首页 > 最新文献

Nature Structural & Molecular Biology最新文献

英文 中文
Publisher Correction: Structural basis of LRPPRC–SLIRP-dependent translation by the mitoribosome 出版商更正:mitoribosome依赖LRPPRC-SLIRP翻译的结构基础。
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1038/s41594-024-01402-7
Vivek Singh, J. Conor Moran, Yuzuru Itoh, Iliana C. Soto, Flavia Fontanesi, Mary Couvillion, Martijn A. Huynen, L. Stirling Churchman, Antoni Barrientos, Alexey Amunts
{"title":"Publisher Correction: Structural basis of LRPPRC–SLIRP-dependent translation by the mitoribosome","authors":"Vivek Singh, J. Conor Moran, Yuzuru Itoh, Iliana C. Soto, Flavia Fontanesi, Mary Couvillion, Martijn A. Huynen, L. Stirling Churchman, Antoni Barrientos, Alexey Amunts","doi":"10.1038/s41594-024-01402-7","DOIUrl":"10.1038/s41594-024-01402-7","url":null,"abstract":"","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 11","pages":"1809-1809"},"PeriodicalIF":12.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01402-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural basis for translational control by the human 48S initiation complex 人类 48S 启动复合体控制翻译的结构基础
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-17 DOI: 10.1038/s41594-024-01378-4
Valentyn Petrychenko, Sung-Hui Yi, David Liedtke, Bee-Zen Peng, Marina V. Rodnina, Niels Fischer
The selection of an open reading frame (ORF) for translation of eukaryotic mRNA relies on remodeling of the scanning 48S initiation complex into an elongation-ready 80S ribosome. Using cryo-electron microscopy, we visualize the key commitment steps orchestrating 48S remodeling in humans. The mRNA Kozak sequence facilitates mRNA scanning in the 48S open state and stabilizes the 48S closed state by organizing the contacts of eukaryotic initiation factors (eIFs) and ribosomal proteins and by reconfiguring mRNA structure. GTPase-triggered large-scale fluctuations of 48S-bound eIF2 facilitate eIF5B recruitment, transfer of initiator tRNA from eIF2 to eIF5B and the release of eIF5 and eIF2. The 48S-bound multisubunit eIF3 complex controls ribosomal subunit joining by coupling eIF exchange to gradual displacement of the eIF3c N-terminal domain from the intersubunit interface. These findings reveal the structural mechanism of ORF selection in human cells and explain how eIF3 could function in the context of the 80S ribosome. Cryo-electron microscopy reveals the mechanism of human translation initiation from codon scanning to subunit joining. The structures show the roles of the Kozak sequence, GTP hydrolysis by eukaryotic initiation factor 2 (eIF2) and eIF5B in 48S remodeling, as well as that of eIF3 in the control of 60S docking.
真核生物 mRNA 翻译开放阅读框(ORF)的选择依赖于扫描 48S 起始复合体重塑为延伸就绪的 80S 核糖体。我们利用低温电子显微镜观察了人类协调 48S 重塑的关键承诺步骤。mRNA Kozak 序列促进了 mRNA 在 48S 开放状态下的扫描,并通过组织真核启动因子(eIF)和核糖体蛋白的接触以及重构 mRNA 结构,稳定了 48S 封闭状态。GTPase 触发的 48S 结合 eIF2 的大规模波动促进了 eIF5B 的招募、启动子 tRNA 从 eIF2 转移到 eIF5B 以及 eIF5 和 eIF2 的释放。48S 结合的多亚基 eIF3 复合物通过将 eIF 交换与 eIF3c N 端结构域从亚基间界面逐渐移位结合起来,从而控制核糖体亚基的连接。这些发现揭示了人类细胞中ORF选择的结构机制,并解释了eIF3如何在80S核糖体中发挥作用。
{"title":"Structural basis for translational control by the human 48S initiation complex","authors":"Valentyn Petrychenko, Sung-Hui Yi, David Liedtke, Bee-Zen Peng, Marina V. Rodnina, Niels Fischer","doi":"10.1038/s41594-024-01378-4","DOIUrl":"10.1038/s41594-024-01378-4","url":null,"abstract":"The selection of an open reading frame (ORF) for translation of eukaryotic mRNA relies on remodeling of the scanning 48S initiation complex into an elongation-ready 80S ribosome. Using cryo-electron microscopy, we visualize the key commitment steps orchestrating 48S remodeling in humans. The mRNA Kozak sequence facilitates mRNA scanning in the 48S open state and stabilizes