Pub Date : 2024-09-01Epub Date: 2024-08-02DOI: 10.1007/s13577-024-01111-9
Xi Zhang, Liang Yang, Feng Wang, Ying Su
Carbon quantum dots (CQDs), an emerging nanomaterial, are gaining attention in ophthalmological applications due to their distinctive physical, chemical, and biological characteristics. For example, their inherent fluorescent capabilities offer a novel and promising alternative to conventional fluorescent dyes for ocular disease diagnostics. Furthermore, because of the excellent biocompatibility and minimal cytotoxicity, CQDs are well-suited for therapeutic applications. In addition, functionalized CQDs can effectively deliver drugs to the posterior part of the eyeball to inhibit neovascularization. This review details the use of CQDs in the management of ophthalmic diseases, including various retinal diseases, and ocular infections. While still in its initial phases within ophthalmology, the significant potential of CQDs for diagnosing and treating eye conditions is evident.
{"title":"Carbon quantum dots for the diagnosis and treatment of ophthalmic diseases.","authors":"Xi Zhang, Liang Yang, Feng Wang, Ying Su","doi":"10.1007/s13577-024-01111-9","DOIUrl":"10.1007/s13577-024-01111-9","url":null,"abstract":"<p><p>Carbon quantum dots (CQDs), an emerging nanomaterial, are gaining attention in ophthalmological applications due to their distinctive physical, chemical, and biological characteristics. For example, their inherent fluorescent capabilities offer a novel and promising alternative to conventional fluorescent dyes for ocular disease diagnostics. Furthermore, because of the excellent biocompatibility and minimal cytotoxicity, CQDs are well-suited for therapeutic applications. In addition, functionalized CQDs can effectively deliver drugs to the posterior part of the eyeball to inhibit neovascularization. This review details the use of CQDs in the management of ophthalmic diseases, including various retinal diseases, and ocular infections. While still in its initial phases within ophthalmology, the significant potential of CQDs for diagnosing and treating eye conditions is evident.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1336-1346"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-10DOI: 10.1007/s13577-024-01092-9
Hongwei Zhao, Panpan Zhao, Chao Huang
SUMOylation is a dynamic and reversible post-translational modification (PTM) of proteins involved in the regulation of biological processes such as protein homeostasis, DNA repair and cell cycle in normal and tumor cells. In particular, overexpression of SUMOylation components in tumor cells increases the activity of intracellular SUMOylation, protects target proteins against ubiquitination degradation and activation, promoting tumor cell proliferation and metastasis, providing immune evasion and increasing tolerance to chemotherapy and antitumor drugs. However, with the continuous research on SUMOylation and with the continued development of SUMOylation inhibitors, it has been found that tumor initiation and progression can be inhibited by blocking SUMOylation and/or in combination with drugs. SUMOylation is not a bad target when trying to treat tumor. This review introduces SUMOylation cycle pathway and summarizes the role of SUMOylation in tumor initiation and progression and SUMOylation inhibitors and their functions in tumors and provides a prospective view of SUMOylation as a new therapeutic target for tumors.
{"title":"Targeted inhibition of SUMOylation: treatment of tumors.","authors":"Hongwei Zhao, Panpan Zhao, Chao Huang","doi":"10.1007/s13577-024-01092-9","DOIUrl":"10.1007/s13577-024-01092-9","url":null,"abstract":"<p><p>SUMOylation is a dynamic and reversible post-translational modification (PTM) of proteins involved in the regulation of biological processes such as protein homeostasis, DNA repair and cell cycle in normal and tumor cells. In particular, overexpression of SUMOylation components in tumor cells increases the activity of intracellular SUMOylation, protects target proteins against ubiquitination degradation and activation, promoting tumor cell proliferation and metastasis, providing immune evasion and increasing tolerance to chemotherapy and antitumor drugs. However, with the continuous research on SUMOylation and with the continued development of SUMOylation inhibitors, it has been found that tumor initiation and progression can be inhibited by blocking SUMOylation and/or in combination with drugs. SUMOylation is not a bad target when trying to treat tumor. This review introduces SUMOylation cycle pathway and summarizes the role of SUMOylation in tumor initiation and progression and SUMOylation inhibitors and their functions in tumors and provides a prospective view of SUMOylation as a new therapeutic target for tumors.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1347-1354"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.
