首页 > 最新文献

Nature Structural & Molecular Biology最新文献

英文 中文
Allosteric competition and inhibition in AMPA receptors AMPA 受体中的异位竞争和抑制作用
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-04 DOI: 10.1038/s41594-024-01328-0
W. Dylan Hale, Alejandra Montaño Romero, Cuauhtemoc U. Gonzalez, Vasanthi Jayaraman, Albert Y. Lau, Richard L. Huganir, Edward C. Twomey
Excitatory neurotransmission is principally mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-subtype ionotropic glutamate receptors (AMPARs). Negative allosteric modulators are therapeutic candidates that inhibit AMPAR activation and can compete with positive modulators to control AMPAR function through unresolved mechanisms. Here we show that allosteric inhibition pushes AMPARs into a distinct state that prevents both activation and positive allosteric modulation. We used cryo-electron microscopy to capture AMPARs bound to glutamate, while a negative allosteric modulator, GYKI-52466, and positive allosteric modulator, cyclothiazide, compete for control of the AMPARs. GYKI-52466 binds in the ion channel collar and inhibits AMPARs by decoupling the ligand-binding domains from the ion channel. The rearrangement of the ligand-binding domains ruptures the cyclothiazide site, preventing positive modulation. Our data provide a framework for understanding allostery of AMPARs and for rational design of therapeutics targeting AMPARs in neurological diseases. Using cryo-electron microscopy, the authors reveal the mechanism by which perampanel-like molecules inhibit AMPA receptors. They show that the inhibitors decouple the ligand-binding domain from the ion channel after neurotransmitter binding and outcompete positive modulators.
兴奋性神经传递主要由α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)亚型离子型谷氨酸受体(AMPARs)介导。负性异位调节剂是抑制 AMPAR 激活的候选治疗药物,可与正性调节剂竞争,通过尚未解决的机制控制 AMPAR 的功能。在这里,我们展示了异位抑制将 AMPAR 推入一种独特的状态,这种状态既能阻止激活,也能阻止正性异位调节。我们使用低温电子显微镜捕获了与谷氨酸结合的 AMPARs,同时负性异位调节剂 GYKI-52466 和正性异位调节剂环噻嗪竞争 AMPARs 的控制权。GYKI-52466 与离子通道颈部结合,通过使配体结合域与离子通道脱钩来抑制 AMPARs。配体结合结构域的重新排列使环噻嗪位点断裂,从而阻止了正向调节。我们的数据为了解 AMPARs 的异构性以及合理设计针对神经系统疾病的 AMPARs 治疗方法提供了一个框架。
{"title":"Allosteric competition and inhibition in AMPA receptors","authors":"W. Dylan Hale, Alejandra Montaño Romero, Cuauhtemoc U. Gonzalez, Vasanthi Jayaraman, Albert Y. Lau, Richard L. Huganir, Edward C. Twomey","doi":"10.1038/s41594-024-01328-0","DOIUrl":"10.1038/s41594-024-01328-0","url":null,"abstract":"Excitatory neurotransmission is principally mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-subtype ionotropic glutamate receptors (AMPARs). Negative allosteric modulators are therapeutic candidates that inhibit AMPAR activation and can compete with positive modulators to control AMPAR function through unresolved mechanisms. Here we show that allosteric inhibition pushes AMPARs into a distinct state that prevents both activation and positive allosteric modulation. We used cryo-electron microscopy to capture AMPARs bound to glutamate, while a negative allosteric modulator, GYKI-52466, and positive allosteric modulator, cyclothiazide, compete for control of the AMPARs. GYKI-52466 binds in the ion channel collar and inhibits AMPARs by decoupling the ligand-binding domains from the ion channel. The rearrangement of the ligand-binding domains ruptures the cyclothiazide site, preventing positive modulation. Our data provide a framework for understanding allostery of AMPARs and for rational design of therapeutics targeting AMPARs in neurological diseases. Using cryo-electron microscopy, the authors reveal the mechanism by which perampanel-like molecules inhibit AMPA receptors. They show that the inhibitors decouple the ligand-binding domain from the ion channel after neurotransmitter binding and outcompete positive modulators.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 11","pages":"1669-1679"},"PeriodicalIF":12.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01328-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
XIST dampens X chromosome activity in a SPEN-dependent manner during early human development 在人类早期发育过程中,XIST 以依赖 SPEN 的方式抑制 X 染色体的活性
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-04 DOI: 10.1038/s41594-024-01325-3
Charbel Alfeghaly, Gaël Castel, Emmanuel Cazottes, Madeleine Moscatelli, Eva Moinard, Miguel Casanova, Juliette Boni, Kasturi Mahadik, Jenna Lammers, Thomas Freour, Louis Chauviere, Carla Piqueras, Ruben Boers, Joachim Boers, Joost Gribnau, Laurent David, Jean-François Ouimette, Claire Rougeulle
XIST (X-inactive specific transcript) long noncoding RNA (lncRNA) is responsible for X chromosome inactivation (XCI) in placental mammals, yet it accumulates on both X chromosomes in human female preimplantation embryos without triggering X chromosome silencing. The XACT (X-active coating transcript) lncRNA coaccumulates with XIST on active X chromosomes and may antagonize XIST function. Here, we used human embryonic stem cells in a naive state of pluripotency to assess the function of XIST and XACT in shaping the X chromosome chromatin and transcriptional landscapes during preimplantation development. We show that XIST triggers the deposition of polycomb-mediated repressive histone modifications and dampens the transcription of most X-linked genes in a SPEN-dependent manner, while XACT deficiency does not significantly affect XIST activity or X-linked gene expression. Our study demonstrates that XIST is functional before XCI, confirms the existence of a transient process of X chromosome dosage compensation and reveals that XCI and dampening rely on the same set of factors. Using naive human embryonic stem cells as a model for early embryogenesis, the authors report that the XIST (X-inactive specific transcript) long noncoding RNA recruits repressive histone marks and attenuates X chromosome expression before the establishment of X chromosome inactivation.