the 48S closed state by organizing the contacts of eukaryotic initiation factors (eIFs) and ribosomal proteins and by reconfiguring mRNA structure. GTPase-triggered large-scale fluctuations of 48S-bound eIF2 facilitate eIF5B recruitment, transfer of initiator tRNA from eIF2 to eIF5B and the release of eIF5 and eIF2. The 48S-bound multisubunit eIF3 complex controls ribosomal subunit joining by coupling eIF exchange to gradual displacement of the eIF3c N-terminal domain from the intersubunit interface. These findings reveal the structural mechanism of ORF selection in human cells and explain how eIF3 could function in the context of the 80S ribosome. Cryo-electron microscopy reveals the mechanism of human translation initiation from codon scanning to subunit joining. The structures show the roles of the Kozak sequence, GTP hydrolysis by eukaryotic initiation factor 2 (eIF2) and eIF5B in 48S remodeling, as well as that of eIF3 in the control of 60S docking.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 1","pages":"62-72"},"PeriodicalIF":12.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01378-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Unwinding of a eukaryotic origin of replication visualized by cryo-EM 作者更正:用低温电子显微镜观察真核生物复制起源的开卷。
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-09 DOI: 10.1038/s41594-024-01398-0
Sarah S. Henrikus, Marta H. Gross, Oliver Willhoft, Thomas Pühringer, Jacob S. Lewis, Allison W. McClure, Julia F. Greiwe, Giacomo Palm, Andrea Nans, John F. X. Diffley, Alessandro Costa
{"title":"Author Correction: Unwinding of a eukaryotic origin of replication visualized by cryo-EM","authors":"Sarah S. Henrikus, Marta H. Gross, Oliver Willhoft, Thomas Pühringer, Jacob S. Lewis, Allison W. McClure, Julia F. Greiwe, Giacomo Palm, Andrea Nans, John F. X. Diffley, Alessandro Costa","doi":"10.1038/s41594-024-01398-0","DOIUrl":"10.1038/s41594-024-01398-0","url":null,"abstract":"","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 11","pages":"1808-1808"},"PeriodicalIF":12.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01398-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance of estrogen receptor function to BET bromodomain inhibition is mediated by transcriptional coactivator cooperativity 雌激素受体功能对 BET 溴链抑制的抗性是由转录协同激活剂的合作性介导的
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-09 DOI: 10.1038/s41594-024-01384-6
Sicong Zhang, Robert G. Roeder
The bromodomain and extraterminal domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor because of an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, bromodomain-containing protein 4 (BRD4) binds to estrogen receptor binding sites and activates transcription of critical oncogenes such as MYC, independently of its bromodomains. BRD4 associates with the Mediator complex and disruption of Mediator reduces BRD4’s enhancer occupancy. Profiling changes of the post-initiation RNA polymerase II (Pol II)-associated factors revealed that BET proteins regulate interactions between Pol II and elongation factors SPT5, SPT6 and the polymerase-associated factor 1 complex, which associate with BET proteins independently of their bromodomains and mediate their transcription elongation effect. Our findings highlight the importance of bromodomain-independent functions and interactions of BET proteins in the development of future therapeutic strategies. Here, the authors show that bromodomain-containing protein 4 is recruited to the MYC enhancer by Mediator and activates transcription through elongation factors independently of bromodomains. This mechanism contributes to bromodomain and extraterminal domain inhibitor resistance in estrogen receptor-positive breast cancer.
