首页 > 最新文献

Faraday Discussions最新文献

英文 中文
Enzyme evolution, engineering and design: mechanism and dynamics: general discussion 酶的进化、工程和设计:机理和动力学:一般性讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-23 DOI: 10.1039/D4FD90022G
Carlos Acevedo-Rocha, Lukasz Berlicki, Uwe T. Bornscheuer, Dominic J. Campopiano, Pimchai Chaiyen, Janko Čivić, Zhiqi Cong, Friedrich Johannes Ehinger, Sabine Flitsch, Artur Góra, Marko Hanzevacki, Jeremy N. Harvey, Donald Hilvert, Florian Hollfelder, Amanda G. Jarvis, Bruce R. Lichtenstein, Stefan Lutz, Thomas Malcomson, E. Neil G. Marsh, Neil R. McFarlane, Alexander McKenzie, Adrian Mulholland, Sílvia Osuna, Joelle N. Pelletier, Agata Raczyńska, Gerard Roelfes, Lubomír Rulíšek, Peter Stockinger, Nicholas Turner, Francesca Valetti, Marc Van der Kamp, Mikael Widersten and Cathleen Zeymer
{"title":"Enzyme evolution, engineering and design: mechanism and dynamics: general discussion","authors":"Carlos Acevedo-Rocha, Lukasz Berlicki, Uwe T. Bornscheuer, Dominic J. Campopiano, Pimchai Chaiyen, Janko Čivić, Zhiqi Cong, Friedrich Johannes Ehinger, Sabine Flitsch, Artur Góra, Marko Hanzevacki, Jeremy N. Harvey, Donald Hilvert, Florian Hollfelder, Amanda G. Jarvis, Bruce R. Lichtenstein, Stefan Lutz, Thomas Malcomson, E. Neil G. Marsh, Neil R. McFarlane, Alexander McKenzie, Adrian Mulholland, Sílvia Osuna, Joelle N. Pelletier, Agata Raczyńska, Gerard Roelfes, Lubomír Rulíšek, Peter Stockinger, Nicholas Turner, Francesca Valetti, Marc Van der Kamp, Mikael Widersten and Cathleen Zeymer","doi":"10.1039/D4FD90022G","DOIUrl":"10.1039/D4FD90022G","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 127-156"},"PeriodicalIF":3.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO adsorption on Pt(111) studied by periodic coupled cluster theory 利用周期耦合团簇理论研究 CO 在 Pt(111) 上的吸附。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-22 DOI: 10.1039/D4FD00085D
Johanna P. Carbone, Andreas Irmler, Alejandro Gallo, Tobias Schäfer, William Z. Van Benschoten, James J. Shepherd and Andreas Grüneis

We present an application of periodic coupled-cluster theory to the calculation of CO adsorption energies on the Pt(111) surface for different adsorption sites. The calculations employ a range of recently developed theoretical and computational methods. In particular, we use a recently introduced coupled-cluster ansatz, denoted as CCSD(cT), to compute correlation energies of the metallic Pt surface with and without adsorbed CO molecules. The convergence of Hartree–Fock adsorption energy contributions with respect to randomly shifted k-meshes is discussed. Recently introduced basis set incompleteness error corrections make it possible to achieve well-converged correlation energy contributions to the adsorption energies. We show that CCSD(cT) theory predicts the correct order of adsorption energies for the considered adsorption sites. Furthermore, we find that binding of the CO molecule to the top and fcc site is dominated by Hartree–Fock and correlation energy contributions, respectively.

