We survey recent results on the local and global integrability of a Lie algebroid, as well as the integrability of infinitesimal multiplicative geometric structures on it.
研究了李代数的局部可积性和整体可积性,以及无穷小乘型几何结构在其上的可积性。
{"title":"Local and global integrability of Lie brackets","authors":"R. Fernandes, Yuxuan Zhang","doi":"10.3934/jgm.2021024","DOIUrl":"https://doi.org/10.3934/jgm.2021024","url":null,"abstract":"<p style='text-indent:20px;'>We survey recent results on the local and global integrability of a Lie algebroid, as well as the integrability of infinitesimal multiplicative geometric structures on it.</p>","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86534201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study quotients of multi-graded bundles, including double vector bundles. Among other things, we show that any such quotient fits into a tower of affine bundles. Applications of the theory include a construction of normal bundles for weighted submanifolds, as well as for pairs of submanifolds with clean intersection.
{"title":"Quotients of double vector bundles and multigraded bundles","authors":"E. Meinrenken","doi":"10.3934/jgm.2021027","DOIUrl":"https://doi.org/10.3934/jgm.2021027","url":null,"abstract":"We study quotients of multi-graded bundles, including double vector bundles. Among other things, we show that any such quotient fits into a tower of affine bundles. Applications of the theory include a construction of normal bundles for weighted submanifolds, as well as for pairs of submanifolds with clean intersection.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83500589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A theory of local convexity for a second order differential equation (${text{sode}}$) on a Lie algebroid is developed. The particular case when the ${text{sode}}$ is homogeneous quadratic is extensively discussed.
{"title":"Local convexity for second order differential equations on a Lie algebroid","authors":"J. Marrero, D. D. Diego, E. Mart'inez","doi":"10.3934/jgm.2021021","DOIUrl":"https://doi.org/10.3934/jgm.2021021","url":null,"abstract":"<p style='text-indent:20px;'>A theory of local convexity for a second order differential equation (${text{sode}}$) on a Lie algebroid is developed. The particular case when the ${text{sode}}$ is homogeneous quadratic is extensively discussed.</p>","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86079128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The core diagram of a double Lie algebroid consists of the core of the double Lie algebroid, together with the two core-anchor maps to the sides of the double Lie algebroid. If these two core-anchors are surjective, then the double Lie algebroid and its core diagram are called transitive. This paper establishes an equivalence between transitive double Lie algebroids, and transitive core diagrams over a fixed base manifold. In other words, it proves that a transitive double Lie algebroid is completely determined by its core diagram.The comma double Lie algebroid associated to a morphism of Lie algebroids is defined. If the latter morphism is one of the core-anchors of a transitive core diagram, then the comma double algebroid can be quotiented out by the second core-anchor, yielding a transitive double Lie algebroid, which is the one that is equivalent to the transitive core diagram.Brown's and Mackenzie's equivalence of transitive core diagrams (of Lie groupoids) with transitive double Lie groupoids is then used in order to show that a transitive double Lie algebroid with integrable sides and core is automatically integrable to a transitive double Lie groupoid.
{"title":"Transitive double Lie algebroids via core diagrams","authors":"M. J. Lean, K. Mackenzie","doi":"10.3934/JGM.2021023","DOIUrl":"https://doi.org/10.3934/JGM.2021023","url":null,"abstract":"The core diagram of a double Lie algebroid consists of the core of the double Lie algebroid, together with the two core-anchor maps to the sides of the double Lie algebroid. If these two core-anchors are surjective, then the double Lie algebroid and its core diagram are called transitive. This paper establishes an equivalence between transitive double Lie algebroids, and transitive core diagrams over a fixed base manifold. In other words, it proves that a transitive double Lie algebroid is completely determined by its core diagram.The comma double Lie algebroid associated to a morphism of Lie algebroids is defined. If the latter morphism is one of the core-anchors of a transitive core diagram, then the comma double algebroid can be quotiented out by the second core-anchor, yielding a transitive double Lie algebroid, which is the one that is equivalent to the transitive core diagram.Brown's and Mackenzie's equivalence of transitive core diagrams (of Lie groupoids) with transitive double Lie groupoids is then used in order to show that a transitive double Lie algebroid with integrable sides and core is automatically integrable to a transitive double Lie groupoid.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78082082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Given a foliation, there is a well-known notion of holonomy, which can be understood as an action that differentiates to the Bott connection on the normal bundle. We present an analogous notion for Lie subalgebroids, consisting of an effective action of the minimal integration of the Lie subalgebroid, and provide an explicit description in terms of conjugation by bisections. The construction is done in such a way that it easily extends to singular subalgebroids, which provide our main motivation.
{"title":"Holonomy transformations for Lie subalgebroids","authors":"M. Zambon","doi":"10.3934/jgm.2021016","DOIUrl":"https://doi.org/10.3934/jgm.2021016","url":null,"abstract":"Given a foliation, there is a well-known notion of holonomy, which can be understood as an action that differentiates to the Bott connection on the normal bundle. We present an analogous notion for Lie subalgebroids, consisting of an effective action of the minimal integration of the Lie subalgebroid, and provide an explicit description in terms of conjugation by bisections. The construction is done in such a way that it easily extends to singular subalgebroids, which provide our main motivation.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84629483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To describe time-dependent finite-dimensional mechanical systems, their generalized space-time is modeled as a Galilean manifold. On this basis, we present a geometric mechanical theory that unifies Lagrangian and Hamiltonian mechanics. Moreover, a general definition of force is given, such that the theory is capable of treating nonpotential forces acting on a mechanical system. Within this theory, we elaborate the interconnections between classical equations known from analytical mechanics such as the principle of virtual work, Lagrange's equations of the second kind, Hamilton's equations, Lagrange's central equation, Hamel's generalized central equation as well as Hamilton's principle.