XIST(X-inactive specific transcript)长非编码 RNA(lncRNA)在胎盘哺乳动物中负责 X 染色体失活(XCI),但它会在人类女性植入前胚胎的两条 X 染色体上积累,而不会引发 X 染色体沉默。XACT(X-活性包被转录本)lncRNA与XIST共同聚集在活性X染色体上,可能会拮抗XIST的功能。在这里,我们利用处于幼稚多能状态的人类胚胎干细胞,评估了XIST和XACT在植入前发育过程中塑造X染色体染色质和转录景观的功能。我们的研究表明,XIST 会触发多聚酶介导的抑制性组蛋白修饰沉积,并以一种依赖 SPEN 的方式抑制大多数 X 连锁基因的转录,而 XACT 的缺乏并不会显著影响 XIST 的活性或 X 连锁基因的表达。我们的研究表明,XIST 在 XCI 之前就已发挥作用,证实了 X 染色体剂量补偿过程的存在,并揭示了 XCI 和抑制作用依赖于同一组因子。
{"title":"XIST dampens X chromosome activity in a SPEN-dependent manner during early human development","authors":"Charbel Alfeghaly, Gaël Castel, Emmanuel Cazottes, Madeleine Moscatelli, Eva Moinard, Miguel Casanova, Juliette Boni, Kasturi Mahadik, Jenna Lammers, Thomas Freour, Louis Chauviere, Carla Piqueras, Ruben Boers, Joachim Boers, Joost Gribnau, Laurent David, Jean-François Ouimette, Claire Rougeulle","doi":"10.1038/s41594-024-01325-3","DOIUrl":"10.1038/s41594-024-01325-3","url":null,"abstract":"XIST (X-inactive specific transcript) long noncoding RNA (lncRNA) is responsible for X chromosome inactivation (XCI) in placental mammals, yet it accumulates on both X chromosomes in human female preimplantation embryos without triggering X chromosome silencing. The XACT (X-active coating transcript) lncRNA coaccumulates with XIST on active X chromosomes and may antagonize XIST function. Here, we used human embryonic stem cells in a naive state of pluripotency to assess the function of XIST and XACT in shaping the X chromosome chromatin and transcriptional landscapes during preimplantation development. We show that XIST triggers the deposition of polycomb-mediated repressive histone modifications and dampens the transcription of most X-linked genes in a SPEN-dependent manner, while XACT deficiency does not significantly affect XIST activity or X-linked gene expression. Our study demonstrates that XIST is functional before XCI, confirms the existence of a transient process of X chromosome dosage compensation and reveals that XCI and dampening rely on the same set of factors. Using naive human embryonic stem cells as a model for early embryogenesis, the authors report that the XIST (X-inactive specific transcript) long noncoding RNA recruits repressive histone marks and attenuates X chromosome expression before the establishment of X chromosome inactivation.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1589-1600"},"PeriodicalIF":12.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01325-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATG16L1 induces the formation of phagophore-like membrane cups ATG16L1 可诱导形成类似吞噬细胞的膜杯
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-04 DOI: 10.1038/s41594-024-01300-y
Jagan Mohan, Satish B. Moparthi, Christine Girard-Blanc, Daniele Campisi, Stéphane Blanchard, Charlotte Nugues, Sowmya Rama, Audrey Salles, Esthel Pénard, Stéphane Vassilopoulos, Thomas Wollert
The hallmark of non-selective autophagy is the formation of cup-shaped phagophores that capture bulk cytoplasm. The process is accompanied by the conjugation of LC3B to phagophores by an E3 ligase complex comprising ATG12–ATG5 and ATG16L1. Here we combined two complementary reconstitution approaches to reveal the function of LC3B and its ligase complex during phagophore expansion. We found that LC3B forms together with ATG12–ATG5–ATG16L1 a membrane coat that remodels flat membranes into cups that closely resemble phagophores. Mechanistically, we revealed that cup formation strictly depends on a close collaboration between LC3B and ATG16L1. Moreover, only LC3B, but no other member of the ATG8 protein family, promotes cup formation. ATG16L1 truncates that lacked the C-terminal membrane binding domain catalyzed LC3B lipidation but failed to assemble coats, did not promote cup formation and inhibited the biogenesis of non-selective autophagosomes. Our results thus demonstrate that ATG16L1 and LC3B induce and stabilize the characteristic cup-like shape of phagophores. Autophagy degrades cellular waste by engulfing it in phagophore membranes and delivering it to lysosomes for degradation. Here Mohan and colleagues identified a type of membrane coat that assembles on phagophores to guide their expansion.
