首页 > 最新文献

European Journal of Remote Sensing最新文献

英文 中文
PRISMA hyperspectral imagery for mapping alteration zones associated with Kuhpanj porphyry copper deposit, Southern Iran 利用 PRISMA 高光谱图像绘制伊朗南部 Kuhpanj 斑岩铜矿床相关蚀变区地图
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2024-01-22 DOI: 10.1080/22797254.2023.2299369
Maryam Esmaeili, Nader Fathianpour, Saeed Soltani-Mohammadi
Hyperspectral images have been extensively employed to map alterations related to various ore deposits, particularly those associated with porphyry copper deposits. The present study aims to evalua...
高光谱图像已被广泛用于绘制与各种矿床有关的蚀变图,特别是与斑岩铜矿床有关的蚀变图。本研究旨在评估高光谱图像对铜矿的影响。
{"title":"PRISMA hyperspectral imagery for mapping alteration zones associated with Kuhpanj porphyry copper deposit, Southern Iran","authors":"Maryam Esmaeili, Nader Fathianpour, Saeed Soltani-Mohammadi","doi":"10.1080/22797254.2023.2299369","DOIUrl":"https://doi.org/10.1080/22797254.2023.2299369","url":null,"abstract":"Hyperspectral images have been extensively employed to map alterations related to various ore deposits, particularly those associated with porphyry copper deposits. The present study aims to evalua...","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"6 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upgrade and extension of LSA-SAF land surface albedo archive from EPS Metop/AVHRR: description and quality assessment EPS Metop/AVHRR 的 LSA-SAF 陆面反照率档案的升级和扩展:说明和质量评估
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2024-01-21 DOI: 10.1080/22797254.2023.2300043
Anthéa Delmotte, Daniel Juncu, Xavier Ceamanos, Isabel F. Trigo, Sandra Gomes
ETAL is the operational EPS Ten-Day Albedo product, produced by the EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). By back-processing the full catalogue of EPS-Metop r...
ETAL 是运行中的 EPS 十日反照率产品,由欧洲气象卫星应用组织陆面分析卫星应用设施(LSA SAF)制作。通过对完整的 EPS-Metop 反演数据目录进行后处理,ETAL 可提供更多的反照率数据。
{"title":"Upgrade and extension of LSA-SAF land surface albedo archive from EPS Metop/AVHRR: description and quality assessment","authors":"Anthéa Delmotte, Daniel Juncu, Xavier Ceamanos, Isabel F. Trigo, Sandra Gomes","doi":"10.1080/22797254.2023.2300043","DOIUrl":"https://doi.org/10.1080/22797254.2023.2300043","url":null,"abstract":"ETAL is the operational EPS Ten-Day Albedo product, produced by the EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). By back-processing the full catalogue of EPS-Metop r...","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"9 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating the impact of dense vegetation on the Sentinel-1 surface soil moisture retrievals over Europe 减轻茂密植被对欧洲上空哨兵-1 号地表土壤湿度检索的影响
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2024-01-10 DOI: 10.1080/22797254.2023.2300985
Samuel Massart, M. Vreugdenhil, B. Bauer-Marschallinger, C. Navacchi, Bernhard Raml, W. Wagner
{"title":"Mitigating the impact of dense vegetation on the Sentinel-1 surface soil moisture retrievals over Europe","authors":"Samuel Massart, M. Vreugdenhil, B. Bauer-Marschallinger, C. Navacchi, Bernhard Raml, W. Wagner","doi":"10.1080/22797254.2023.2300985","DOIUrl":"https://doi.org/10.1080/22797254.2023.2300985","url":null,"abstract":"","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"51 12","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regional estimates of gross primary production applying the Process-Based Model 3D-CMCC-FEM vs. Remote-Sensing multiple datasets 基于过程的模型 3D-CMCC-FEM 与遥感多种数据集的区域初级生产总量估算对比
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2024-01-09 DOI: 10.1080/22797254.2023.2301657
D. Dalmonech, E. Vangi, M. Chiesi, G. Chirici, L. Fibbi, F. Giannetti, G. Marano, C. Massari, A. Nolè, J. Xiao, A. Collalti
Process-based Forest Models (PBFMs) offer the possibility to capture important spatial and temporal patterns of carbon fluxes and stocks in forests. Yet, their predictive capacity should be demonst...
基于过程的森林模型(PBFMs)为捕捉森林中碳通量和碳储量的重要时空模式提供了可能性。然而,它们的预测能力应该得到证明...