我们介绍了周期耦合簇理论在 Pt(111) 表面不同吸附位点 CO 吸附能计算中的应用。计算采用了一系列最新开发的理论和计算方法。特别是,我们使用了最近引入的耦合簇变量(CCSD(cT))来计算金属铂表面吸附和不吸附 CO 分子时的相关能。讨论了哈特里-福克吸附能贡献与随机偏移 k 型的收敛性。最近引入的基集不完备性误差修正使吸附能的相关能贡献达到良好的收敛性成为可能。我们表明,CCSD(cT)理论预测了所考虑的吸附位点的吸附能的正确顺序。此外,我们还发现 CO 分子与顶部和 fcc 位点的结合分别由 Hartree-Fock 和相关能贡献所主导。
{"title":"CO adsorption on Pt(111) studied by periodic coupled cluster theory","authors":"Johanna P. Carbone, Andreas Irmler, Alejandro Gallo, Tobias Schäfer, William Z. Van Benschoten, James J. Shepherd and Andreas Grüneis","doi":"10.1039/D4FD00085D","DOIUrl":"10.1039/D4FD00085D","url":null,"abstract":"<p >We present an application of periodic coupled-cluster theory to the calculation of CO adsorption energies on the Pt(111) surface for different adsorption sites. The calculations employ a range of recently developed theoretical and computational methods. In particular, we use a recently introduced coupled-cluster ansatz, denoted as CCSD(cT), to compute correlation energies of the metallic Pt surface with and without adsorbed CO molecules. The convergence of Hartree–Fock adsorption energy contributions with respect to randomly shifted <em>k</em>-meshes is discussed. Recently introduced basis set incompleteness error corrections make it possible to achieve well-converged correlation energy contributions to the adsorption energies. We show that CCSD(cT) theory predicts the correct order of adsorption energies for the considered adsorption sites. Furthermore, we find that binding of the CO molecule to the top and fcc site is dominated by Hartree–Fock and correlation energy contributions, respectively.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"254 ","pages":" 586-597"},"PeriodicalIF":3.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocatalytic pathways, cascades, cells and systems: general discussion 生物催化途径、级联、细胞和系统:一般性讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-22 DOI: 10.1039/D4FD90023E
Magdalena Abramiuk, Carlos Acevedo-Rocha, Abdulrahman Alogaidi, Fraser Armstrong, Amulyasai Bakshi, Uwe T. Bornscheuer, Dominic J. Campopiano, Pimchai Chaiyen, Friedrich Johannes Ehinger, Sabine Flitsch, Jeremy N. Harvey, Donald Hilvert, Amanda G. Jarvis, Rhiannon E. H. Jones, Bruce R. Lichtenstein, Louis Y. P. Luk, Tara C. Lurshay, Thomas Malcomson, E. Neil G. Marsh, Neil R. McFarlane, Alexander McKenzie, Clare F. Megarity, Vicent Moliner, Adrian J. Mulholland, Ben Orton, Joelle N. Pelletier, Agata Raczyńska, Per-Olof Syrén, Sean Adeoti Thompson, Nicholas Turner, Francesca Valetti, Lu Shin Wong and Cathleen Zeymer
{"title":"Biocatalytic pathways, cascades, cells and systems: general discussion","authors":"Magdalena Abramiuk, Carlos Acevedo-Rocha, Abdulrahman Alogaidi, Fraser Armstrong, Amulyasai Bakshi, Uwe T. Bornscheuer, Dominic J. Campopiano, Pimchai Chaiyen, Friedrich Johannes Ehinger, Sabine Flitsch, Jeremy N. Harvey, Donald Hilvert, Amanda G. Jarvis, Rhiannon E. H. Jones, Bruce R. Lichtenstein, Louis Y. P. Luk, Tara C. Lurshay, Thomas Malcomson, E. Neil G. Marsh, Neil R. McFarlane, Alexander McKenzie, Clare F. Megarity, Vicent Moliner, Adrian J. Mulholland, Ben Orton, Joelle N. Pelletier, Agata Raczyńska, Per-Olof Syrén, Sean Adeoti Thompson, Nicholas Turner, Francesca Valetti, Lu Shin Wong and Cathleen Zeymer","doi":"10.1039/D4FD90023E","DOIUrl":"10.1039/D4FD90023E","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"252 ","pages":" 241-261"},"PeriodicalIF":3.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specialising and analysing instruction-tuned and byte-level language models for organic reaction prediction† 针对有机反应预测的指令调整和字节级语言模型的专业化与分析
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-19 DOI: 10.1039/D4FD00104D
Jiayun Pang and Ivan Vulić