非选择性自噬的特点是形成杯状吞噬体,捕获大量细胞质。在这一过程中,由 ATG12-ATG5 和 ATG16L1 组成的 E3 连接酶复合物会将 LC3B 连接到吞噬体上。在这里,我们结合了两种互补的重组方法,以揭示 LC3B 及其连接酶复合物在吞噬体扩张过程中的功能。我们发现,LC3B与ATG12-ATG5-ATG16L1共同形成了一种膜衣,可将扁平膜重塑为与吞噬体非常相似的杯状膜。从机理上讲,我们发现杯状膜的形成严格依赖于 LC3B 和 ATG16L1 之间的密切合作。此外,只有 LC3B 而非 ATG8 蛋白家族的其他成员能促进杯状结构的形成。缺乏 C 端膜结合结构域的 ATG16L1 截短体能催化 LC3B 脂化,但不能组装外套膜,不能促进杯状形成,并抑制非选择性自噬体的生物生成。因此,我们的研究结果表明,ATG16L1 和 LC3B 能诱导并稳定吞噬体特有的杯状形状。
{"title":"ATG16L1 induces the formation of phagophore-like membrane cups","authors":"Jagan Mohan, Satish B. Moparthi, Christine Girard-Blanc, Daniele Campisi, Stéphane Blanchard, Charlotte Nugues, Sowmya Rama, Audrey Salles, Esthel Pénard, Stéphane Vassilopoulos, Thomas Wollert","doi":"10.1038/s41594-024-01300-y","DOIUrl":"10.1038/s41594-024-01300-y","url":null,"abstract":"The hallmark of non-selective autophagy is the formation of cup-shaped phagophores that capture bulk cytoplasm. The process is accompanied by the conjugation of LC3B to phagophores by an E3 ligase complex comprising ATG12–ATG5 and ATG16L1. Here we combined two complementary reconstitution approaches to reveal the function of LC3B and its ligase complex during phagophore expansion. We found that LC3B forms together with ATG12–ATG5–ATG16L1 a membrane coat that remodels flat membranes into cups that closely resemble phagophores. Mechanistically, we revealed that cup formation strictly depends on a close collaboration between LC3B and ATG16L1. Moreover, only LC3B, but no other member of the ATG8 protein family, promotes cup formation. ATG16L1 truncates that lacked the C-terminal membrane binding domain catalyzed LC3B lipidation but failed to assemble coats, did not promote cup formation and inhibited the biogenesis of non-selective autophagosomes. Our results thus demonstrate that ATG16L1 and LC3B induce and stabilize the characteristic cup-like shape of phagophores. Autophagy degrades cellular waste by engulfing it in phagophore membranes and delivering it to lysosomes for degradation. Here Mohan and colleagues identified a type of membrane coat that assembles on phagophores to guide their expansion.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 9","pages":"1448-1459"},"PeriodicalIF":12.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Mcm10 converts the pre-replication complex into two diverging DNA forks Mcm10 如何将复制前复合物转化为两个不同的 DNA 叉
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-31 DOI: 10.1038/s41594-024-01333-3
Cryo-electron microscopy (cryo-EM) imaging of DNA replication origin activation explains the role of Mcm10, a minichromosome maintenance (MCM) protein homolog, during initiation. Mcm10 acts as a wedge to split the two MCM hexamers of the activated replicative helicase. Diverging replication forks are then established, with changes in the MCM hexamers that promote the topological separation of two DNA strands.