{"title":"Mesenchymal stem cells and their extracellular vesicles in bone and joint diseases: targeting the NLRP3 inflammasome.","authors":"Shuangshuang Xu, Ying Zhang, Zejun Zheng, Jinmeng Sun, Yanan Wei, Gang Ding","doi":"10.1007/s13577-024-01101-x","DOIUrl":"10.1007/s13577-024-01101-x","url":null,"abstract":"<p><p>The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1276-1289"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CD74 is a transmembrane protein that functions as a specialized chaperone of HLA class II and CD74 in tumor cells was suggested to be involved in cell proliferation in several kinds of malignant tumors. CD74 is also known to be expressed in macrophages, therefore, we investigated the CD74 expression in clear cell renal cell carcinoma (ccRCC). Immunohistochemistry of CD74 indicated that CD74 was expressed not only in cancer cells but also macrophages. CD74 was detected in surface membrane and cytoplasm of cancer cells in 92 of 94 cases (98%) and of 87 of 94 cases (93%). CD74 was expressed both in cancer cells and TAMs in 86 of 94 cases (91%). In vitro studies using cancer cell lines and monocyte-derived macrophages stimulated by anti-CD74 antibodies showed that CD74 signal accelerated cancer cell proliferation and macrophage activation. However, macrophage activation via CD74 signal did not influence macrophage-mediated cancer cell growth. RNA-sequence of macrophages stimulated by anti-CD74 antibodies indicated that CD74 signal was associated to inflammatory responses in macrophages. In conclusion, we examined the expression and functional significance of CD74 in ccRCC using tissue specimens and cell culture studies. The function of CD74 was suggested to be different in cancer cells and in macrophages, and further studies are necessary to clarify the functional significance of CD74 in ccRCC.
{"title":"Potential protumor function of CD74 in clear cell renal cell carcinoma.","authors":"Ayano Ezaki, Hiromu Yano, Cheng Pan, Yukio Fujiwara, Toshiki Anami, Yuki Ibe, Takanobu Motoshima, Junji Yatsuda, Shigeyuki Esumi, Yuji Miura, Tomomi Kamba, Yoshihiro Komohara","doi":"10.1007/s13577-024-01110-w","DOIUrl":"10.1007/s13577-024-01110-w","url":null,"abstract":"<p><p>CD74 is a transmembrane protein that functions as a specialized chaperone of HLA class II and CD74 in tumor cells was suggested to be involved in cell proliferation in several kinds of malignant tumors. CD74 is also known to be expressed in macrophages, therefore, we investigated the CD74 expression in clear cell renal cell carcinoma (ccRCC). Immunohistochemistry of CD74 indicated that CD74 was expressed not only in cancer cells but also macrophages. CD74 was detected in surface membrane and cytoplasm of cancer cells in 92 of 94 cases (98%) and of 87 of 94 cases (93%). CD74 was expressed both in cancer cells and TAMs in 86 of 94 cases (91%). In vitro studies using cancer cell lines and monocyte-derived macrophages stimulated by anti-CD74 antibodies showed that CD74 signal accelerated cancer cell proliferation and macrophage activation. However, macrophage activation via CD74 signal did not influence macrophage-mediated cancer cell growth. RNA-sequence of macrophages stimulated by anti-CD74 antibodies indicated that CD74 signal was associated to inflammatory responses in macrophages. In conclusion, we examined the expression and functional significance of CD74 in ccRCC using tissue specimens and cell culture studies. The function of CD74 was suggested to be different in cancer cells and in macrophages, and further studies are necessary to clarify the functional significance of CD74 in ccRCC.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1535-1543"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-02-22DOI: 10.1007/s13577-024-01036-3
Yijie Zhao, Guangjun Wang, Zhifeng Wei, Duo Li, Mohammadamin Morshedi
{"title":"RETRACTED ARTICLE: Wnt, notch signaling and exercise: what are their functions?","authors":"Yijie Zhao, Guangjun Wang, Zhifeng Wei, Duo Li, Mohammadamin Morshedi","doi":"10.1007/s13577-024-01036-3","DOIUrl":"10.1007/s13577-024-01036-3","url":null,"abstract":"","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1612"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The electrospun nanofiber system is correlated with high efficacy of drug delivery. This study aims to investigate the effect of nanofiber-based delivery of evodiamine, an indole alkaloid derived from Rutaceae plants Evodia rutaecarpa (Juss.) Benth, on intrahepatic cholangiocarcinoma (ICC), as well as to explore the molecular mechanisms. An electrospun nanofiber system carrying evodiamine was generated. Compared to evodiamine treatment alone, the nano-evodiamine exhibited more pronounced effects on suppressing proliferation, colony formation, invasiveness, migration, apoptosis resistance, cell cycle progression, and in vivo tumorigenesis of two ICC cell lines (HUCC-T1 and RBE). ICC cells exhibited increased expression of histone deacetylase 4 (HDAC4) while decreased tropomyosin 1 (TPM1). HDAC4 suppressed TPM1 expression by removing H3K9ac modifications from its promoter. Nano-evodiamine reduced HDAC4 protein levels in ICC cells, thus promoting transcription and expression of TPM1. Either overexpression of HDAC4 or downregulation of TPM1 negated the tumor-suppressive effects of nano-evodiamine. Collectively, this study demonstrates that the electrospun nanofiber system enhances the efficiency of evodiamine. Additionally, evodiamine suppresses the malignant properties of ICC cells. The findings may provide fresh insights into the application of electrospun nanofiber system for drug delivery and the effects of evodiamine on tumor suppression.