溴结构域和外基质结构域(BET)蛋白家族是重要的染色质阅读器,它们通过溴结构域与乙酰化组蛋白结合以激活转录。在这里,我们揭示了溴结构域抑制之所以不能抑制雌激素受体的致癌靶点,是由于一种内在的转录机制。溴基团是许多基因转录所必需的,而含溴基团蛋白4(BRD4)却能与雌激素受体结合位点结合,并激活关键致癌基因(如MYC)的转录,与溴基团无关。BRD4 与 Mediator 复合物结合,破坏 Mediator 会降低 BRD4 的增强子占据率。对启动后RNA聚合酶II(Pol II)相关因子的变化进行剖析后发现,BET蛋白能调节Pol II与延伸因子SPT5、SPT6和聚合酶相关因子1复合物之间的相互作用,这些因子与BET蛋白的联系独立于其溴化结构域,并介导其转录延伸效应。我们的研究结果凸显了 BET 蛋白不依赖于溴结构域的功能和相互作用在未来治疗策略开发中的重要性。
{"title":"Resistance of estrogen receptor function to BET bromodomain inhibition is mediated by transcriptional coactivator cooperativity","authors":"Sicong Zhang, Robert G. Roeder","doi":"10.1038/s41594-024-01384-6","DOIUrl":"10.1038/s41594-024-01384-6","url":null,"abstract":"The bromodomain and extraterminal domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor because of an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, bromodomain-containing protein 4 (BRD4) binds to estrogen receptor binding sites and activates transcription of critical oncogenes such as MYC, independently of its bromodomains. BRD4 associates with the Mediator complex and disruption of Mediator reduces BRD4’s enhancer occupancy. Profiling changes of the post-initiation RNA polymerase II (Pol II)-associated factors revealed that BET proteins regulate interactions between Pol II and elongation factors SPT5, SPT6 and the polymerase-associated factor 1 complex, which associate with BET proteins independently of their bromodomains and mediate their transcription elongation effect. Our findings highlight the importance of bromodomain-independent functions and interactions of BET proteins in the development of future therapeutic strategies. Here, the authors show that bromodomain-containing protein 4 is recruited to the MYC enhancer by Mediator and activates transcription through elongation factors independently of bromodomains. This mechanism contributes to bromodomain and extraterminal domain inhibitor resistance in estrogen receptor-positive breast cancer.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 1","pages":"98-112"},"PeriodicalIF":12.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exocyst stimulates multiple steps of exocytic SNARE complex assembly and vesicle fusion 外囊刺激外细胞 SNARE 复合物组装和囊泡融合的多个步骤
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-06 DOI: 10.1038/s41594-024-01388-2
Chanwoo Lee, Dante Lepore, Seung-Hak Lee, Tae Gyun Kim, Natasha Buwa, Jongchan Lee, Mary Munson, Tae-Young Yoon
Exocyst is a large multisubunit tethering complex essential for targeting and fusion of secretory vesicles in eukaryotic cells. Although the assembled exocyst complex has been proposed to tether vesicles to the plasma membrane and activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion, the key biochemical steps that exocyst stimulates in SNARE-mediated fusion are undetermined. Here we use a combination of single-molecule and bulk fluorescence assays to investigate the roles of purified octameric yeast exocyst complexes in a reconstituted yeast exocytic SNARE assembly and vesicle fusion system. Exocyst had stimulatory roles in multiple distinct steps ranging from SNARE protein activation to binary and ternary complex assembly. Importantly, exocyst had a downstream role in driving membrane fusion and full content mixing of vesicle lumens. Our data suggest that exocyst provides extensive chaperoning functions across the entire process of SNARE complex assembly and fusion, thereby governing exocytosis at multiple steps. Exocytosis of secretory vesicles is required for cellular growth, cellular division and cell–cell communication. Lee et al. reveal that the exocyst tethering complex has stimulatory roles in exocytic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly and SNARE-mediated vesicle fusion.
