,而羧基中间体分解迅速。在较高的表面温度(643 K 至 693 K)下,我们观察到 CO 在 Pd(332) 上形成。这一观察结果与基于密度泛函理论的提议相吻合,即羧基中间体在水气转换反应(WGSR)中发挥了重要作用,它在 CO 和 H2O 形成 CO2 的过程中起着桥梁作用。
{"title":"Identification of reaction intermediates in the decomposition of formic acid on Pd†","authors":"Jan Fingerhut, Loïc Lecroart, Michael Schwarzer, Stefan Hörandl, Dmitriy Borodin, Alexander Kandratsenka, Theofanis N. Kitsopoulos, Daniel J. Auerbach and Alec M. Wodtke","doi":"10.1039/D3FD00174A","DOIUrl":"10.1039/D3FD00174A","url":null,"abstract":"<p >Uncovering the role of reaction intermediates is crucial to developing an understanding of heterogeneous catalysis because catalytic reactions often involve complex networks of elementary steps. Identifying the reaction intermediates is often difficult because their short lifetimes and low concentrations make it difficult to observe them with surface sensitive spectroscopic techniques. In this paper we report a different approach to identify intermediates for the formic acid decomposition reaction on Pd(111) and Pd(332) based on accurate measurements of isotopologue specific thermal reaction rates. At low surface temperatures (∼400 K) CO<small><sub>2</sub></small> formation is the major reaction pathway. The CO<small><sub>2</sub></small> kinetic data show this occurs <em>via</em> two temporally resolved reaction processes. Thus, there must be two parallel pathways which we attribute to the participation of two intermediate species in the reaction. Isotopic substitution reveals large and isotopologue specific kinetic isotope effects that allow us to identify the two key intermediates as bidentate formate and carboxyl. The decomposition of the bidentate formate is substantially slower than that of carboxyl. On Pd(332), at high surface temperatures (643 K to 693 K) we observe both CO and CO<small><sub>2</sub></small> production. The observation of CO formation reinforces the conclusion of calculations that suggest the carboxyl intermediate plays a major role in the water–gas shift reaction, where carboxyl exhibits temperature dependent branching between CO<small><sub>2</sub></small> and CO.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"251 ","pages":" 412-434"},"PeriodicalIF":3.4,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d3fd00174a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overcoming passivation through improved mass transport in dense ionic fluids† 通过改善致密离子液体中的质量传输克服钝化现象
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-13 DOI: 10.1039/D4FD00030G
Evangelia Daskalopoulou, Philip Hunt, Christopher E. Elgar, Minjun Yang, Andrew P. Abbott and Jennifer M. Hartley

Deep Eutectic Solvents (DESs) have recently been shown to be part of a dense ionic fluid continuum between ionic liquids and concentrated aqueous brines. Charge transport was shown to be governed by fluidity, with no discontinuity between molar conductivity and fluidity irrespective of cation, charge density or ionic radius. By adjusting the activity of water and chloride ions, mass transport, speciation and reactivity can be altered. It has been shown that while brines provide a high chloride content at a lower viscosity than DESs, unlike DESs, brines are unable to prevent metal passivation due to their high water content. This results in the possibility to impart a level of selectivity towards metal dissolution (or passivation) when processing mixed metal materials. Forced convection can be used to avoid the issue of slow mass transport in viscous media, and the use of jets or targeted ultrasound are effective methods for overcoming this issue. High-powered ultrasound was applied to copper, cobalt, and aluminium electrodes undergoing anodic dissolution, and linear sweep voltammetry showed a linear current–voltage response at potentials anodic of the oxidation potential under sonication, with total charge passed being 5 to 134 times greater than under silent conditions. Application of ultrasound to silver and nickel electrodes displayed an initial linear current–voltage response, but the increased water content of the brines resulted in passivation. Mass transport throughout the bulk solution is governed by the forced convection imparted by the ultrasound and ionic species must only migrate across the electrical double layer. It is shown that the anodic dissolution of a range of metals classically expected to passivate, e.g. aluminium, can be significantly accelerated under insonation conditions.