{"title":"Nanofiber-based delivery of evodiamine impedes malignant properties of intrahepatic cholangiocarcinoma cells by targeting HDAC4 and restoring TPM1 transcription.","authors":"Rui Zou, Yiyao Wang, Yaoqing Cai, Zhenming Xing, Yongfu Shao, Duo Li, Chunchun Qi","doi":"10.1007/s13577-024-01105-7","DOIUrl":"10.1007/s13577-024-01105-7","url":null,"abstract":"<p><p>The electrospun nanofiber system is correlated with high efficacy of drug delivery. This study aims to investigate the effect of nanofiber-based delivery of evodiamine, an indole alkaloid derived from Rutaceae plants Evodia rutaecarpa (Juss.) Benth, on intrahepatic cholangiocarcinoma (ICC), as well as to explore the molecular mechanisms. An electrospun nanofiber system carrying evodiamine was generated. Compared to evodiamine treatment alone, the nano-evodiamine exhibited more pronounced effects on suppressing proliferation, colony formation, invasiveness, migration, apoptosis resistance, cell cycle progression, and in vivo tumorigenesis of two ICC cell lines (HUCC-T1 and RBE). ICC cells exhibited increased expression of histone deacetylase 4 (HDAC4) while decreased tropomyosin 1 (TPM1). HDAC4 suppressed TPM1 expression by removing H3K9ac modifications from its promoter. Nano-evodiamine reduced HDAC4 protein levels in ICC cells, thus promoting transcription and expression of TPM1. Either overexpression of HDAC4 or downregulation of TPM1 negated the tumor-suppressive effects of nano-evodiamine. Collectively, this study demonstrates that the electrospun nanofiber system enhances the efficiency of evodiamine. Additionally, evodiamine suppresses the malignant properties of ICC cells. The findings may provide fresh insights into the application of electrospun nanofiber system for drug delivery and the effects of evodiamine on tumor suppression.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1505-1521"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-15DOI: 10.1007/s13577-024-01093-8
Raymond Dalgleish
{"title":"Re: Identification of a family with van der Hoeve's syndrome harboring a novel COL1A1 mutation and generation of patient-derived iPSC lines and CRISPR/Cas9-corrected isogenic iPSCs.","authors":"Raymond Dalgleish","doi":"10.1007/s13577-024-01093-8","DOIUrl":"10.1007/s13577-024-01093-8","url":null,"abstract":"","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1610-1611"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-05DOI: 10.1007/s13577-024-01098-3
José-Luis Carrasco-Juan, Miriam González-Gómez, Olga Tapia, Sonia García-Hernández, Abian Vega-Falcón, Rafael Méndez-Medina, Hugo Álvarez-Argüelles Cabrera, Lucio Díaz-Flores
Over the years, the origin of ovarian Leydig cells has been, and still is, a topic subject to deep debate. Seven years ago, we proposed that this origin resided in intraneural elements that came from a possible reservoir of neural crest cells, a reservoir that may be located in the ganglia of the celiac plexus. We believe we have found the evidence necessary to prove this hypothesis.
{"title":"The origin of ovarian Leydig cells: a possibly solved enigma?","authors":"José-Luis Carrasco-Juan, Miriam González-Gómez, Olga Tapia, Sonia García-Hernández, Abian Vega-Falcón, Rafael Méndez-Medina, Hugo Álvarez-Argüelles Cabrera, Lucio Díaz-Flores","doi":"10.1007/s13577-024-01098-3","DOIUrl":"10.1007/s13577-024-01098-3","url":null,"abstract":"<p><p>Over the years, the origin of ovarian Leydig cells has been, and still is, a topic subject to deep debate. Seven years ago, we proposed that this origin resided in intraneural elements that came from a possible reservoir of neural crest cells, a reservoir that may be located in the ganglia of the celiac plexus. We believe we have found the evidence necessary to prove this hypothesis.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1544-1552"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-10DOI: 10.1007/s13577-024-01099-2
Ran You, Zhanjun Jia
The Na-Cl cotransporter (NCC) is a well-recognized regulator of ion transportation in the kidneys that facilitates Na+ reabsorption in the distal convoluted tubule. It is also the pharmacologic inhibitory target of thiazide diuretics, a class of front-line antihypertensive agents that have been widely used for decades. NCC is a potent regulator of Na+ reabsorption and homeostasis. Hence, its overactivation and suppression lead to hypertension and hypotension, respectively. Genetic mutations that affect NCC function contribute to several diseases such as Gordon and Gitelman syndromes. We summarized the role of NCC in various physiologic processes and pathological conditions, such as maintaining ion and water homeostasis, controlling blood pressure, and influencing renal physiology and injury. In addition, we discussed the recent advancements in understanding cryo-EM structure of NCC, the regulatory mechanisms and binding mode of thiazides with NCC, and novel physiologic implications of NCC in regulating the cross-talk between the immune system and adipose tissue or the kidneys. This review contributes to a comprehensive understanding of the pivotal role of NCC in maintaining ion homeostasis, regulating blood pressure, and facilitating kidney function and NCC's novel role in immune and metabolic regulation.