外囊泡是一种大型多亚基拴系复合体,对于真核细胞中分泌囊泡的靶向和融合至关重要。尽管有人提出组装的外囊复合体可将囊泡拴系到质膜上并激活可溶性 N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)以实现膜融合,但外囊刺激 SNARE 介导的融合的关键生化步骤尚未确定。在这里,我们结合使用单分子和大量荧光测定法,研究了纯化的八聚体酵母外囊复合物在重组的酵母外细胞 SNARE 组装和囊泡融合系统中的作用。外囊在从SNARE蛋白活化到二元和三元复合物组装的多个不同步骤中都起着刺激作用。重要的是,外囊在驱动膜融合和囊泡腔的全含量混合方面起着下游作用。我们的数据表明,外囊在整个SNARE复合物组装和融合过程中提供了广泛的伴侣功能,从而在多个步骤上控制了外吞作用。
{"title":"Exocyst stimulates multiple steps of exocytic SNARE complex assembly and vesicle fusion","authors":"Chanwoo Lee, Dante Lepore, Seung-Hak Lee, Tae Gyun Kim, Natasha Buwa, Jongchan Lee, Mary Munson, Tae-Young Yoon","doi":"10.1038/s41594-024-01388-2","DOIUrl":"10.1038/s41594-024-01388-2","url":null,"abstract":"Exocyst is a large multisubunit tethering complex essential for targeting and fusion of secretory vesicles in eukaryotic cells. Although the assembled exocyst complex has been proposed to tether vesicles to the plasma membrane and activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion, the key biochemical steps that exocyst stimulates in SNARE-mediated fusion are undetermined. Here we use a combination of single-molecule and bulk fluorescence assays to investigate the roles of purified octameric yeast exocyst complexes in a reconstituted yeast exocytic SNARE assembly and vesicle fusion system. Exocyst had stimulatory roles in multiple distinct steps ranging from SNARE protein activation to binary and ternary complex assembly. Importantly, exocyst had a downstream role in driving membrane fusion and full content mixing of vesicle lumens. Our data suggest that exocyst provides extensive chaperoning functions across the entire process of SNARE complex assembly and fusion, thereby governing exocytosis at multiple steps. Exocytosis of secretory vesicles is required for cellular growth, cellular division and cell–cell communication. Lee et al. reveal that the exocyst tethering complex has stimulatory roles in exocytic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly and SNARE-mediated vesicle fusion.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 1","pages":"150-160"},"PeriodicalIF":12.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and functional mechanisms of anti-NMDAR autoimmune encephalitis 抗 NMDAR 自身免疫性脑炎的结构和功能机制
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-03 DOI: 10.1038/s41594-024-01386-4
Kevin Michalski, Taha Abdulla, Sam Kleeman, Lars Schmidl, Ricardo Gómez, Noriko Simorowski, Francesca Vallese, Harald Prüss, Manfred Heckmann, Christian Geis, Hiro Furukawa
Autoantibodies against neuronal membrane proteins can manifest in autoimmune encephalitis, inducing seizures, cognitive dysfunction and psychosis. Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is the most dominant autoimmune encephalitis; however, insights into how autoantibodies recognize and alter receptor functions remain limited. Here we determined structures of human and rat NMDARs bound to three distinct patient-derived antibodies using single-particle electron cryo-microscopy. These antibodies bind different regions within the amino-terminal domain of the GluN1 subunit. Through electrophysiology, we show that all three autoantibodies acutely and directly reduced NMDAR channel functions in primary neurons. Antibodies show different stoichiometry of binding and antibody–receptor complex formation, which in one antibody, 003-102, also results in reduced synaptic localization of NMDARs. These studies demonstrate mechanisms of diverse epitope recognition and direct channel regulation of anti-NMDAR autoantibodies underlying autoimmune encephalitis. Anti-NMDA receptor encephalitis is the most common autoimmune encephalitis. Michalski et al. reveal epitope diversity, conformational changes and functional impacts of the autoantibodies using cryo-EM and electrophysiology.