最近的研究表明,深共晶溶剂(DES)是介于离子液体和浓盐水之间的高密度离子液体连续体的一部分。电荷传输受流动性支配,无论阳离子、电荷密度或离子半径如何,摩尔电导率与流动性之间都没有不连续性。通过调整水和氯离子的活度,可以改变质量传输、离子和反应性。研究表明,与 DES 相比,盐水的粘度较低,但氯离子含量较高,与 DES 不同的是,盐水由于含水量高,无法防止金属钝化。因此,在处理混合金属材料时,可以对金属溶解(或钝化)进行一定程度的选择。强制对流可用于避免粘性介质中质量传输缓慢的问题,而使用喷流或定向超声则是克服这一问题的有效方法。将大功率超声波应用于发生阳极溶解的铜、钴和铝电极,线性扫描伏安法显示,在超声作用下,氧化电位的阳极电位出现线性电流-电压响应,通过的总电荷量是静默条件下的 5 至 134 倍。在银电极和镍电极上应用超声波可显示出最初的线性电流-电压响应,但盐水含水量的增加导致了钝化。整个溶液的质量传输受超声波所产生的强制对流控制,离子物种只能穿过电双层进行迁移。研究表明,在电离条件下,一系列通常被认为会钝化的金属(如铝)的阳极溶解会明显加快。
{"title":"Overcoming passivation through improved mass transport in dense ionic fluids†","authors":"Evangelia Daskalopoulou, Philip Hunt, Christopher E. Elgar, Minjun Yang, Andrew P. Abbott and Jennifer M. Hartley","doi":"10.1039/D4FD00030G","DOIUrl":"10.1039/D4FD00030G","url":null,"abstract":"<p >Deep Eutectic Solvents (DESs) have recently been shown to be part of a dense ionic fluid continuum between ionic liquids and concentrated aqueous brines. Charge transport was shown to be governed by fluidity, with no discontinuity between molar conductivity and fluidity irrespective of cation, charge density or ionic radius. By adjusting the activity of water and chloride ions, mass transport, speciation and reactivity can be altered. It has been shown that while brines provide a high chloride content at a lower viscosity than DESs, unlike DESs, brines are unable to prevent metal passivation due to their high water content. This results in the possibility to impart a level of selectivity towards metal dissolution (or passivation) when processing mixed metal materials. Forced convection can be used to avoid the issue of slow mass transport in viscous media, and the use of jets or targeted ultrasound are effective methods for overcoming this issue. High-powered ultrasound was applied to copper, cobalt, and aluminium electrodes undergoing anodic dissolution, and linear sweep voltammetry showed a linear current–voltage response at potentials anodic of the oxidation potential under sonication, with total charge passed being 5 to 134 times greater than under silent conditions. Application of ultrasound to silver and nickel electrodes displayed an initial linear current–voltage response, but the increased water content of the brines resulted in passivation. Mass transport throughout the bulk solution is governed by the forced convection imparted by the ultrasound and ionic species must only migrate across the electrical double layer. It is shown that the anodic dissolution of a range of metals classically expected to passivate, <em>e.g.</em> aluminium, can be significantly accelerated under insonation conditions.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 329-342"},"PeriodicalIF":3.4,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00030g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning the peroxidase activity of artificial P450 peroxygenase by engineering redox-sensitive residues† 通过设计氧化还原敏感残基来调节人工 P450 过氧化物酶的过氧化物酶活性
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-07 DOI: 10.1039/D4FD00008K
Fengjie Jiang, Zihan Wang and Zhiqi Cong

Cytochrome P450 monooxygenases (P450s) are well recognized as versatile bio-oxidation catalysts. However, the catalytic functions of P450s are highly dependent on NAD(P)H and redox partner proteins. Our group has recently reported the use of a dual-functional small molecule (DFSM) for generating peroxygenase activity of P450BM3, a long-chain fatty acid hydroxylase from Bacillus megaterium. The DFSM-facilitated P450BM3 peroxygenase system exhibited excellent peroxygenation activity and regio-/enantioselectivity for various organic substrates, such as styrenes, thioanisole, small alkanes, and alkylbenzenes. Very recently, we demonstrated that the DFSM-facilitated P450BM3 peroxygenase could be switched to a peroxidase by engineering the redox-sensitive tyrosine residues in P450BM3. Given the great potential of P450 peroxidase for C–H oxyfunctionalization, we herein report scrutiny of the effect of mutating redox-sensitive residues on peroxidase activity by deeply screening all redox-sensitive residues of P450BM3, namely methionines, tryptophans, cysteines, and phenylalanines. As a result, six beneficial mutations at positions M212, F81, M112, F173, M177, and F77 were screened out from 78 constructed mutants, and significantly enhanced the peroxidase activity of P450BM3 in the presence of Im-C6-Phe, a typical DFSM molecule. Further combination of the beneficial mutations resulted in a more than 100-fold improvement in peroxidase activity compared with that of the combined parent enzyme and DFSM, comparable to or better than most natural peroxidases. In addition, mutations of redox-sensitive residues even dramatically increased, by more than 300-fold, the peroxidase activity of the starting F87A enzyme in the absence of the DFSM, despite the far lower apparent catalytic turnover number compared with the DFSM–P450 system. This study provides new insights and a potential strategy for regulating the catalytic promiscuity of P450 enzymes for multiple functional oxidations.