Transformer-based encoder–decoder models have demonstrated impressive results in chemical reaction prediction tasks. However, these models typically rely on pretraining using tens of millions of unlabelled molecules, which can be time-consuming and GPU-intensive. One of the central questions we aim to answer in this work is: can FlanT5 and ByT5, the encoder–decoder models pretrained solely on language data, be effectively specialised for organic reaction prediction through task-specific fine-tuning? We conduct a systematic empirical study on several key issues of the process, including tokenisation, the impact of (SMILES-oriented) pretraining, fine-tuning sample efficiency, and decoding algorithms at inference. Our key findings indicate that although being pretrained only on language tasks, FlanT5 and ByT5 provide a solid foundation to fine-tune for reaction prediction, and thus become ‘chemistry domain compatible’ in the process. This suggests that GPU-intensive and expensive pretraining on a large dataset of unlabelled molecules may be useful yet not essential, to leverage the power of language models for chemistry. All our models achieve comparable Top-1 and Top-5 accuracy although some variation across different models does exist. Notably, tokenisation and vocabulary trimming slightly affect final performance but can speed up training and inference; the most efficient greedy decoding strategy is very competitive while only marginal gains can be achieved from more sophisticated decoding algorithms. In summary, we evaluate FlanT5 and ByT5 across several dimensions and benchmark their impact on organic reaction prediction, which may guide more effective use of these state-of-the-art language models for chemistry-related tasks in the future.

基于变压器的编码器-解码器模型在化学反应预测任务中取得了令人瞩目的成果。然而,这些模型通常依赖于使用数千万个未标记的分子进行预训练,这不仅耗时,而且需要 GPU 密集型处理。在这项工作中,我们要回答的核心问题之一是FlanT5 和 ByT5(仅在语言数据上进行预训练的编码解码器模型)能否通过特定任务的微调有效地专门用于有机反应预测?我们对这一过程中的几个关键问题进行了系统的实证研究,包括标记化、(面向 SMILES 的)预训练的影响、微调样本效率以及推理时的解码算法。我们的主要研究结果表明,虽然 FlanT5 和 ByT5 只对语言任务进行了预训练,但它们为反应预测的微调打下了坚实的基础,从而在此过程中实现了 "化学领域兼容"。这表明,在大量未标记的分子数据集上进行 GPU 密集且昂贵的预训练,对于发挥化学语言模型的威力可能是有用的,但并非必不可少。尽管不同模型之间存在一些差异,但我们的所有模型都达到了相当的 Top-1 和 Top-5 准确率。值得注意的是,标记化和词汇修剪会略微影响最终性能,但可以加快训练和推理速度;最有效的贪婪解码策略非常有竞争力,而更复杂的解码算法只能取得微弱的收益。总之,我们从多个维度对 FlanT5 和 ByT5 进行了评估,并对它们对有机反应预测的影响进行了基准测试。
{"title":"Specialising and analysing instruction-tuned and byte-level language models for organic reaction prediction†","authors":"Jiayun Pang and Ivan Vulić","doi":"10.1039/D4FD00104D","DOIUrl":"10.1039/D4FD00104D","url":null,"abstract":"<p >Transformer-based encoder–decoder models have demonstrated impressive results in chemical reaction prediction tasks. However, these models typically rely on pretraining using tens of millions of unlabelled molecules, which can be time-consuming and GPU-intensive. One of the central questions we aim to answer in this work is: can FlanT5 and ByT5, the encoder–decoder models pretrained solely on language data, be effectively specialised for organic reaction prediction through task-specific fine-tuning? We conduct a systematic empirical study on several key issues of the process, including tokenisation, the impact of (SMILES-oriented) pretraining, fine-tuning sample efficiency, and decoding algorithms at inference. Our key findings indicate that although being pretrained only on language tasks, FlanT5 and ByT5 provide a solid foundation to fine-tune for reaction prediction, and thus become ‘chemistry domain compatible’ in the process. This suggests that GPU-intensive and expensive pretraining on a large dataset of unlabelled molecules may be useful yet not essential, to leverage the power of language models for chemistry. All our models achieve comparable Top-1 and Top-5 accuracy although some variation across different models does exist. Notably, tokenisation and vocabulary trimming slightly affect final performance but can speed up training and inference; the most efficient greedy decoding strategy is very competitive while only marginal gains can be achieved from more sophisticated decoding algorithms. In summary, we evaluate FlanT5 and ByT5 across several dimensions and benchmark their impact on organic reaction prediction, which may guide more effective use of these state-of-the-art language models for chemistry-related tasks in the future.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"256 ","pages":" 413-433"},"PeriodicalIF":3.4,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00104d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scattering in extreme environments: general discussion 极端环境中的散射:一般性讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-13 DOI: 10.1039/D4FD90018A