{"title":"Regional estimates of gross primary production applying the Process-Based Model 3D-CMCC-FEM vs. Remote-Sensing multiple datasets","authors":"D. Dalmonech, E. Vangi, M. Chiesi, G. Chirici, L. Fibbi, F. Giannetti, G. Marano, C. Massari, A. Nolè, J. Xiao, A. Collalti","doi":"10.1080/22797254.2023.2301657","DOIUrl":"https://doi.org/10.1080/22797254.2023.2301657","url":null,"abstract":"Process-based Forest Models (PBFMs) offer the possibility to capture important spatial and temporal patterns of carbon fluxes and stocks in forests. Yet, their predictive capacity should be demonst...","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139408214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictions of Spartina alterniflora leaf functional traits based on hyperspectral data and machine learning models 基于高光谱数据和机器学习模型的互叶女贞叶片功能特征预测
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2023-12-22 DOI: 10.1080/22797254.2023.2294951
Wei Li, Xueyan Zuo, Zhijun Liu, Leichao Nie, Huazhe Li, Junjie Wang, Zhiguo Dou, Yang Cai, Xiajie Zhai, Lijuan Cui
Investigating the functional traits of Spartina alterniflora can provide insights towards understanding its invasion mechanism, and developing a method leaves can improve its management in coastal ...
研究互花叶斯巴达的功能特征有助于了解其入侵机制,并开发一种方法来改善其在沿海地区的管理。
{"title":"Predictions of Spartina alterniflora leaf functional traits based on hyperspectral data and machine learning models","authors":"Wei Li, Xueyan Zuo, Zhijun Liu, Leichao Nie, Huazhe Li, Junjie Wang, Zhiguo Dou, Yang Cai, Xiajie Zhai, Lijuan Cui","doi":"10.1080/22797254.2023.2294951","DOIUrl":"https://doi.org/10.1080/22797254.2023.2294951","url":null,"abstract":"Investigating the functional traits of Spartina alterniflora can provide insights towards understanding its invasion mechanism, and developing a method leaves can improve its management in coastal ...","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"25 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139062935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining multiple UAV-Based indicators for wheat yield estimation, a case study from Germany 结合基于无人机的多种指标进行小麦产量估算,德国案例研究
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2023-12-22 DOI: 10.1080/22797254.2023.2294121
Shovkat Khodjaev, L. Kuhn, I. Bobojonov, T. Glauben
{"title":"Combining multiple UAV-Based indicators for wheat yield estimation, a case study from Germany","authors":"Shovkat Khodjaev, L. Kuhn, I. Bobojonov, T. Glauben","doi":"10.1080/22797254.2023.2294121","DOIUrl":"https://doi.org/10.1080/22797254.2023.2294121","url":null,"abstract":"","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"1 2","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138944627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping changes of grassland to arable land using automatic machine learning of stacked ensembles and H2O library 利用叠加集合和 H2O 库的自动机器学习绘制草地到耕地的变化图
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2023-12-22 DOI: 10.1080/22797254.2023.2294127
Jiří Šandera, P. Štych
{"title":"Mapping changes of grassland to arable land using automatic machine learning of stacked ensembles and H2O library","authors":"Jiří Šandera, P. Štych","doi":"10.1080/22797254.2023.2294127","DOIUrl":"https://doi.org/10.1080/22797254.2023.2294127","url":null,"abstract":"","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"48 25","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetry of leaf internal structure affects PLSR modelling of anatomical traits using VIS-NIR leaf level spectra 叶片内部结构的不对称性影响利用 VIS-NIR 叶片水平光谱对解剖特征进行 PLSR 建模
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2023-12-18 DOI: 10.1080/22797254.2023.2292154
Eva Neuwirthová, Zuzana Lhotáková, Lucie Červená, Petr Lukeš, Petya Campbell, Jana Albrechtová
Leaf traits can be used to elucidate vegetation functional responses to global climate change. Pigments, water and leaf mass per area are the most used traits. However, detailed anatomical traits s...
叶片特征可用于阐明植被对全球气候变化的功能响应。色素、水分和叶片单位面积质量是最常用的性状。然而,详细的解剖学特征...