细胞色素 P450 单氧化酶(P450s)是公认的多功能生物氧化催化剂。然而,P450s 的催化功能高度依赖于 NAD(P)H 和氧化还原伙伴蛋白。我们的研究小组最近报道了使用双功能小分子(DFSM)来产生 P450BM3 的过氧酶活性,P450BM3 是一种来自大型芽孢杆菌的长链脂肪酸羟化酶。DFSM 促进的 P450BM3 过氧化氢酶系统对各种有机底物(如苯乙烯、硫代苯甲醚、小烷烃和烷基苯)表现出优异的过氧化活性和区域/反式选择性。最近,我们证实,通过对 P450BM3 中对氧化还原反应敏感的酪氨酸残基进行工程改造,可以将 DFSM 促进的 P450BM3 过氧化物酶转换为过氧化物酶。鉴于 P450 过氧化物酶在 C-H 氧官能化方面的巨大潜力,我们在此报告通过深入筛选 P450BM3 的所有氧化还原敏感残基,如蛋氨酸、色氨酸、半胱氨酸和苯丙氨酸,仔细研究了氧化还原敏感残基突变对过氧化物酶活性的影响。结果,从 78 个构建的突变体中筛选出了位于 M212、F81、M112、F173、M177 和 F77 位置的 6 个有益突变,这些突变显著增强了 P450BM3 在典型的 DFSM 分子 Im-C6-Phe 存在下的过氧化物酶活性。与母酶和 DFSM 的组合相比,进一步组合有益突变可使过氧化物酶的活性提高 100 倍以上,与大多数天然过氧化物酶相当或更好。此外,尽管表观催化周转次数远低于 DFSM-P450 系统,但在没有 DFSM 的情况下,氧化还原敏感残基的突变甚至使起始 F87A 酶的过氧化物酶活性显著提高了 300 多倍。这项研究为调节 P450 酶在多种功能氧化中的催化杂合性提供了新的见解和潜在的策略。
{"title":"Tuning the peroxidase activity of artificial P450 peroxygenase by engineering redox-sensitive residues†","authors":"Fengjie Jiang, Zihan Wang and Zhiqi Cong","doi":"10.1039/D4FD00008K","DOIUrl":"10.1039/D4FD00008K","url":null,"abstract":"<p >Cytochrome P450 monooxygenases (P450s) are well recognized as versatile bio-oxidation catalysts. However, the catalytic functions of P450s are highly dependent on NAD(P)H and redox partner proteins. Our group has recently reported the use of a dual-functional small molecule (DFSM) for generating peroxygenase activity of P450BM3, a long-chain fatty acid hydroxylase from <em>Bacillus megaterium</em>. The DFSM-facilitated P450BM3 peroxygenase system exhibited excellent peroxygenation activity and regio-/enantioselectivity for various organic substrates, such as styrenes, thioanisole, small alkanes, and alkylbenzenes. Very recently, we demonstrated that the DFSM-facilitated P450BM3 peroxygenase could be switched to a peroxidase by engineering the redox-sensitive tyrosine residues in P450BM3. Given the great potential of P450 peroxidase for C–H oxyfunctionalization, we herein report scrutiny of the effect of mutating redox-sensitive residues on peroxidase activity by deeply screening all redox-sensitive residues of P450BM3, namely methionines, tryptophans, cysteines, and phenylalanines. As a result, six beneficial mutations at positions M212, F81, M112, F173, M177, and F77 were screened out from 78 constructed mutants, and significantly enhanced the peroxidase activity of P450BM3 in the presence of Im-C6-Phe, a typical DFSM molecule. Further combination of the beneficial mutations resulted in a more than 100-fold improvement in peroxidase activity compared with that of the combined parent enzyme and DFSM, comparable to or better than most natural peroxidases. In addition, mutations of redox-sensitive residues even dramatically increased, by more than 300-fold, the peroxidase activity of the starting F87A enzyme in the absence of the DFSM, despite the far lower apparent catalytic turnover number compared with the DFSM–P450 system. This study provides new insights and a potential strategy for regulating the catalytic promiscuity of P450 enzymes for multiple functional oxidations.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 52-68"},"PeriodicalIF":3.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient pyrrolysyl-tRNA synthetase for economical production of MeHis-containing enzymes† 一种用于经济型生产含 MeHis 酶的高效吡咯酰-tRNA 合成酶
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-07 DOI: 10.1039/D4FD00019F
Amy E. Hutton, Jake Foster, James E. J. Sanders, Christopher J. Taylor, Stefan A. Hoffmann, Yizhi Cai, Sarah L. Lovelock and Anthony P. Green

Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue Nδ-methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRSMIFAF) for encoding MeHis into proteins, by transplanting five known active site mutations from Methanomethylophilus alvus (MaPylRS) into the single domain PylRS from Methanogenic archaeon ISO4-G1. In contrast to the high concentrations of MeHis (5–10 mM) needed with the Ma system, G1PylRSMIFAF can operate efficiently using MeHis concentrations of ∼0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRSMIFAF is also a ‘polyspecific’ aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements.