DNA复制源激活的低温电子显微镜(cryo-EM)成像解释了微型染色体维护(MCM)蛋白同源物Mcm10在启动过程中的作用。Mcm10 充当楔子,将激活的复制螺旋酶的两个 MCM 六聚体分开。然后,随着 MCM 六聚体的变化,促进两条 DNA 链拓扑分离的分歧复制叉就建立起来了。
{"title":"How Mcm10 converts the pre-replication complex into two diverging DNA forks","authors":"","doi":"10.1038/s41594-024-01333-3","DOIUrl":"10.1038/s41594-024-01333-3","url":null,"abstract":"Cryo-electron microscopy (cryo-EM) imaging of DNA replication origin activation explains the role of Mcm10, a minichromosome maintenance (MCM) protein homolog, during initiation. Mcm10 acts as a wedge to split the two MCM hexamers of the activated replicative helicase. Diverging replication forks are then established, with changes in the MCM hexamers that promote the topological separation of two DNA strands.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 8","pages":"1150-1151"},"PeriodicalIF":12.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building up complexity in structural biology studies 提高结构生物学研究的复杂性
IF 16.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-30 DOI: 10.1038/s41594-024-01324-4
Eva Nogales
Macromolecules are involved in myriads of interactions that regulate their cellular function. While years of structural biology progress was built by reducing this complexity, a molecular understanding of biological processes requires the characterization of ever larger and more dynamic molecular assemblies. Cryo-electron microscopy is rising to this challenge.
大分子参与了无数调节细胞功能的相互作用。虽然多年来结构生物学的进步是通过降低这种复杂性取得的,但要从分子角度了解生物过程,就必须对更大和更动态的分子组装进行表征。冷冻电镜技术正在迎接这一挑战。
{"title":"Building up complexity in structural biology studies","authors":"Eva Nogales","doi":"10.1038/s41594-024-01324-4","DOIUrl":"10.1038/s41594-024-01324-4","url":null,"abstract":"Macromolecules are involved in myriads of interactions that regulate their cellular function. While years of structural biology progress was built by reducing this complexity, a molecular understanding of biological processes requires the characterization of ever larger and more dynamic molecular assemblies. Cryo-electron microscopy is rising to this challenge.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 6","pages":"847-848"},"PeriodicalIF":16.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unifying model for membrane protein biogenesis 膜蛋白生物生成的统一模型
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-29 DOI: 10.1038/s41594-024-01296-5
Ramanujan S. Hegde, Robert J. Keenan
α-Helical integral membrane proteins comprise approximately 25% of the proteome in all organisms. The membrane proteome is highly diverse, varying in the number, topology, spacing and properties of transmembrane domains. This diversity imposes different constraints on the insertion of different regions of a membrane protein into the lipid bilayer. Here, we present a cohesive framework to explain membrane protein biogenesis, in which different parts of a nascent substrate are triaged between Oxa1 and SecY family members for insertion. In this model, Oxa1 family proteins insert transmembrane domains flanked by short translocated segments, whereas the SecY channel is required for insertion of transmembrane domains flanked by long translocated segments. Our unifying model rationalizes evolutionary, genetic, biochemical and structural data across organisms and provides a foundation for future mechanistic studies of membrane protein biogenesis. In this Perspective, the authors propose a framework to explain membrane protein biogenesis, wherein different parts of a nascent substrate are triaged between Oxa1 and SecY family members for insertion.