针对神经元膜蛋白的自身抗体可表现为自身免疫性脑炎,诱发癫痫发作、认知功能障碍和精神病。抗 N-甲基-d-天冬氨酸受体(NMDAR)脑炎是最主要的自身免疫性脑炎;然而,对自身抗体如何识别和改变受体功能的了解仍然有限。在这里,我们使用单颗粒电子冰冻显微镜测定了人类和大鼠 NMDAR 与三种不同的患者衍生抗体结合的结构。这些抗体结合了 GluN1 亚基氨基末端结构域的不同区域。通过电生理学研究,我们发现这三种自身抗体都会急性地直接降低原发性神经元中 NMDAR 通道的功能。抗体显示出不同的结合和抗体-受体复合物形成的配比,其中一种抗体(003-102)还导致 NMDAR 的突触定位减少。这些研究证明了抗 NMDAR 自身抗体在自身免疫性脑炎中的表位识别和直接通道调节机制。
{"title":"Structural and functional mechanisms of anti-NMDAR autoimmune encephalitis","authors":"Kevin Michalski, Taha Abdulla, Sam Kleeman, Lars Schmidl, Ricardo Gómez, Noriko Simorowski, Francesca Vallese, Harald Prüss, Manfred Heckmann, Christian Geis, Hiro Furukawa","doi":"10.1038/s41594-024-01386-4","DOIUrl":"10.1038/s41594-024-01386-4","url":null,"abstract":"Autoantibodies against neuronal membrane proteins can manifest in autoimmune encephalitis, inducing seizures, cognitive dysfunction and psychosis. Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is the most dominant autoimmune encephalitis; however, insights into how autoantibodies recognize and alter receptor functions remain limited. Here we determined structures of human and rat NMDARs bound to three distinct patient-derived antibodies using single-particle electron cryo-microscopy. These antibodies bind different regions within the amino-terminal domain of the GluN1 subunit. Through electrophysiology, we show that all three autoantibodies acutely and directly reduced NMDAR channel functions in primary neurons. Antibodies show different stoichiometry of binding and antibody–receptor complex formation, which in one antibody, 003-102, also results in reduced synaptic localization of NMDARs. These studies demonstrate mechanisms of diverse epitope recognition and direct channel regulation of anti-NMDAR autoantibodies underlying autoimmune encephalitis. Anti-NMDA receptor encephalitis is the most common autoimmune encephalitis. Michalski et al. reveal epitope diversity, conformational changes and functional impacts of the autoantibodies using cryo-EM and electrophysiology.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 12","pages":"1975-1986"},"PeriodicalIF":12.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural basis for antibody-mediated NMDA receptor clustering and endocytosis in autoimmune encephalitis 自身免疫性脑炎中抗体介导的 NMDA 受体聚集和内吞的结构基础
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-03 DOI: 10.1038/s41594-024-01387-3
Han Wang, Chun Xie, Bo Deng, Jinjun Ding, Na Li, Zengwei Kou, Mengmeng Jin, Jie He, Qinrui Wang, Han Wen, Jinbao Zhang, Qinming Zhou, Sheng Chen, Xiangjun Chen, Ti-Fei Yuan, Shujia Zhu
Antibodies against N-methyl-d-aspartate receptors (NMDARs) are most frequently detected in persons with autoimmune encephalitis (AE) and used as diagnostic biomarkers. Elucidating the structural basis of monoclonal antibody (mAb) binding to NMDARs would facilitate the development of targeted therapy for AE. Here, we reconstructed nanodiscs containing green fluorescent protein-fused NMDARs to label and sort individual immune B cells from persons with AE and further cloned and identified mAbs against NMDARs. This allowed cryo-electron microscopy analysis of NMDAR–Fab complexes, revealing that autoantibodies bind to the R1 lobe of the N-terminal domain of the GluN1 subunit. Small-angle X-ray scattering studies demonstrated NMDAR–mAb stoichiometry of 2:1 or 1:2, structurally suitable for mAb-induced clustering and endocytosis of NMDARs. Importantly, these mAbs reduced the surface NMDARs and NMDAR-mediated currents, without tonically affecting NMDAR channel gating. These structural and functional findings imply that the design of neutralizing antibody binding to the R1 lobe of NMDARs represents a potential therapy for AE treatment. The authors cloned anti-NMDAR (N-methyl-d-aspartate receptor) monoclonal antibodies from the immune B cells of persons with autoimmune encephalitis and revealed their precise binding epitopes on NMDARs and the pathological mechanism underlying the downregulation of synaptic function.