遗传密码扩展已成为酶设计和工程学中的一种强大工具,它提供了对复杂催化机理的新见解,并使具有新催化功能的酶得以开发。在这方面,非典型组氨酸类似物 Nδ-甲基组氨酸(MeHis)已被证明用途特别广泛,因为它能够作为金属配位配体或催化亲核体,其反应模式与 4-二甲氨基吡啶(DMAP)等小分子催化剂类似。在这里,我们报告了通过将五种已知的来自嗜甲氧基甲烷藻(MaPylRS)的活性位点突变移植到来自甲烷古生菌 ISO4-G1 的单结构域 PylRS 中,开发出一种高效的氨基酰 tRNA 合成酶(G1PylRSMIFAF),用于将 MeHis 编码到蛋白质中。与 Ma 系统所需的高浓度 MeHis(5-10 毫摩尔)相比,G1PylRSMIFAF 可在使用约 0.1 毫摩尔浓度的 MeHis 时高效运行,从而可以更经济地生产一系列高滴度的含 MeHis 酶。有趣的是,G1PylRSMIFAF 也是一种 "多特异性 "氨基酰 tRNA 合成酶(amaRS),能够合成五种不同的非典型氨基酸(ncAA),包括 3-吡啶基丙氨酸和 2-氟苯丙氨酸。这项研究为可扩展地生产含有 MeHis 等非典型氨基酸作为关键催化元件的工程酶迈出了重要一步。
{"title":"An efficient pyrrolysyl-tRNA synthetase for economical production of MeHis-containing enzymes†","authors":"Amy E. Hutton, Jake Foster, James E. J. Sanders, Christopher J. Taylor, Stefan A. Hoffmann, Yizhi Cai, Sarah L. Lovelock and Anthony P. Green","doi":"10.1039/D4FD00019F","DOIUrl":"10.1039/D4FD00019F","url":null,"abstract":"<p >Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue <em>N</em><small><sub>δ</sub></small>-methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRS<small><sup>MIFAF</sup></small>) for encoding MeHis into proteins, by transplanting five known active site mutations from <em>Methanomethylophilus alvus</em> (<em>Ma</em>PylRS) into the single domain PylRS from <em>Methanogenic archaeon</em> ISO4-G1. In contrast to the high concentrations of MeHis (5–10 mM) needed with the <em>Ma</em> system, G1PylRS<small><sup>MIFAF</sup></small> can operate efficiently using MeHis concentrations of ∼0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRS<small><sup>MIFAF</sup></small> is also a ‘polyspecific’ aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 295-305"},"PeriodicalIF":3.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00019f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption and vibrational spectroscopy of CO on the surface of MgO from periodic local coupled-cluster theory† 从周期局部耦合簇理论看氧化镁表面 CO 的吸附和振动光谱学
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-06 DOI: 10.1039/D4FD00041B
Hong-Zhou Ye and Timothy C. Berkelbach

The adsorption of CO on the surface of MgO has long been a model problem in surface chemistry. Here, we report periodic Gaussian-based calculations for this problem using second-order perturbation theory (MP2) and coupled-cluster theory with single and double excitations (CCSD) and perturbative triple excitations [CCSD(T)], with the latter two performed using a recently developed extension of the local natural orbital approximation to problems with periodic boundary conditions. The low cost of periodic local correlation calculations allows us to calculate the full CCSD(T) binding curve of CO approaching the surface of MgO (and thus the adsorption energy) and the two-dimensional potential energy surface (PES) as a function of the distance from the surface and the CO stretching coordinate. From the PES, we obtain the fundamental vibrational frequency of CO on MgO, whose shift from the gas phase value is a common experimental probe of surface adsorption. We find that CCSD(T) correctly predicts a positive frequency shift upon adsorption of +14.7 cm−1, in excellent agreement with the experimental shift of +14.3 cm−1. We use our CCSD(T) results to assess the accuracy of MP2, CCSD, and several density functional theory (DFT) approximations, including exchange correlation functionals and dispersion corrections. We find that MP2 and CCSD yield reasonable binding energies and frequency shifts, whereas many DFT calculations overestimate the magnitude of the adsorption energy by 5–15 kJ mol−1 and predict a negative frequency shift of about −20 cm−1, which we attribute to self-interaction-induced delocalization errors that are mildly ameliorated with hybrid functionals. Our findings highlight the accuracy and computational efficiency of the periodic local correlation for the simulation of surface chemistry with accurate wavefunction methods.