{"title":"The principle of virtual work and Hamilton's principle on Galilean manifolds","authors":"G. Capobianco, T. Winandy, S. Eugster","doi":"10.3934/JGM.2021002","DOIUrl":"https://doi.org/10.3934/JGM.2021002","url":null,"abstract":"To describe time-dependent finite-dimensional mechanical systems, their generalized space-time is modeled as a Galilean manifold. On this basis, we present a geometric mechanical theory that unifies Lagrangian and Hamiltonian mechanics. Moreover, a general definition of force is given, such that the theory is capable of treating nonpotential forces acting on a mechanical system. Within this theory, we elaborate the interconnections between classical equations known from analytical mechanics such as the principle of virtual work, Lagrange's equations of the second kind, Hamilton's equations, Lagrange's central equation, Hamel's generalized central equation as well as Hamilton's principle.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84729896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Book review: General theory of Lie groupoids and Lie algebroids, by Kirill C. H. Mackenzie","authors":"T. Voronov","doi":"10.3934/jgm.2021026","DOIUrl":"https://doi.org/10.3934/jgm.2021026","url":null,"abstract":"<jats:p xml:lang=\"fr\" />","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86643585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The spectral curve associated with the sinh-Gordon equation on the torus is defined in terms of the spectrum of the Lax operator appearing in the Lax pair formulation of the equation. If the spectrum is simple, it is an open Riemann surface of infinite genus. In this paper we construct normalized differentials on this curve and derive estimates for the location of their zeroes, needed for the construction of angle variables.
{"title":"On nomalized differentials on spectral curves associated with the sinh-Gordon equation","authors":"T. Kappeler, Yannick Widmer","doi":"10.3934/jgm.2020023","DOIUrl":"https://doi.org/10.3934/jgm.2020023","url":null,"abstract":"The spectral curve associated with the sinh-Gordon equation on the torus is defined in terms of the spectrum of the Lax operator appearing in the Lax pair formulation of the equation. If the spectrum is simple, it is an open Riemann surface of infinite genus. In this paper we construct normalized differentials on this curve and derive estimates for the location of their zeroes, needed for the construction of angle variables.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91233066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A unified framework for studying extremal curves on real Stiefel manifolds is presented. We start with a smooth one-parameter family of pseudo-Riemannian metrics on a product of orthogonal groups acting transitively on Stiefel manifolds. In the next step Euler-Langrange equations for a whole class of extremal curves on Stiefel manifolds are derived. This includes not only geodesics with respect to different Riemannian metrics, but so-called quasi-geodesics and smooth curves of constant geodesic curvature, as well. It is shown that they all can be written in closed form. Our results are put into perspective to recent related work where a Hamiltonian rather than a Lagrangian approach was used. For some specific values of the parameter we recover certain well-known results.
{"title":"A Lagrangian approach to extremal curves on Stiefel manifolds","authors":"K. Hüper, I. Markina, F. Leite","doi":"10.3934/jgm.2020031","DOIUrl":"https://doi.org/10.3934/jgm.2020031","url":null,"abstract":"A unified framework for studying extremal curves on real Stiefel manifolds is presented. We start with a smooth one-parameter family of pseudo-Riemannian metrics on a product of orthogonal groups acting transitively on Stiefel manifolds. In the next step Euler-Langrange equations for a whole class of extremal curves on Stiefel manifolds are derived. This includes not only geodesics with respect to different Riemannian metrics, but so-called quasi-geodesics and smooth curves of constant geodesic curvature, as well. It is shown that they all can be written in closed form. Our results are put into perspective to recent related work where a Hamiltonian rather than a Lagrangian approach was used. For some specific values of the parameter we recover certain well-known results.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87520744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The main goal of this paper is to present a unifying theory to describe the pure rolling motions of Riemannian symmetric spaces, which are submanifolds of Euclidean or pseudo-Euclidean spaces. Rolling motions provide interesting examples of nonholonomic systems and symmetric spaces appear associated to important applications. We make a connection between the structure of the kinematic equations of rolling and the natural decomposition of the Lie algebra associated to the symmetric space. This emphasises the relevance of Lie theory in the geometry of rolling manifolds and explains why many particular examples scattered through the existing literature always show a common pattern.
{"title":"A unifying approach for rolling symmetric spaces","authors":"K. Krakowski, L. Machado, F. Leite","doi":"10.3934/jgm.2020016","DOIUrl":"https://doi.org/10.3934/jgm.2020016","url":null,"abstract":"The main goal of this paper is to present a unifying theory to describe the pure rolling motions of Riemannian symmetric spaces, which are submanifolds of Euclidean or pseudo-Euclidean spaces. Rolling motions provide interesting examples of nonholonomic systems and symmetric spaces appear associated to important applications. We make a connection between the structure of the kinematic equations of rolling and the natural decomposition of the Lie algebra associated to the symmetric space. This emphasises the relevance of Lie theory in the geometry of rolling manifolds and explains why many particular examples scattered through the existing literature always show a common pattern.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89848172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}