Gil Alexandrowicz, Dmitri Babikov, Mark Brouard, Alexander Butler, Helen Chadwick, David W. Chandler, Michal Fárník, Jan Fingerhut, Hua Guo, Tibor Győri, Christian T. Haakansson, Dan J. Harding, Dwayne Heard, Brianna R. Heazlewood, David Heathcote, Nils Hertl, Pablo G. Jambrina, Geert-Jan Kroes, Olivia A. Krohn, Paul D. Lane, Viet Le Duc, Heather J. Lewandowski, Jérôme Loreau, Max McCrea, Kenneth G. McKendrick, Jennifer Meyer, Daniel R. Moon, Amy S. Mullin, Gilbert M. Nathanson, Daniel M. Neumark, Kang-Kuen Ni, Nitish Pal, Eva Pluhařová, Christopher Reilly, Patrick Robertson, Steven J. Sibener, Chris Sparling, Vimala Sridurai, Ajeet Srivastav, Matt Strutton, Arthur G. Suits, Joshua Wagner, Peter D. Watson, Roland Wester, Stefan Willitsch, Alec. M. Wodtke and Bum Suk Zhao
{"title":"Scattering in extreme environments: general discussion","authors":"Gil Alexandrowicz, Dmitri Babikov, Mark Brouard, Alexander Butler, Helen Chadwick, David W. Chandler, Michal Fárník, Jan Fingerhut, Hua Guo, Tibor Győri, Christian T. Haakansson, Dan J. Harding, Dwayne Heard, Brianna R. Heazlewood, David Heathcote, Nils Hertl, Pablo G. Jambrina, Geert-Jan Kroes, Olivia A. Krohn, Paul D. Lane, Viet Le Duc, Heather J. Lewandowski, Jérôme Loreau, Max McCrea, Kenneth G. McKendrick, Jennifer Meyer, Daniel R. Moon, Amy S. Mullin, Gilbert M. Nathanson, Daniel M. Neumark, Kang-Kuen Ni, Nitish Pal, Eva Pluhařová, Christopher Reilly, Patrick Robertson, Steven J. Sibener, Chris Sparling, Vimala Sridurai, Ajeet Srivastav, Matt Strutton, Arthur G. Suits, Joshua Wagner, Peter D. Watson, Roland Wester, Stefan Willitsch, Alec. M. Wodtke and Bum Suk Zhao","doi":"10.1039/D4FD90018A","DOIUrl":"10.1039/D4FD90018A","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"251 ","pages":" 171-204"},"PeriodicalIF":3.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical reflection on attempts to machine-learn materials synthesis insights from text-mined literature recipes 对从文本挖掘的文献配方中机器学习材料合成见解的尝试进行批判性反思
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-13 DOI: 10.1039/D4FD00112E
Wenhao Sun and Nicholas David

Synthesis of predicted materials is the key and final step needed to realize a vision of computationally accelerated materials discovery. Because so many materials have been previously synthesized, one would anticipate that text-mining synthesis recipes from the literature would yield a valuable dataset to train machine-learning models that can predict synthesis recipes for new materials. Between 2016 and 2019, the corresponding author (Wenhao Sun) participated in efforts to text-mine 31 782 solid-state synthesis recipes and 35 675 solution-based synthesis recipes from the literature. Here, we characterize these datasets and show that they do not satisfy the “4 Vs” of data-science—that is: volume, variety, veracity and velocity. For this reason, we believe that machine-learned regression or classification models built from these datasets will have limited utility in guiding the predictive synthesis of novel materials. On the other hand, these large datasets provided an opportunity to identify anomalous synthesis recipes—which in fact did inspire new hypotheses on how materials form, which we later validated by experiment. Our case study here urges a re-evaluation on how to extract the most value from large historical materials-science datasets.