一氧化碳在氧化镁表面的吸附长期以来一直是表面化学中的一个模型问题。在此,我们报告了利用二阶扰动理论(MP2)和单双激振(CCSD)及扰动三激振[CCSD(T)]耦合簇理论对这一问题进行的基于高斯的周期性计算,后两种计算是利用最近开发的局部自然轨道近似扩展到具有周期性边界条件的问题。周期性局部相关计算的成本很低,因此我们可以计算出 CO 接近氧化镁表面的完整 CCSD(T) 结合曲线(从而计算出吸附能),以及二维势能面(PES)与表面距离和 CO 拉伸坐标的函数关系。通过势能面,我们得到了氧化镁上 CO 的基振频率,其与气相值的偏移是表面吸附的常见实验探针。我们发现,CCSD(T) 正确预测了吸附后+14.7 cm-1 的正频率偏移,与+14.3 cm-1 的实验偏移非常吻合。我们利用 CCSD(T) 结果评估了 MP2、CCSD 和几种密度泛函理论 (DFT) 近似方法(包括交换相关函数和色散修正)的准确性。我们发现,MP2 和 CCSD 得到了合理的结合能和频移,而许多 DFT 计算则高估了吸附能的大小 5-15 kJ/mol,并预测出了大约 -20 cm-1 的负频移,我们将其归因于自相互作用引起的脱ocalization 误差,而混合函数可以轻微地改善这种误差。我们的研究结果凸显了周期性局部相关的准确性和计算效率,可用于使用精确波函数方法模拟表面化学。
{"title":"Adsorption and vibrational spectroscopy of CO on the surface of MgO from periodic local coupled-cluster theory†","authors":"Hong-Zhou Ye and Timothy C. Berkelbach","doi":"10.1039/D4FD00041B","DOIUrl":"10.1039/D4FD00041B","url":null,"abstract":"<p >The adsorption of CO on the surface of MgO has long been a model problem in surface chemistry. Here, we report periodic Gaussian-based calculations for this problem using second-order perturbation theory (MP2) and coupled-cluster theory with single and double excitations (CCSD) and perturbative triple excitations [CCSD(T)], with the latter two performed using a recently developed extension of the local natural orbital approximation to problems with periodic boundary conditions. The low cost of periodic local correlation calculations allows us to calculate the full CCSD(T) binding curve of CO approaching the surface of MgO (and thus the adsorption energy) and the two-dimensional potential energy surface (PES) as a function of the distance from the surface and the CO stretching coordinate. From the PES, we obtain the fundamental vibrational frequency of CO on MgO, whose shift from the gas phase value is a common experimental probe of surface adsorption. We find that CCSD(T) correctly predicts a positive frequency shift upon adsorption of +14.7 cm<small><sup>−1</sup></small>, in excellent agreement with the experimental shift of +14.3 cm<small><sup>−1</sup></small>. We use our CCSD(T) results to assess the accuracy of MP2, CCSD, and several density functional theory (DFT) approximations, including exchange correlation functionals and dispersion corrections. We find that MP2 and CCSD yield reasonable binding energies and frequency shifts, whereas many DFT calculations overestimate the magnitude of the adsorption energy by 5–15 kJ mol<small><sup>−1</sup></small> and predict a negative frequency shift of about −20 cm<small><sup>−1</sup></small>, which we attribute to self-interaction-induced delocalization errors that are mildly ameliorated with hybrid functionals. Our findings highlight the accuracy and computational efficiency of the periodic local correlation for the simulation of surface chemistry with accurate wavefunction methods.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"254 ","pages":" 628-640"},"PeriodicalIF":3.4,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00041b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140045688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous Li coordination in solvent-in-salt electrolytes enables high Li transference numbers† 盐溶剂电解质中的异质锂配位实现了高锂离子转移数量
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-05 DOI: 10.1039/D4FD00012A
Anne Hockmann, Florian Ackermann, Diddo Diddens, Isidora Cekic-Laskovic and Monika Schönhoff

The transport properties and the underlying coordination structure of a ternary electrolyte consisting of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), 1,2-dimethoxyethane (DME), and 1,3-dioxolane (DOL) is studied over a wide concentration range, up to that of a Solvent-in-Salt (SiS) electrolyte. Among other advantages for next-generation battery applications, SiS electrolytes offer a high lithium transference number (tLi) of 0.73. We analyze the transport mechanism by electrophoretic NMR (eNMR), providing the mobilities (μi) of all species. Intriguingly, in the SiS region, the mobility of the neutral species DME exceeds the cation mobility (μDME > μLi), suggesting a heterogeneous transport mechanism, where the Li+ mobility is averaged over different species. Based on Raman spectroscopy, NMR spectroscopy and MD simulations, we derive a model for a concentration-dependent Li+ coordination environment with a heterogeneous Li+ coordination in the SiS region, where the 1st coordination shell either consists of TFSI and DOL only, or of DME, TFSI, and DOL. Lithium ions partially coordinated by DME migrate faster in an electric field, in contrast to lithium ions solely coordinated by anions and DOL molecules, explaining the peculiarity of the rapidly migrating neutral DME molecules. Further, DME is identified as an exclusively bidentate ligand, while TFSI and DOL act as bridging ligands coordinating different Li+ ions. Thus, Li+ coordination heterogeneity is the basis for Li+ transport heterogeneity and for achieving very high Li+ transference numbers. In addition, an effective dynamic decoupling of Li+ and anions occurs with an Onsager coefficient σ+− ≈ 0. These results provide a deeper understanding of the very efficient lithium-ion transport in SiS electrolytes, with the potential to bring further improvements for battery applications.