N-甲基-d-天冬氨酸受体(NMDAR)抗体最常在自身免疫性脑炎(AE)患者体内检测到,并被用作诊断生物标志物。阐明单克隆抗体(mAb)与 NMDARs 结合的结构基础将有助于开发治疗自身免疫性脑炎的靶向疗法。在这里,我们重建了含有绿色荧光蛋白融合 NMDARs 的纳米圆盘,以标记和分拣来自 AE 患者的单个免疫 B 细胞,并进一步克隆和鉴定了针对 NMDARs 的 mAb。这样就可以对 NMDAR-Fab 复合物进行冷冻电镜分析,发现自身抗体与 GluN1 亚基 N 端结构域的 R1 叶结合。小角 X 射线散射研究表明,NMDAR-mAb 的配比为 2:1 或 1:2,在结构上适合 mAb 诱导的 NMDAR 聚集和内吞。重要的是,这些 mAb 减少了表面 NMDARs 和 NMDAR 介导的电流,而不会影响 NMDAR 通道门控。这些结构和功能研究结果表明,设计与 NMDARs R1 叶结合的中和抗体是一种潜在的 AE 治疗方法。
{"title":"Structural basis for antibody-mediated NMDA receptor clustering and endocytosis in autoimmune encephalitis","authors":"Han Wang, Chun Xie, Bo Deng, Jinjun Ding, Na Li, Zengwei Kou, Mengmeng Jin, Jie He, Qinrui Wang, Han Wen, Jinbao Zhang, Qinming Zhou, Sheng Chen, Xiangjun Chen, Ti-Fei Yuan, Shujia Zhu","doi":"10.1038/s41594-024-01387-3","DOIUrl":"10.1038/s41594-024-01387-3","url":null,"abstract":"Antibodies against N-methyl-d-aspartate receptors (NMDARs) are most frequently detected in persons with autoimmune encephalitis (AE) and used as diagnostic biomarkers. Elucidating the structural basis of monoclonal antibody (mAb) binding to NMDARs would facilitate the development of targeted therapy for AE. Here, we reconstructed nanodiscs containing green fluorescent protein-fused NMDARs to label and sort individual immune B cells from persons with AE and further cloned and identified mAbs against NMDARs. This allowed cryo-electron microscopy analysis of NMDAR–Fab complexes, revealing that autoantibodies bind to the R1 lobe of the N-terminal domain of the GluN1 subunit. Small-angle X-ray scattering studies demonstrated NMDAR–mAb stoichiometry of 2:1 or 1:2, structurally suitable for mAb-induced clustering and endocytosis of NMDARs. Importantly, these mAbs reduced the surface NMDARs and NMDAR-mediated currents, without tonically affecting NMDAR channel gating. These structural and functional findings imply that the design of neutralizing antibody binding to the R1 lobe of NMDARs represents a potential therapy for AE treatment. The authors cloned anti-NMDAR (N-methyl-d-aspartate receptor) monoclonal antibodies from the immune B cells of persons with autoimmune encephalitis and revealed their precise binding epitopes on NMDARs and the pathological mechanism underlying the downregulation of synaptic function.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 12","pages":"1987-1996"},"PeriodicalIF":12.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01387-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shieldin and CST co-orchestrate DNA polymerase-dependent tailed-end joining reactions independently of 53BP1-governed repair pathway choice Shieldin 和 CST 共同协调 DNA 聚合酶依赖性尾端连接反应,与 53BP1 主导的修复途径选择无关
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-03 DOI: 10.1038/s41594-024-01381-9
Ashleigh King, Pia I. Reichl, Jean S. Metson, Robert Parker, Daniella Munro, Catarina Oliveira, Lucia Sommerova, Jordan R. Becker, Daniel Biggs, Chris Preece, Benjamin Davies, J. Ross Chapman
Tumor suppressor p53-binding protein 1 (53BP1) regulates DNA end joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting Rap1-interacting factor 1 homolog (RIF1) and shieldin, a poorly understood DNA-binding complex. The 53BP1–RIF1–shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate nonhomologous end joining (NHEJ). However, how this axis regulates DNA end joining and HR suppression remains unresolved. We investigated shieldin and its interplay with the Ctc1–Stn1–Ten1 (CST) complex, which was recently implicated downstream of 53BP1. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination coreliant on both complexes. Ataxia-telangiectasia mutated kinase-dependent DNA damage signaling underpins this cooperation, inducing physical interactions between these complexes that reveal shieldin as a DSB-responsive CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin–CST. Lastly, we demonstrate that 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient mice and cells independently of shieldin. These findings showcase the versatility of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins. Here, using mouse genetics, biochemistry and cell-based experiments, the authors reveal that shieldin primarily catalyzes DNA priming and polymerase-dependent fill-in synthesis at 5′ recessed DNA ends during the joining of activation-induced cytidine deaminase-dependent DNA breaks.