预测材料的合成是实现计算加速材料发现愿景的关键和最后一步。由于之前已经合成了如此多的材料,人们预计从文献中挖掘合成配方将产生一个宝贵的数据集,用于训练机器学习模型,从而预测新材料的合成配方。从2016年到2019年,通讯作者(孙文浩)参与了从文献中文本挖掘31782个固态合成配方和35675个溶液型合成配方的工作。在此,我们分析了这些数据集的特点,并表明它们并不符合数据科学的 "4V "标准,即:数量、真实性、多样性和速度。因此,我们认为根据这些数据集建立的机器学习回归或分类模型在指导新型材料的预测合成方面作用有限。另一方面,这些大型数据集提供了一个发现异常合成配方的机会--事实上,这些配方确实启发了我们对材料如何形成的新假设,我们后来通过实验验证了这些假设。我们的案例研究促使我们重新评估如何从大型历史材料科学数据集中获取最大价值。
{"title":"A critical reflection on attempts to machine-learn materials synthesis insights from text-mined literature recipes","authors":"Wenhao Sun and Nicholas David","doi":"10.1039/D4FD00112E","DOIUrl":"10.1039/D4FD00112E","url":null,"abstract":"<p >Synthesis of predicted materials is the key and final step needed to realize a vision of computationally accelerated materials discovery. Because so many materials have been previously synthesized, one would anticipate that text-mining synthesis recipes from the literature would yield a valuable dataset to train machine-learning models that can predict synthesis recipes for new materials. Between 2016 and 2019, the corresponding author (Wenhao Sun) participated in efforts to text-mine 31 782 solid-state synthesis recipes and 35 675 solution-based synthesis recipes from the literature. Here, we characterize these datasets and show that they do not satisfy the “4 Vs” of data-science—that is: volume, variety, veracity and velocity. For this reason, we believe that machine-learned regression or classification models built from these datasets will have limited utility in guiding the predictive synthesis of novel materials. On the other hand, these large datasets provided an opportunity to identify anomalous synthesis recipes—which in fact did inspire new hypotheses on how materials form, which we later validated by experiment. Our case study here urges a re-evaluation on how to extract the most value from large historical materials-science datasets.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"256 ","pages":" 614-638"},"PeriodicalIF":3.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00112e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scattering at condensed-phase surfaces: general discussion 凝聚相表面的散射:一般讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-12 DOI: 10.1039/D4FD90020K
Daniel J. Auerbach, Dmitri Babikov, Alexander Butler, David W. Chandler, Jan Fingerhut, Hua Guo, Dan J. Harding, David Heathcote, Nils Hertl, Bin Jiang, Geert-Jan Kroes, Paul D. Lane, Jérôme Loreau, Stuart R. Mackenzie, Kenneth G. McKendrick, Daniel R. Moon, Gilbert M. Nathanson, Daniel M. Neumark, Rahul Pandey, George C. Schatz, Steven J. Sibener, Ajeet Srivastav, Claire Vallance, Robert A. B. van Bree, Joshua Wagner, Gilbert C. Walker, Peter D. Watson, Stefan Willitsch, Alec M. Wodtke and Bum Suk Zhao