α-螺旋整体膜蛋白约占所有生物体蛋白质组的 25%。膜蛋白质组种类繁多,跨膜结构域的数量、拓扑结构、间距和特性各不相同。这种多样性对膜蛋白的不同区域插入脂质双分子层施加了不同的限制。在这里,我们提出了一个解释膜蛋白生物发生的内聚框架,在这个框架中,新生底物的不同部分在 Oxa1 和 SecY 家族成员之间进行分流,以便插入。在这个模型中,Oxa1 家族蛋白插入侧翼为短转位片段的跨膜结构域,而 SecY 通道则需要插入侧翼为长转位片段的跨膜结构域。我们的统一模型合理地整合了各种生物的进化、遗传、生化和结构数据,为未来膜蛋白生物发生的机理研究奠定了基础。
{"title":"A unifying model for membrane protein biogenesis","authors":"Ramanujan S. Hegde, Robert J. Keenan","doi":"10.1038/s41594-024-01296-5","DOIUrl":"10.1038/s41594-024-01296-5","url":null,"abstract":"α-Helical integral membrane proteins comprise approximately 25% of the proteome in all organisms. The membrane proteome is highly diverse, varying in the number, topology, spacing and properties of transmembrane domains. This diversity imposes different constraints on the insertion of different regions of a membrane protein into the lipid bilayer. Here, we present a cohesive framework to explain membrane protein biogenesis, in which different parts of a nascent substrate are triaged between Oxa1 and SecY family members for insertion. In this model, Oxa1 family proteins insert transmembrane domains flanked by short translocated segments, whereas the SecY channel is required for insertion of transmembrane domains flanked by long translocated segments. Our unifying model rationalizes evolutionary, genetic, biochemical and structural data across organisms and provides a foundation for future mechanistic studies of membrane protein biogenesis. In this Perspective, the authors propose a framework to explain membrane protein biogenesis, wherein different parts of a nascent substrate are triaged between Oxa1 and SecY family members for insertion.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 7","pages":"1009-1017"},"PeriodicalIF":12.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MYC phase separation selectively modulates the transcriptome MYC 相分离选择性地调节转录组
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-29 DOI: 10.1038/s41594-024-01322-6
Junjiao Yang, Chan-I Chung, Jessica Koach, Hongjiang Liu, Ambuja Navalkar, Hao He, Zhimin Ma, Qian Zhao, Xiaoyu Yang, Liang He, Tanja Mittag, Yin Shen, William A. Weiss, Xiaokun Shu
Dysregulation and enhanced expression of MYC transcription factors (TFs) including MYC and MYCN contribute to the majority of human cancers. For example, MYCN is amplified up to several hundredfold in high-risk neuroblastoma. The resulting overexpression of N-myc aberrantly activates genes that are not activated at low N-myc levels and drives cell proliferation. Whether increasing N-myc levels simply mediates binding to lower-affinity binding sites in the genome or fundamentally changes the activation process remains unclear. One such activation mechanism that could become important above threshold levels of N-myc is the formation of aberrant transcriptional condensates through phase separation. Phase separation has recently been linked to transcriptional regulation, but the extent to which it contributes to gene activation remains an open question. Here we characterized the phase behavior of N-myc and showed that it can form dynamic condensates that have transcriptional hallmarks. We tested the role of phase separation in N-myc-regulated transcription by using a chemogenetic tool that allowed us to compare non-phase-separated and phase-separated conditions at equivalent N-myc levels, both of which showed a strong impact on gene expression compared to no N-myc expression. Interestingly, we discovered that only a small percentage (<3%) of N-myc-regulated genes is further modulated by phase separation but that these events include the activation of key oncogenes and the repression of tumor suppressors. Indeed, phase separation increases cell proliferation, corroborating the biological effects of the transcriptional changes. However, our results also show that >97% of N-myc-regulated genes are not affected by N-myc phase separation, demonstrating that soluble complexes of TFs with the transcriptional machinery are sufficient to activate transcription. Oncoprotein transcription factor MYC undergoes phase separation, forming transcriptionally active condensates. The chemogenetic tool SPARK-ON reveals that MYC phase separation selectively modulates the transcriptome and promotes cell proliferation.
包括 MYC 和 MYCN 在内的 MYC 转录因子(TFs)的失调和表达增强是导致大多数人类癌症的原因。例如,在高危神经母细胞瘤中,MYCN 的扩增可高达几百倍。由此导致的 N-myc 过度表达会异常激活 N-myc 水平较低时未被激活的基因,并推动细胞增殖。N-myc水平的升高是仅仅介导了与基因组中亲和力较低的结合位点的结合,还是从根本上改变了激活过程,目前仍不清楚。N-myc水平超过阈值后可能变得重要的一种激活机制是通过相分离形成异常转录凝聚物。相分离最近被认为与转录调控有关,但它在多大程度上有助于基因激活仍是一个未决问题。在这里,我们对 N-myc 的相行为进行了表征,结果表明它可以形成具有转录特征的动态凝聚体。我们利用化学遗传学工具测试了相分离在 N-myc 调控转录中的作用,该工具允许我们在同等 N-myc 水平下比较非相分离条件和相分离条件,与无 N-myc 表达相比,这两种条件对基因表达都有很大影响。有趣的是,我们发现只有一小部分(<3%)N-myc调控基因受到相分离的进一步调控,但这些事件包括关键致癌基因的激活和肿瘤抑制因子的抑制。事实上,相分离增加了细胞增殖,证实了转录变化的生物学效应。然而,我们的研究结果还表明,97%的N-myc调控基因不受N-myc相分离的影响,这表明TFs与转录机制的可溶性复合物足以激活转录。