肿瘤抑制因子 p53 结合蛋白 1(53BP1)调节淋巴细胞中的 DNA 端接,使免疫抗原受体多样化。这涉及到核糖体结合的 53BP1 在 DNA 双链断裂(DSB)处招募 Rap1-interacting factor 1 homolog(RIF1)和盾牌蛋白,后者是一种鲜为人知的 DNA 结合复合物。在 BRCA1 基因突变的癌症中,53BP1-RIF1-shieldin 轴是病态的,它会阻碍同源重组(HR)并驱动非法的非同源末端连接(NHEJ)。然而,该轴如何调控DNA末端连接和HR抑制仍未解决。我们研究了屏蔽素及其与Ctc1-Stn1-Ten1(CST)复合物的相互作用,最近发现CST与53BP1下游有关。从免疫表型上看,缺乏屏蔽素或CST的小鼠是等同的,类开关重组核心依赖于这两种复合体。依赖于共济失调-特朗日病突变激酶的DNA损伤信号是这种合作的基础,它诱导了这些复合体之间的物理相互作用,从而揭示了屏蔽素是DSB反应性CST适配体。此外,DNA聚合酶ζ在屏蔽素的下游发挥作用,从而确定了DNA填充合成是屏蔽素-CST的生理功能。最后,我们证明在 BRCA1 缺失的小鼠和细胞中,53BP1 可独立于屏蔽素抑制 HR 并促进 NHEJ。这些发现展示了 53BP1 通路的多功能性,它是通过与染色质结合的 53BP1 复合物和 DNA 末端处理效应蛋白的协作实现的。
{"title":"Shieldin and CST co-orchestrate DNA polymerase-dependent tailed-end joining reactions independently of 53BP1-governed repair pathway choice","authors":"Ashleigh King, Pia I. Reichl, Jean S. Metson, Robert Parker, Daniella Munro, Catarina Oliveira, Lucia Sommerova, Jordan R. Becker, Daniel Biggs, Chris Preece, Benjamin Davies, J. Ross Chapman","doi":"10.1038/s41594-024-01381-9","DOIUrl":"10.1038/s41594-024-01381-9","url":null,"abstract":"Tumor suppressor p53-binding protein 1 (53BP1) regulates DNA end joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting Rap1-interacting factor 1 homolog (RIF1) and shieldin, a poorly understood DNA-binding complex. The 53BP1–RIF1–shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate nonhomologous end joining (NHEJ). However, how this axis regulates DNA end joining and HR suppression remains unresolved. We investigated shieldin and its interplay with the Ctc1–Stn1–Ten1 (CST) complex, which was recently implicated downstream of 53BP1. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination coreliant on both complexes. Ataxia-telangiectasia mutated kinase-dependent DNA damage signaling underpins this cooperation, inducing physical interactions between these complexes that reveal shieldin as a DSB-responsive CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin–CST. Lastly, we demonstrate that 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient mice and cells independently of shieldin. These findings showcase the versatility of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins. Here, using mouse genetics, biochemistry and cell-based experiments, the authors reveal that shieldin primarily catalyzes DNA priming and polymerase-dependent fill-in synthesis at 5′ recessed DNA ends during the joining of activation-induced cytidine deaminase-dependent DNA breaks.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 1","pages":"86-97"},"PeriodicalIF":12.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01381-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insight into synergistic activation of human 3-methylcrotonyl-CoA carboxylase 从结构上洞察人类 3-甲基巴豆酰-CoA羧化酶的协同激活作用
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 DOI: 10.1038/s41594-024-01379-3
Jiayue Su, Xuyang Tian, Hang Cheng, Desheng Liu, Ziyi Wang, Shan Sun, Hong-Wei Wang, Sen-Fang Sui
The enzymes 3-methylcrotonyl-coenzyme A (CoA) carboxylase (MCC), pyruvate carboxylase and propionyl-CoA carboxylase belong to the biotin-dependent carboxylase family located in mitochondria. They participate in various metabolic pathways in human such as amino acid metabolism and tricarboxylic acid cycle. Many human diseases are caused by mutations in those enzymes but their structures have not been fully resolved so far. Here we report an optimized purification strategy to obtain high-resolution structures of intact human endogenous MCC, propionyl-CoA carboxylase and pyruvate carboxylase in different conformational states. We also determine the structures of MCC bound to different substrates. Analysis of MCC structures in different states reveals the mechanism of the substrate-induced, multi-element synergistic activation of MCC. These results provide important insights into the catalytic mechanism of the biotin-dependent carboxylase family and are of great value for the development of new drugs for the treatment of related diseases. This work reveals structures of biotin-dependent carboxylases in different states, provides notable insight into their catalytic mechanism and may help the development of new drugs for the treatment of related diseases.