{"title":"Scattering at condensed-phase surfaces: general discussion","authors":"Daniel J. Auerbach, Dmitri Babikov, Alexander Butler, David W. Chandler, Jan Fingerhut, Hua Guo, Dan J. Harding, David Heathcote, Nils Hertl, Bin Jiang, Geert-Jan Kroes, Paul D. Lane, Jérôme Loreau, Stuart R. Mackenzie, Kenneth G. McKendrick, Daniel R. Moon, Gilbert M. Nathanson, Daniel M. Neumark, Rahul Pandey, George C. Schatz, Steven J. Sibener, Ajeet Srivastav, Claire Vallance, Robert A. B. van Bree, Joshua Wagner, Gilbert C. Walker, Peter D. Watson, Stefan Willitsch, Alec M. Wodtke and Bum Suk Zhao","doi":"10.1039/D4FD90020K","DOIUrl":"10.1039/D4FD90020K","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"251 ","pages":" 471-508"},"PeriodicalIF":3.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scattering of larger molecules – part 2: general discussion 较大分子的散射--第 2 部分:一般性讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-09 DOI: 10.1039/D4FD90021A
F. Javier Aoiz, Nadia Balucani, Astrid Bergeat, Alexander Butler, David W. Chandler, Gábor Czakó, Tibor Győri, Dwayne E. Heard, David Heathcote, Brianna R. Heazlewood, Nils Hertl, Pablo G. Jambrina, Ralf I. Kaiser, Olivia A. Krohn, Viet Le Duc, Jérôme Loreau, Stuart R. Mackenzie, Kenneth G. McKendrick, Jennifer Meyer, Gilbert M. Nathanson, Daniel M. Neumark, Rahul Pandey, Christopher Reilly, Patrick Robertson, George C. Schatz, Steven J. Sibener, Arthur G. Suits, Peter D. Watson, Roland Wester, Stefan Willitsch, Alec M. Wodtke and Bum Suk Zhao
{"title":"Scattering of larger molecules – part 2: general discussion","authors":"F. Javier Aoiz, Nadia Balucani, Astrid Bergeat, Alexander Butler, David W. Chandler, Gábor Czakó, Tibor Győri, Dwayne E. Heard, David Heathcote, Brianna R. Heazlewood, Nils Hertl, Pablo G. Jambrina, Ralf I. Kaiser, Olivia A. Krohn, Viet Le Duc, Jérôme Loreau, Stuart R. Mackenzie, Kenneth G. McKendrick, Jennifer Meyer, Gilbert M. Nathanson, Daniel M. Neumark, Rahul Pandey, Christopher Reilly, Patrick Robertson, George C. Schatz, Steven J. Sibener, Arthur G. Suits, Peter D. Watson, Roland Wester, Stefan Willitsch, Alec M. Wodtke and Bum Suk Zhao","doi":"10.1039/D4FD90021A","DOIUrl":"10.1039/D4FD90021A","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"251 ","pages":" 622-665"},"PeriodicalIF":3.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies 对第一原理质量升华焓基础模型进行数据高效微调
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-09 DOI: 10.1039/D4FD00107A
Harveen Kaur, Flaviano Della Pia, Ilyes Batatia, Xavier R. Advincula, Benjamin X. Shi, Jinggang Lan, Gábor Csányi, Angelos Michaelides and Venkat Kapil

Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy – even with the aid of machine learning potentials – is a challenge that requires sub-kJ mol−1 accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data-efficient protocol for training machine learning interatomic potentials by fine-tuning the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-kJ mol−1 accuracy in the sublimation enthalpies and sub-1% error in densities at finite temperature and pressure. Exploiting this data efficiency, we perform preliminary NPT simulations of hexagonal ice at the random phase approximation level and demonstrate a good agreement with experiments. Our results show promise for finite-temperature modelling of molecular crystals with the accuracy of correlated electronic structure theory methods.