研究了由双(三氟甲磺酰)亚胺锂(LiTFSI)、1,2-二甲氧基乙烷(DME)和 1,3-二氧戊环(DOL)组成的三元电解质在盐溶剂(SiS)电解质的宽浓度范围内的传输特性和基本配位结构。SiS 电解质具有 0.73 的高锂传输数(tLi),是新一代电池应用的优势之一。我们通过电泳核磁共振(eNMR)分析了传输机制,提供了所有物种的迁移率 µi。有趣的是,在 SiS 区域,中性物种 DME 的迁移率超过了阳离子的迁移率(µDME > µLi),这表明这是一种异质迁移机制,其中 Li+ 的迁移率是不同物种的平均迁移率。基于拉曼光谱、核磁共振光谱和 MD 模拟,我们推导出了一个浓度依赖性的 Li+ 配位环境模型,该模型在 SiS 区域具有异质 Li+ 配位,其中第 1 配位层要么仅由 TFSI- 和 DOL 组成,要么由 DME、TFSI- 和 DOL 组成。与仅由阴离子和 DOL 分子配位的锂离子相比,部分由 DME 配位的锂离子在电场中迁移得更快,这也解释了快速迁移的中性 DME 分子的特殊性。此外,DME 被确定为唯一的双齿配体,而 TFSI- 和 DOL 则作为桥配体配位不同的 Li+ 离子。因此,Li+配位异质性是实现 Li+ 传输异质性和极高 Li+ 传输数的基础。此外,Li+ 与阴离子之间还存在有效的动态解耦,其昂萨格系数 σ+- ≈ 0。这些结果加深了人们对 SiS 电解质中高效锂离子传输的理解,有望进一步改善电池应用。
{"title":"Heterogeneous Li coordination in solvent-in-salt electrolytes enables high Li transference numbers†","authors":"Anne Hockmann, Florian Ackermann, Diddo Diddens, Isidora Cekic-Laskovic and Monika Schönhoff","doi":"10.1039/D4FD00012A","DOIUrl":"10.1039/D4FD00012A","url":null,"abstract":"<p >The transport properties and the underlying coordination structure of a ternary electrolyte consisting of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), 1,2-dimethoxyethane (DME), and 1,3-dioxolane (DOL) is studied over a wide concentration range, up to that of a Solvent-in-Salt (SiS) electrolyte. Among other advantages for next-generation battery applications, SiS electrolytes offer a high lithium transference number (<em>t</em><small><sub>Li</sub></small>) of 0.73. We analyze the transport mechanism by electrophoretic NMR (eNMR), providing the mobilities (<em>μ</em><small><sub><em>i</em></sub></small>) of all species. Intriguingly, in the SiS region, the mobility of the neutral species DME exceeds the cation mobility (<em>μ</em><small><sub>DME</sub></small> &gt; <em>μ</em><small><sub>Li</sub></small>), suggesting a heterogeneous transport mechanism, where the Li<small><sup>+</sup></small> mobility is averaged over different species. Based on Raman spectroscopy, NMR spectroscopy and MD simulations, we derive a model for a concentration-dependent Li<small><sup>+</sup></small> coordination environment with a heterogeneous Li<small><sup>+</sup></small> coordination in the SiS region, where the 1<small><sup>st</sup></small> coordination shell either consists of TFSI<small><sup>−</sup></small> and DOL only, or of DME, TFSI<small><sup>−</sup></small>, and DOL. Lithium ions partially coordinated by DME migrate faster in an electric field, in contrast to lithium ions solely coordinated by anions and DOL molecules, explaining the peculiarity of the rapidly migrating neutral DME molecules. Further, DME is identified as an exclusively bidentate ligand, while TFSI<small><sup>−</sup></small> and DOL act as bridging ligands coordinating different Li<small><sup>+</sup></small> ions. Thus, Li<small><sup>+</sup></small> coordination heterogeneity is the basis for Li<small><sup>+</sup></small> transport heterogeneity and for achieving very high Li<small><sup>+</sup></small> transference numbers. In addition, an effective dynamic decoupling of Li<small><sup>+</sup></small> and anions occurs with an Onsager coefficient <em>σ</em><small><sub>+−</sub></small> ≈ 0. These results provide a deeper understanding of the very efficient lithium-ion transport in SiS electrolytes, with the potential to bring further improvements for battery applications.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"253 ","pages":" 343-364"},"PeriodicalIF":3.4,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00012a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of PET microplastic particles to monomers in human serum by PETase† PET 酶将 PET 微塑料颗粒在人血清中降解为单体
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-04 DOI: 10.1039/D4FD00014E
Ximena Lopez-Lorenzo, David Hueting, Eliott Bosshard and Per-Olof Syrén

More than 8 billion tons of plastic waste has been generated, posing severe environmental consequences and health risks. Due to prolonged exposure, microplastic particles are found in human blood and other bodily fluids. Despite a lack of toxicity studies regarding microplastics, harmful effects for humans seem plausible and cannot be excluded. As small plastic particles readily translocate from the gut to body fluids, enzyme-based treatment of serum could constitute a promising future avenue to clear synthetic polymers and their corresponding oligomers via their degradation into monomers of lower toxicity than the material they originate from. Still, whereas it is known that the enzymatic depolymerization rate of synthetic polymers varies by orders of magnitude depending on the buffer and media composition, the activity of plastic-degrading enzymes in serum was unknown. Here, we report how an engineered PETase, which we show to be generally trans-selective via induced fit docking, can depolymerize two different microplastic-like substrates of the commodity polymer polyethylene terephthalate (PET) into its non-toxic monomer terephthalic acid (TPA) alongside mono(2-hydroxyethyl)terephthalate (MHET) in human serum at 37 °C. We show that the application of PETase does not influence cell viability in vitro. Our work highlights the potential of applying biocatalysis in biomedicine and represents a first step towards finding a future solution to the problem that microplastics in the bloodstream may pose.