3-甲基巴豆酰辅酶 A(CoA)羧化酶(MCC)、丙酮酸羧化酶和丙酰-CoA 羧化酶属于生物素依赖性羧化酶家族,位于线粒体中。它们参与人类的各种代谢途径,如氨基酸代谢和三羧酸循环。许多人类疾病都是由这些酶的突变引起的,但它们的结构至今尚未完全解析。在此,我们报告了一种优化的纯化策略,以获得完整的人类内源性 MCC、丙酰-CoA 羧化酶和丙酮酸羧化酶在不同构象状态下的高分辨率结构。我们还确定了与不同底物结合的 MCC 的结构。对不同状态下 MCC 结构的分析揭示了底物诱导、多元素协同激活 MCC 的机制。这些结果为了解生物素依赖性羧化酶家族的催化机理提供了重要依据,对开发治疗相关疾病的新药具有重要价值。
{"title":"Structural insight into synergistic activation of human 3-methylcrotonyl-CoA carboxylase","authors":"Jiayue Su, Xuyang Tian, Hang Cheng, Desheng Liu, Ziyi Wang, Shan Sun, Hong-Wei Wang, Sen-Fang Sui","doi":"10.1038/s41594-024-01379-3","DOIUrl":"10.1038/s41594-024-01379-3","url":null,"abstract":"The enzymes 3-methylcrotonyl-coenzyme A (CoA) carboxylase (MCC), pyruvate carboxylase and propionyl-CoA carboxylase belong to the biotin-dependent carboxylase family located in mitochondria. They participate in various metabolic pathways in human such as amino acid metabolism and tricarboxylic acid cycle. Many human diseases are caused by mutations in those enzymes but their structures have not been fully resolved so far. Here we report an optimized purification strategy to obtain high-resolution structures of intact human endogenous MCC, propionyl-CoA carboxylase and pyruvate carboxylase in different conformational states. We also determine the structures of MCC bound to different substrates. Analysis of MCC structures in different states reveals the mechanism of the substrate-induced, multi-element synergistic activation of MCC. These results provide important insights into the catalytic mechanism of the biotin-dependent carboxylase family and are of great value for the development of new drugs for the treatment of related diseases. This work reveals structures of biotin-dependent carboxylases in different states, provides notable insight into their catalytic mechanism and may help the development of new drugs for the treatment of related diseases.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 1","pages":"73-85"},"PeriodicalIF":12.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of an epigenetic regulator on chromatin observed at the single-molecule level 在单分子水平上观察染色质上表观遗传调节因子的动态变化
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1038/s41594-024-01374-8
Methyl-CpG-binding protein 2 (MeCP2) is a master regulator of neuronal gene expression, and its genetic mutations cause the neurodevelopmental disorder Rett syndrome. Single-molecule experiments have enabled the direct visualization of the dynamics of MeCP2 on DNA, shedding light on how the specific chromatin context tunes MeCP2 function.
甲基-CpG结合蛋白2(MeCP2)是神经元基因表达的主要调控因子,其基因突变会导致神经发育障碍性疾病Rett综合征。单分子实验能够直接观察到MeCP2在DNA上的动态变化,从而揭示特定染色质环境是如何调整MeCP2功能的。
{"title":"Dynamics of an epigenetic regulator on chromatin observed at the single-molecule level","authors":"","doi":"10.1038/s41594-024-01374-8","DOIUrl":"10.1038/s41594-024-01374-8","url":null,"abstract":"Methyl-CpG-binding protein 2 (MeCP2) is a master regulator of neuronal gene expression, and its genetic mutations cause the neurodevelopmental disorder Rett syndrome. Single-molecule experiments have enabled the direct visualization of the dynamics of MeCP2 on DNA, shedding light on how the specific chromatin context tunes MeCP2 function.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 11","pages":"1648-1649"},"PeriodicalIF":12.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Structural & Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1