计算分子晶体多晶体的升华焓与广泛的技术应用息息相关。然而,在第一原理精度下预测这些量--即使借助机器学习势能--是一项挑战,需要势能面和限温采样达到亚千焦/摩尔精度。我们通过微调基础 MACE-MP-0 模型,提出了一种精确且数据高效的机器学习原子间势能训练协议,并展示了其在冰多晶体的升华焓和物理性质方面的能力。我们的方法只需要几十个训练结构,就能在有限温度和压力下实现亚 kJ/mol 的升华焓精度和亚 1 % 的密度误差。利用这种数据效率,我们在随机相近似水平上对六角冰进行了初步的 N P T 模拟,并证明与实验结果吻合。我们的研究结果表明,分子晶体的有限温度建模有望达到相关电子结构理论方法的精度。
{"title":"Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies","authors":"Harveen Kaur, Flaviano Della Pia, Ilyes Batatia, Xavier R. Advincula, Benjamin X. Shi, Jinggang Lan, Gábor Csányi, Angelos Michaelides and Venkat Kapil","doi":"10.1039/D4FD00107A","DOIUrl":"10.1039/D4FD00107A","url":null,"abstract":"<p >Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy – even with the aid of machine learning potentials – is a challenge that requires sub-kJ mol<small><sup>−1</sup></small> accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data-efficient protocol for training machine learning interatomic potentials by fine-tuning the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-kJ mol<small><sup>−1</sup></small> accuracy in the sublimation enthalpies and sub-1% error in densities at finite temperature and pressure. Exploiting this data efficiency, we perform preliminary <em>NPT</em> simulations of hexagonal ice at the random phase approximation level and demonstrate a good agreement with experiments. Our results show promise for finite-temperature modelling of molecular crystals with the accuracy of correlated electronic structure theory methods.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"256 ","pages":" 120-138"},"PeriodicalIF":3.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00107a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scattering of larger molecules – part 1: general discussion 较大分子的散射--第 1 部分:一般性讨论。
IF 3.4 3区 化学 Q2 Chemistry Pub Date : 2024-08-06 DOI: 10.1039/D4FD90019G
Dmitri Babikov, Nadia Balucani, Astrid Bergeat, Mark Brouard, David W. Chandler, Matthew L. Costen, Michal Fárník, Hua Guo, Tibor Győri, Dwayne Heard, David Heathcote, Nils Hertl, Pablo G. Jambrina, Nathanael M. Kidwell, O. A. Krohn, Viet Le Duc, Jérôme Loreau, Stuart R. Mackenzie, Max McCrea, Kenneth G. McKendrick, Jennifer Meyer, Daniel R. Moon, Amy S. Mullin, Gilbert S. Nathanson, Daniel M. Neumark, Kang-Kuen Ni, Martin J. Paterson, Eva Pluhařová, Patrick Robertson, Christopher Reilly, George C. Schatz, Chris Sparling, Arthur G. Suits, Peter D. Watson, Roland Wester, Stefan Willitsch and Alec M. Wodtke
{"title":"Scattering of larger molecules – part 1: general discussion","authors":"Dmitri Babikov, Nadia Balucani, Astrid Bergeat, Mark Brouard, David W. Chandler, Matthew L. Costen, Michal Fárník, Hua Guo, Tibor Győri, Dwayne Heard, David Heathcote, Nils Hertl, Pablo G. Jambrina, Nathanael M. Kidwell, O. A. Krohn, Viet Le Duc, Jérôme Loreau, Stuart R. Mackenzie, Max McCrea, Kenneth G. McKendrick, Jennifer Meyer, Daniel R. Moon, Amy S. Mullin, Gilbert S. Nathanson, Daniel M. Neumark, Kang-Kuen Ni, Martin J. Paterson, Eva Pluhařová, Patrick Robertson, Christopher Reilly, George C. Schatz, Chris Sparling, Arthur G. Suits, Peter D. Watson, Roland Wester, Stefan Willitsch and Alec M. Wodtke","doi":"10.1039/D4FD90019G","DOIUrl":"10.1039/D4FD90019G","url":null,"abstract":"","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"251 ","pages":" 313-341"},"PeriodicalIF":3.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Faraday Discussions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1