{"title":"Pathophysiological role of Na-Cl cotransporter in kidneys, blood pressure, and metabolism.","authors":"Ran You, Zhanjun Jia","doi":"10.1007/s13577-024-01099-2","DOIUrl":"10.1007/s13577-024-01099-2","url":null,"abstract":"<p><p>The Na-Cl cotransporter (NCC) is a well-recognized regulator of ion transportation in the kidneys that facilitates Na<sup>+</sup> reabsorption in the distal convoluted tubule. It is also the pharmacologic inhibitory target of thiazide diuretics, a class of front-line antihypertensive agents that have been widely used for decades. NCC is a potent regulator of Na<sup>+</sup> reabsorption and homeostasis. Hence, its overactivation and suppression lead to hypertension and hypotension, respectively. Genetic mutations that affect NCC function contribute to several diseases such as Gordon and Gitelman syndromes. We summarized the role of NCC in various physiologic processes and pathological conditions, such as maintaining ion and water homeostasis, controlling blood pressure, and influencing renal physiology and injury. In addition, we discussed the recent advancements in understanding cryo-EM structure of NCC, the regulatory mechanisms and binding mode of thiazides with NCC, and novel physiologic implications of NCC in regulating the cross-talk between the immune system and adipose tissue or the kidneys. This review contributes to a comprehensive understanding of the pivotal role of NCC in maintaining ion homeostasis, regulating blood pressure, and facilitating kidney function and NCC's novel role in immune and metabolic regulation.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1306-1315"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-12DOI: 10.1007/s13577-024-01102-w
Yalin Yuan, Mi Zou, Shuqin Wu, Congcong Liu, Liang Hao
Osteonecrosis of the femoral head (ONFH) is a condition that causes considerable pain and discomfort for patients, and its pathogenic mechanisms are not yet fully understood. While there have been many studies that suggest multiple factors may contribute to its development, current treatments involve both surgical and nonsurgical options. However, there is still much room for improvement in these treatment methods, particularly when it comes to preventing postoperative complications and optimizing surgical procedures. Nanomaterials, as a type of small molecule material, have shown great promise in treating bone tissue diseases, including ONFH. In fact, several nanocomposite materials have demonstrated specific effects in preventing ONFH, promoting bone tissue repair and growth, and optimizing surgical treatment. This article provides a comprehensive overview of current treatments for ONFH, including their advantages and limitations, and reviews the latest advances in nanomaterials for treating this condition. Additionally, this article explores the therapeutic mechanisms involved in using nanomaterials to treat ONFH and to identify new methods and ideas for improving outcomes for patients.
{"title":"Recent advances in nanomaterials for the treatment of femoral head necrosis.","authors":"Yalin Yuan, Mi Zou, Shuqin Wu, Congcong Liu, Liang Hao","doi":"10.1007/s13577-024-01102-w","DOIUrl":"10.1007/s13577-024-01102-w","url":null,"abstract":"<p><p>Osteonecrosis of the femoral head (ONFH) is a condition that causes considerable pain and discomfort for patients, and its pathogenic mechanisms are not yet fully understood. While there have been many studies that suggest multiple factors may contribute to its development, current treatments involve both surgical and nonsurgical options. However, there is still much room for improvement in these treatment methods, particularly when it comes to preventing postoperative complications and optimizing surgical procedures. Nanomaterials, as a type of small molecule material, have shown great promise in treating bone tissue diseases, including ONFH. In fact, several nanocomposite materials have demonstrated specific effects in preventing ONFH, promoting bone tissue repair and growth, and optimizing surgical treatment. This article provides a comprehensive overview of current treatments for ONFH, including their advantages and limitations, and reviews the latest advances in nanomaterials for treating this condition. Additionally, this article explores the therapeutic mechanisms involved in using nanomaterials to treat ONFH and to identify new methods and ideas for improving outcomes for patients.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":" ","pages":"1290-1305"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}