产生的塑料废物超过 80 亿吨,对环境造成了严重后果,并对健康构成了威胁。由于长期接触,在人体血液和其他体液中发现了微塑料颗粒。尽管缺乏有关微塑料毒性的研究,但其对人体的有害影响似乎是可信的,而且不能排除。由于小塑料微粒很容易从肠道转移到体液中,因此对血清进行酶处理可能是未来清除合成聚合物及其响应低聚物的一个很有前景的途径,方法是将其降解为毒性低于其来源材料的单体。不过,尽管人们知道合成聚合物的酶解聚率因缓冲液和培养基成分的不同而有数量级的差异,但塑料降解酶在血清中的活性却不为人知。在这里,我们报告了一种工程 PET 酶是如何在 37°C 的人体血清中将商品聚合物聚对苯二甲酸乙二醇酯(PET)的两种不同微塑料基质快速解聚成其无毒单体对苯二甲酸(TPA)和对苯二甲酸单(2-羟乙基)酯(MHET)的。我们的研究表明,应用 PETase 不会影响体外细胞的活力。我们的工作彰显了将生物催化技术应用于生物医学的潜力,并为未来解决血液中的微塑料可能带来的问题迈出了第一步。
{"title":"Degradation of PET microplastic particles to monomers in human serum by PETase†","authors":"Ximena Lopez-Lorenzo, David Hueting, Eliott Bosshard and Per-Olof Syrén","doi":"10.1039/D4FD00014E","DOIUrl":"10.1039/D4FD00014E","url":null,"abstract":"<p >More than 8 billion tons of plastic waste has been generated, posing severe environmental consequences and health risks. Due to prolonged exposure, microplastic particles are found in human blood and other bodily fluids. Despite a lack of toxicity studies regarding microplastics, harmful effects for humans seem plausible and cannot be excluded. As small plastic particles readily translocate from the gut to body fluids, enzyme-based treatment of serum could constitute a promising future avenue to clear synthetic polymers and their corresponding oligomers <em>via</em> their degradation into monomers of lower toxicity than the material they originate from. Still, whereas it is known that the enzymatic depolymerization rate of synthetic polymers varies by orders of magnitude depending on the buffer and media composition, the activity of plastic-degrading enzymes in serum was unknown. Here, we report how an engineered PETase, which we show to be generally <em>trans</em>-selective <em>via</em> induced fit docking, can depolymerize two different microplastic-like substrates of the commodity polymer polyethylene terephthalate (PET) into its non-toxic monomer terephthalic acid (TPA) alongside mono(2-hydroxyethyl)terephthalate (MHET) in human serum at 37 °C. We show that the application of PETase does not influence cell viability <em>in vitro</em>. Our work highlights the potential of applying biocatalysis in biomedicine and represents a first step towards finding a future solution to the problem that microplastics in the bloodstream may pose.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 387-402"},"PeriodicalIF":3.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00014e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing deprotectase biocatalysts for synthesis† 开发用于合成的去保护酶生物催化剂。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-03-01 DOI: 10.1039/D4FD00016A
Lisa Kennedy, Mariyah Sajjad, Michael A. Herrera, Peter Szieber, Natasza Rybacka, Yinan Zhao, Craig Steven, Zainab Alghamdi, Ivan Zlatkov, Julie Hagen, Chloe Lauder, Natalie Rudolfova, Magdalena Abramiuk, Karolina Bolimowska, Daniel Joynt, Angelica Lucero, Gustavo Perez Ortiz, Annamaria Lilienkampf, Alison N. Hulme and Dominic J. Campopiano

Organic synthesis often requires multiple steps where a functional group (FG) is concealed from reaction by a protecting group (PG). Common PGs include N-carbobenzyloxy (Cbz or Z) of amines and tert-butyloxycarbonyl (OtBu) of acids. An essential step is the removal of the PG, but this often requires excess reagents, extensive time and can have low % yield. An overarching goal of biocatalysis is to use “green” or “enzymatic” methods to catalyse chemical transformations. One under-utilised approach is the use of “deprotectase” biocatalysts to selectively remove PGs from various organic substrates. The advantage of this methodology is the exquisite selectivity of the biocatalyst to only act on its target, leaving other FGs and PGs untouched. A number of deprotectase biocatalysts have been reported but they are not commonly used in mainstream synthetic routes. This study describes the construction of a cascade to deprotect doubly-protected amino acids. The well known Bacillus BS2 esterase was used to remove the OtBu PG from various amino acid substrates. The more obscure Sphingomonas Cbz-ase (amidohydrolase) was screened with a range of N-Cbz-modified amino acid substrates. We then combined both the BS2 and Cbz-ase together for a 1 pot, 2 step deprotection of the model substrate CBz-L-Phe OtBu to produce the free L-Phe. We also provide some insight into the residues involved in substrate recognition and catalysis using docked ligands in the crystal structure of BS2. Similarly, a structural model of the Cbz-ase identifies a potential di-metal binding site and reveals conserved active site residues. This new biocatalytic cascade should be further explored for its application in chemical synthesis.