{"title":"MYC phase separation selectively modulates the transcriptome","authors":"Junjiao Yang,&nbsp;Chan-I Chung,&nbsp;Jessica Koach,&nbsp;Hongjiang Liu,&nbsp;Ambuja Navalkar,&nbsp;Hao He,&nbsp;Zhimin Ma,&nbsp;Qian Zhao,&nbsp;Xiaoyu Yang,&nbsp;Liang He,&nbsp;Tanja Mittag,&nbsp;Yin Shen,&nbsp;William A. Weiss,&nbsp;Xiaokun Shu","doi":"10.1038/s41594-024-01322-6","DOIUrl":"10.1038/s41594-024-01322-6","url":null,"abstract":"Dysregulation and enhanced expression of MYC transcription factors (TFs) including MYC and MYCN contribute to the majority of human cancers. For example, MYCN is amplified up to several hundredfold in high-risk neuroblastoma. The resulting overexpression of N-myc aberrantly activates genes that are not activated at low N-myc levels and drives cell proliferation. Whether increasing N-myc levels simply mediates binding to lower-affinity binding sites in the genome or fundamentally changes the activation process remains unclear. One such activation mechanism that could become important above threshold levels of N-myc is the formation of aberrant transcriptional condensates through phase separation. Phase separation has recently been linked to transcriptional regulation, but the extent to which it contributes to gene activation remains an open question. Here we characterized the phase behavior of N-myc and showed that it can form dynamic condensates that have transcriptional hallmarks. We tested the role of phase separation in N-myc-regulated transcription by using a chemogenetic tool that allowed us to compare non-phase-separated and phase-separated conditions at equivalent N-myc levels, both of which showed a strong impact on gene expression compared to no N-myc expression. Interestingly, we discovered that only a small percentage (&lt;3%) of N-myc-regulated genes is further modulated by phase separation but that these events include the activation of key oncogenes and the repression of tumor suppressors. Indeed, phase separation increases cell proliferation, corroborating the biological effects of the transcriptional changes. However, our results also show that &gt;97% of N-myc-regulated genes are not affected by N-myc phase separation, demonstrating that soluble complexes of TFs with the transcriptional machinery are sufficient to activate transcription. Oncoprotein transcription factor MYC undergoes phase separation, forming transcriptionally active condensates. The chemogenetic tool SPARK-ON reveals that MYC phase separation selectively modulates the transcriptome and promotes cell proliferation.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1567-1579"},"PeriodicalIF":12.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01322-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
XPD stalled on cross-linked DNA provides insight into damage verification 在交联 DNA 上停滞的 XPD 可深入了解损伤验证情况
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-28 DOI: 10.1038/s41594-024-01323-5
Jochen Kuper, Tamsanqa Hove, Sarah Maidl, Hermann Neitz, Florian Sauer, Maximilian Kempf, Till Schroeder, Elke Greiter, Claudia Höbartner, Caroline Kisker
The superfamily 2 helicase XPD is a central component of the general transcription factor II H (TFIIH), which is essential for transcription and nucleotide excision DNA repair (NER). Within these two processes, the helicase function of XPD is vital for NER but not for transcription initiation, where XPD acts only as a scaffold for other factors. Using cryo-EM, we deciphered one of the most enigmatic steps in XPD helicase action: the active separation of double-stranded DNA (dsDNA) and its stalling upon approaching a DNA interstrand cross-link, a highly toxic form of DNA damage. The structure shows how dsDNA is separated and reveals a highly unusual involvement of the Arch domain in active dsDNA separation. Combined with mutagenesis and biochemical analyses, we identified distinct functional regions important for helicase activity. Surprisingly, those areas also affect core TFIIH translocase activity, revealing a yet unencountered function of XPD within the TFIIH scaffold. In summary, our data provide a universal basis for NER bubble formation, XPD damage verification and XPG incision. Here, using cryo-EM and biochemistry, the authors delineate how the XPD helicase unorthodoxly uses its Arch domain to separate double-stranded DNA upon approaching a DNA lesion, promoting our understanding of NER bubble formation and damage verification.