{"title":"Asymmetry of leaf internal structure affects PLSR modelling of anatomical traits using VIS-NIR leaf level spectra","authors":"Eva Neuwirthová, Zuzana Lhotáková, Lucie Červená, Petr Lukeš, Petya Campbell, Jana Albrechtová","doi":"10.1080/22797254.2023.2292154","DOIUrl":"https://doi.org/10.1080/22797254.2023.2292154","url":null,"abstract":"Leaf traits can be used to elucidate vegetation functional responses to global climate change. Pigments, water and leaf mass per area are the most used traits. However, detailed anatomical traits s...","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"13 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138740918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable land cover classification with modal decision trees 利用模式决策树进行可解释的土地覆被分类
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2023-12-18 DOI: 10.1080/22797254.2023.2262738
G. Pagliarini, G. Sciavicco
ABSTRACT Land cover classification (LCC) refers to the task of classifying each pixel in satellite/aerial imagery by predicting a label carrying information about its nature. Despite the importance of having transparent, symbolic decision models, in the recent literature, LCC has been mainly approached with black-box functional models, that are able to leverage the spatial dimensions within the data. In this article, we argue that standard symbolic decision models can be extended to perform a form of spatial reasoning that is adequate for LCC. We propose a generalization of a classical decision tree learning model, based on replacing propositional logic with a modal spatial logic, and provide a CART-like learning algorithm for it. We evaluate its performance at five different LCC tasks, showing that this technique leads to classification models whose performances are superior to those of their propositional counterpart, and at least comparable with those of non-symbolic ones. Ultimately, we show that spatial decision trees and random forests are able to extract complex, but interpretable spatial patterns.
摘要 土地覆被分类(LCC)是指通过预测包含其性质信息的标签,对卫星/航空图像中的每个像素进行分类的任务。尽管建立透明的符号决策模型非常重要,但在最近的文献中,土地覆被分类主要采用黑盒函数模型,这种模型能够利用数据中的空间维度。在本文中,我们认为标准的符号决策模型可以扩展为空间推理的一种形式,足以用于 LCC。我们基于用模态空间逻辑取代命题逻辑的方法,提出了一种经典决策树学习模型的广义化,并为其提供了一种类似于 CART 的学习算法。我们对其在五种不同的 LCC 任务中的性能进行了评估,结果表明该技术所产生的分类模型性能优于其命题对应模型,至少可与非符号模型相媲美。最终,我们证明空间决策树和随机森林能够提取复杂但可解释的空间模式。
{"title":"Interpretable land cover classification with modal decision trees","authors":"G. Pagliarini, G. Sciavicco","doi":"10.1080/22797254.2023.2262738","DOIUrl":"https://doi.org/10.1080/22797254.2023.2262738","url":null,"abstract":"ABSTRACT Land cover classification (LCC) refers to the task of classifying each pixel in satellite/aerial imagery by predicting a label carrying information about its nature. Despite the importance of having transparent, symbolic decision models, in the recent literature, LCC has been mainly approached with black-box functional models, that are able to leverage the spatial dimensions within the data. In this article, we argue that standard symbolic decision models can be extended to perform a form of spatial reasoning that is adequate for LCC. We propose a generalization of a classical decision tree learning model, based on replacing propositional logic with a modal spatial logic, and provide a CART-like learning algorithm for it. We evaluate its performance at five different LCC tasks, showing that this technique leads to classification models whose performances are superior to those of their propositional counterpart, and at least comparable with those of non-symbolic ones. Ultimately, we show that spatial decision trees and random forests are able to extract complex, but interpretable spatial patterns.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"156 ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139176058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of research on remote sensing images shadow detection and application to building extraction 遥感图像阴影检测及建筑提取应用研究综述
IF 4 4区 地球科学 Q2 REMOTE SENSING Pub Date : 2023-12-13 DOI: 10.1080/22797254.2023.2293163
Xueyan Dong, Jiannong Cao, Weiheng Zhao
Buildings are one of the most important habitats for humans, and therefore, accurate identification and extraction of building information in remote sensing images are crucial. Buildings in remote ...
建筑物是人类最重要的栖息地之一,因此,准确识别和提取遥感图像中的建筑物信息至关重要。建筑在遥远的…
{"title":"A review of research on remote sensing images shadow detection and application to building extraction","authors":"Xueyan Dong, Jiannong Cao, Weiheng Zhao","doi":"10.1080/22797254.2023.2293163","DOIUrl":"https://doi.org/10.1080/22797254.2023.2293163","url":null,"abstract":"Buildings are one of the most important habitats for humans, and therefore, accurate identification and extraction of building information in remote sensing images are crucial. Buildings in remote ...","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"33 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138630343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Remote Sensing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1