有机合成通常需要多个步骤,在这些步骤中,一个官能团(FG)被一个保护基团(PG)所掩盖,使其不能发生反应。常见的保护基包括胺的 N-苄氧基(Cbz 或 Z)和酸的叔丁氧基羰基(OtBu)。去除 PG 是一个重要步骤,但这通常需要过量的试剂和大量的时间,而且收率可能很低。生物催化的首要目标是使用 "绿色 "或 "酶 "方法催化化学转化。一种未得到充分利用的方法是使用 "去保护酶 "生物催化剂来选择性地去除各种有机底物中的 PG。这种方法的优点是生物催化剂具有精湛的选择性,只作用于目标物,而不触及其他 FG 和 PG。已有许多关于去保护酶生物催化剂的报道,但它们在主流合成路线中并不常用。本研究介绍了如何构建一个级联来对双重保护氨基酸进行脱保护。众所周知的芽孢杆菌 BS2 酯酶被用来去除各种氨基酸底物中的 OtBu PG。我们用一系列 N-Cbz 修饰的氨基酸底物筛选了较不知名的鞘氨醇单胞菌 Cbz 酶(酰胺水解酶)。然后,我们将 BS2 和 Cbz-ase 结合在一起,对模型底物 CBz-L-Phe OtBu 进行一锅两步脱保护,生成游离的 L-Phe。我们还利用 BS2 晶体结构中的对接配体,对底物识别和催化所涉及的残基进行了深入研究。同样,Cbz 酶的结构模型确定了一个潜在的二金属结合位点,并揭示了保守的活性位点残基。应进一步探索这种新的生物催化级联在化学合成中的应用。
{"title":"Developing deprotectase biocatalysts for synthesis†","authors":"Lisa Kennedy, Mariyah Sajjad, Michael A. Herrera, Peter Szieber, Natasza Rybacka, Yinan Zhao, Craig Steven, Zainab Alghamdi, Ivan Zlatkov, Julie Hagen, Chloe Lauder, Natalie Rudolfova, Magdalena Abramiuk, Karolina Bolimowska, Daniel Joynt, Angelica Lucero, Gustavo Perez Ortiz, Annamaria Lilienkampf, Alison N. Hulme and Dominic J. Campopiano","doi":"10.1039/D4FD00016A","DOIUrl":"10.1039/D4FD00016A","url":null,"abstract":"<p >Organic synthesis often requires multiple steps where a functional group (FG) is concealed from reaction by a protecting group (PG). Common PGs include <em>N</em>-carbobenzyloxy (Cbz or Z) of amines and <em>tert</em>-butyloxycarbonyl (O<small><sup><em>t</em></sup></small>Bu) of acids. An essential step is the removal of the PG, but this often requires excess reagents, extensive time and can have low % yield. An overarching goal of biocatalysis is to use “green” or “enzymatic” methods to catalyse chemical transformations. One under-utilised approach is the use of “deprotectase” biocatalysts to selectively remove PGs from various organic substrates. The advantage of this methodology is the exquisite selectivity of the biocatalyst to only act on its target, leaving other FGs and PGs untouched. A number of deprotectase biocatalysts have been reported but they are not commonly used in mainstream synthetic routes. This study describes the construction of a cascade to deprotect doubly-protected amino acids. The well known <em>Bacillus</em> BS2 esterase was used to remove the O<small><sup><em>t</em></sup></small>Bu PG from various amino acid substrates. The more obscure <em>Sphingomonas</em> Cbz-ase (amidohydrolase) was screened with a range of <em>N</em>-Cbz-modified amino acid substrates. We then combined both the BS2 and Cbz-ase together for a 1 pot, 2 step deprotection of the model substrate CBz-<small>L</small>-Phe O<small><sup><em>t</em></sup></small>Bu to produce the free <small>L</small>-Phe. We also provide some insight into the residues involved in substrate recognition and catalysis using docked ligands in the crystal structure of BS2. Similarly, a structural model of the Cbz-ase identifies a potential di-metal binding site and reveals conserved active site residues. This new biocatalytic cascade should be further explored for its application in chemical synthesis.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 174-187"},"PeriodicalIF":3.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00016a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140009865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Faraday Discussions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1