超家族 2 螺旋酶 XPD 是一般转录因子 II H(TFIIH)的核心成分,它对转录和核苷酸切割 DNA 修复(NER)至关重要。在这两个过程中,XPD 的螺旋酶功能对 NER 至关重要,但对转录起始并不重要,在转录起始过程中,XPD 只充当其他因子的支架。我们利用低温电子显微镜破译了 XPD 螺旋酶作用中最神秘的步骤之一:主动分离双链 DNA(dsDNA),并在接近 DNA 链间交联(一种剧毒的 DNA 损伤形式)时停滞。该结构显示了dsDNA是如何分离的,并揭示了Arch结构域在主动分离dsDNA过程中极不寻常的参与。结合诱变和生化分析,我们确定了对螺旋酶活性非常重要的不同功能区。令人惊讶的是,这些区域也影响了 TFIIH 核心转位酶的活性,揭示了 XPD 在 TFIIH 支架中尚未遇到的功能。总之,我们的数据为 NER 气泡形成、XPD 损伤验证和 XPG 切割提供了一个普遍基础。
{"title":"XPD stalled on cross-linked DNA provides insight into damage verification","authors":"Jochen Kuper,&nbsp;Tamsanqa Hove,&nbsp;Sarah Maidl,&nbsp;Hermann Neitz,&nbsp;Florian Sauer,&nbsp;Maximilian Kempf,&nbsp;Till Schroeder,&nbsp;Elke Greiter,&nbsp;Claudia Höbartner,&nbsp;Caroline Kisker","doi":"10.1038/s41594-024-01323-5","DOIUrl":"10.1038/s41594-024-01323-5","url":null,"abstract":"The superfamily 2 helicase XPD is a central component of the general transcription factor II H (TFIIH), which is essential for transcription and nucleotide excision DNA repair (NER). Within these two processes, the helicase function of XPD is vital for NER but not for transcription initiation, where XPD acts only as a scaffold for other factors. Using cryo-EM, we deciphered one of the most enigmatic steps in XPD helicase action: the active separation of double-stranded DNA (dsDNA) and its stalling upon approaching a DNA interstrand cross-link, a highly toxic form of DNA damage. The structure shows how dsDNA is separated and reveals a highly unusual involvement of the Arch domain in active dsDNA separation. Combined with mutagenesis and biochemical analyses, we identified distinct functional regions important for helicase activity. Surprisingly, those areas also affect core TFIIH translocase activity, revealing a yet unencountered function of XPD within the TFIIH scaffold. In summary, our data provide a universal basis for NER bubble formation, XPD damage verification and XPG incision. Here, using cryo-EM and biochemistry, the authors delineate how the XPD helicase unorthodoxly uses its Arch domain to separate double-stranded DNA upon approaching a DNA lesion, promoting our understanding of NER bubble formation and damage verification.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1580-1588"},"PeriodicalIF":12.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01323-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insights into PPP2R5A degradation by HIV-1 Vif 艾滋病毒-1 Vif 对 PPP2R5A 降解的结构性启示
IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-24 DOI: 10.1038/s41594-024-01314-6
Yingxia Hu, Krista A. Delviks-Frankenberry, Chunxiang Wu, Fidel Arizaga, Vinay K. Pathak, Yong Xiong
HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFβ to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A–E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif–CBFβ–elongin B–elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif–PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host–virus protein interactions could serve as potential targets for HIV-1 therapeutics. The authors solve a cryo-EM structure of the regulatory subunit of human protein phosphatase 2A in complex with HIV-1 Vif-containing E3 ligase, leading to improvement of our understanding of host–virus protein interactions.
HIV-1 Vif通过多种相互作用,招募宿主cullin-RING-E3泛素连接酶和CBFβ降解细胞APOBEC3抗病毒蛋白。最近的证据表明,Vif 还能降解细胞蛋白磷酸酶 2A 的调节亚基 PPP2R5(A-E),从而诱导 G2/M 细胞周期停滞。由于 PPP2R5 蛋白在功能或结构上与 A3s 没有相似之处,因此 Vif 如何识别不同的蛋白质尚不清楚。在此,我们以 3.58 Å 的分辨率报告了 PPP2R5A 与 HIV-1 Vif-CBFβ-elongin B-elongin C 复合物的低温电子显微镜结构。该结构显示 PPP2R5A 跨 Vif 分子结合,生化和细胞研究证实 Vif-PPP2R5A 界面与 A3 界面部分重叠。Vif 还阻断了一个典型的 PPP2R5A 底物结合位点,表明它通过依赖降解和不依赖降解两种机制抑制磷酸酶的活性。我们的研究发现了调节对不同 A3 和 PPP2R5A 底物识别的关键 Vif 基序,因此破坏这些宿主-病毒蛋白的相互作用可作为 HIV-1 疗法的潜在靶点。
{"title":"Structural insights into PPP2R5A degradation by HIV-1 Vif","authors":"Yingxia Hu,&nbsp;Krista A. Delviks-Frankenberry,&nbsp;Chunxiang Wu,&nbsp;Fidel Arizaga,&nbsp;Vinay K. Pathak,&nbsp;Yong Xiong","doi":"10.1038/s41594-024-01314-6","DOIUrl":"10.1038/s41594-024-01314-6","url":null,"abstract":"HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFβ to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A–E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif–CBFβ–elongin B–elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif–PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host–virus protein interactions could serve as potential targets for HIV-1 therapeutics. The authors solve a cryo-EM structure of the regulatory subunit of human protein phosphatase 2A in complex with HIV-1 Vif-containing E3 ligase, leading to improvement of our understanding of host–virus protein interactions.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1492-1501"},"PeriodicalIF":12.5,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tead4 and Tfap2c generate bipotency and a bistable switch in totipotent embryos to promote robust lineage diversification Tead4 和 Tfap2c 在全能胚胎中产生双能性和双稳态开关,促进稳健的血统多样化
IF 16.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-24 DOI: 10.1038/s41594-024-01311-9
Meng Zhu, Maciej Meglicki, Adiyant Lamba, Peizhe Wang, Christophe Royer, Karen Turner, Muhammad Abdullah Jauhar, Celine Jones, Tim Child, Kevin Coward, Jie Na, Magdalena Zernicka-Goetz
The mouse and human embryo gradually loses totipotency before diversifying into the inner cell mass (ICM, future organism) and trophectoderm (TE, future placenta). The transcription factors TFAP2C and TEAD4 with activated RHOA accelerate embryo polarization. Here we show that these factors also accelerate the loss of totipotency. TFAP2C and TEAD4 paradoxically promote and inhibit Hippo signaling before lineage diversification: they drive expression of multiple Hippo regulators while also promoting apical domain formation, which inactivates Hippo. Each factor activates TE specifiers in bipotent cells, while TFAP2C also activates specifiers of the ICM fate. Asymmetric segregation of the apical domain reconciles the opposing regulation of Hippo signaling into Hippo OFF and the TE fate, or Hippo ON and the ICM fate. We propose that the bistable switch established by TFAP2C and TEAD4 is exploited to trigger robust lineage diversification in the developing embryo. Here the authors identify the transcription factors TFAP2C and TEAD4 as a bistable switch that reconciles into Hippo ON and OFF states, establishing a composite state at the eight-cell stage and critically regulating lineage diversification.
小鼠和人类胚胎在分化为内细胞团(ICM,未来的生物体)和滋养外胚层(TE,未来的胎盘)之前,会逐渐丧失全能性。转录因子 TFAP2C 和 TEAD4 与活化的 RHOA 可加速胚胎极化。在这里,我们发现这些因子也会加速全能性的丧失。TFAP2C和TEAD4在品系分化之前既促进又抑制Hippo信号:它们在驱动多种Hippo调节因子表达的同时也促进顶端结构域的形成,从而使Hippo失活。每个因子都能激活双能细胞中的TE特异体,而TFAP2C也能激活ICM命运的特异体。顶端结构域的非对称分离调和了Hippo信号的相反调控,即Hippo OFF和TE命运,或Hippo ON和ICM命运。我们认为,TFAP2C和TEAD4建立的双稳态开关被用来触发发育中胚胎的稳健品系分化。
{"title":"Tead4 and Tfap2c generate bipotency and a bistable switch in totipotent embryos to promote robust lineage diversification","authors":"Meng Zhu,&nbsp;Maciej Meglicki,&nbsp;Adiyant Lamba,&nbsp;Peizhe Wang,&nbsp;Christophe Royer,&nbsp;Karen Turner,&nbsp;Muhammad Abdullah Jauhar,&nbsp;Celine Jones,&nbsp;Tim Child,&nbsp;Kevin Coward,&nbsp;Jie Na,&nbsp;Magdalena Zernicka-Goetz","doi":"10.1038/s41594-024-01311-9","DOIUrl":"10.1038/s41594-024-01311-9","url":null,"abstract":"The mouse and human embryo gradually loses totipotency before diversifying into the inner cell mass (ICM, future organism) and trophectoderm (TE, future placenta). The transcription factors TFAP2C and TEAD4 with activated RHOA accelerate embryo polarization. Here we show that these factors also accelerate the loss of totipotency. TFAP2C and TEAD4 paradoxically promote and inhibit Hippo signaling before lineage diversification: they drive expression of multiple Hippo regulators while also promoting apical domain formation, which inactivates Hippo. Each factor activates TE specifiers in bipotent cells, while TFAP2C also activates specifiers of the ICM fate. Asymmetric segregation of the apical domain reconciles the opposing regulation of Hippo signaling into Hippo OFF and the TE fate, or Hippo ON and the ICM fate. We propose that the bistable switch established by TFAP2C and TEAD4 is exploited to trigger robust lineage diversification in the developing embryo. Here the authors identify the transcription factors TFAP2C and TEAD4 as a bistable switch that reconciles into Hippo ON and OFF states, establishing a composite state at the eight-cell stage and critically regulating lineage diversification.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 6","pages":"964-976"},"PeriodicalIF":16.8,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01311-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Structural & Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1