Alveolar soft part sarcoma (ASPS) is a rare mesenchymal tumor characterized by rearrangement of the ASPSCR1 and TFE3 genes and a histologically distinctive pseudoalveolar pattern. ASPS progresses slowly, but is prone to late metastasis. As ASPS is refractory to conventional chemotherapy, the only curative treatment is complete surgical resection. The prognosis of advanced and metastatic cases is poor, highlighting the need for preclinical research to develop appropriate treatment options. However, ASPS is extremely rare, accounting for < 1% of all soft tissue sarcomas, and only one patient-derived ASPS cell line is available from public cell banks worldwide for research. This study reports the establishment of a novel ASPS cell line derived from the primary tumor tissue of an ASPS patient, named NCC-ASPS2-C1. This cell line retains the ASPSCR1-TFE3 fusion gene, which is characteristic of ASPS. The characterization of this cell line revealed stable growth, spheroid formation, and invasive properties. By screening a drug library using NCC-ASPS2-C1, we identified several drugs that inhibited the proliferation of ASPS cells. In conclusion, the establishment of NCC-ASPS2-C1 provides a valuable resource for advancing ASPS research and developing novel treatments for this challenging disease.
{"title":"Establishment and characterization of NCC-ASPS2-C1: a novel patient-derived cell line of alveolar soft part sarcoma.","authors":"Julia Osaki, Rei Noguchi, Kazuyoshi Yanagihara, Takuya Ono, Yuki Adachi, Shuhei Iwata, Yu Toda, Tetsuya Sekita, Eisuke Kobayashi, Naoki Kojima, Akihiko Yoshida, Akira Kawai, Tadashi Kondo","doi":"10.1007/s13577-024-01039-0","DOIUrl":"10.1007/s13577-024-01039-0","url":null,"abstract":"<p><p>Alveolar soft part sarcoma (ASPS) is a rare mesenchymal tumor characterized by rearrangement of the ASPSCR1 and TFE3 genes and a histologically distinctive pseudoalveolar pattern. ASPS progresses slowly, but is prone to late metastasis. As ASPS is refractory to conventional chemotherapy, the only curative treatment is complete surgical resection. The prognosis of advanced and metastatic cases is poor, highlighting the need for preclinical research to develop appropriate treatment options. However, ASPS is extremely rare, accounting for < 1% of all soft tissue sarcomas, and only one patient-derived ASPS cell line is available from public cell banks worldwide for research. This study reports the establishment of a novel ASPS cell line derived from the primary tumor tissue of an ASPS patient, named NCC-ASPS2-C1. This cell line retains the ASPSCR1-TFE3 fusion gene, which is characteristic of ASPS. The characterization of this cell line revealed stable growth, spheroid formation, and invasive properties. By screening a drug library using NCC-ASPS2-C1, we identified several drugs that inhibited the proliferation of ASPS cells. In conclusion, the establishment of NCC-ASPS2-C1 provides a valuable resource for advancing ASPS research and developing novel treatments for this challenging disease.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human myeloid leukemia cells (such as K562) could be used for the study of erythropoiesis, and mature erythroid markers and globins could be induced during leukemia cell differentiation; however, the pathways involved are different compared with those of hematopoietic stem cells (HSCs).We identified the differentially expressed genes (DEGs) of K562 cells and HSCs associated with stem cells and erythroid differentiation. Furthermore, we showed that hemin-induced differentiation of K562 cells could be induced by serum starvation or treatment with the tyrosine kinase inhibitor saracatinib. However, erythroid differentiation of HSCs was inhibited by the deprivation of the important serum component erythropoietin (EPO) or treatment with saracatinib. Finally, we found that the mRNA expression of K562 cells and HSCs was different during saracatinib-treated erythroid differentiation, and the DEGs of K562 cells and HSCs associated with tyrosine-protein kinase were identified.These findings elucidated the cellular phenomenon of saracatinib induction during erythroid differentiation of K562 cells and HSCs, and the potential mechanism is the different mRNA expression profile of tyrosine-protein kinase in K562 cells and HSCs.
{"title":"Saracatinib prompts hemin-induced K562 erythroid differentiation but suppresses erythropoiesis of hematopoietic stem cells.","authors":"Lina Ding, Diyu Chen, Yuanshuai Li, Yingjun Xie, Xiaofang Sun, Ding Wang","doi":"10.1007/s13577-024-01034-5","DOIUrl":"10.1007/s13577-024-01034-5","url":null,"abstract":"<p><p>Human myeloid leukemia cells (such as K562) could be used for the study of erythropoiesis, and mature erythroid markers and globins could be induced during leukemia cell differentiation; however, the pathways involved are different compared with those of hematopoietic stem cells (HSCs).We identified the differentially expressed genes (DEGs) of K562 cells and HSCs associated with stem cells and erythroid differentiation. Furthermore, we showed that hemin-induced differentiation of K562 cells could be induced by serum starvation or treatment with the tyrosine kinase inhibitor saracatinib. However, erythroid differentiation of HSCs was inhibited by the deprivation of the important serum component erythropoietin (EPO) or treatment with saracatinib. Finally, we found that the mRNA expression of K562 cells and HSCs was different during saracatinib-treated erythroid differentiation, and the DEGs of K562 cells and HSCs associated with tyrosine-protein kinase were identified.These findings elucidated the cellular phenomenon of saracatinib induction during erythroid differentiation of K562 cells and HSCs, and the potential mechanism is the different mRNA expression profile of tyrosine-protein kinase in K562 cells and HSCs.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chimeric antigen receptor (CAR) T-cell therapy is a new and innovative approach to treating cancers that has shown promising results in the treatment of lymphoma. However, it has been found to be less effective in the treatment of solid tumors. To overcome the limitation, researchers have explored the use of combined CAR-T therapy with other complementary regimens that target specific genes or biomarkers, which would enhance the synergistic therapeutic effects. Transcription factors (TFs) have been identified as potential markers that can regulate gene expression in CAR-T cells to enhance their cytotoxicity and safety. TFs are known to bind DNA specifically and recruit cofactor proteins to regulate the expression of target genes. By targeting TFs, it is possible to improve the anti-tumor response of CAR-T cells by altering their phenotype and transcriptional map, thereby increasing their effector function, such as reducing the exhaustion, enhancing the survival, and cytotoxicity of CAR-T cells. This review summarizes the application of transcription factors in CART therapy to enhance the synergistic therapeutic effect of CAR-T cells in the treatment of solid tumors and improve their anti-tumor responses.
{"title":"Transcription factors in chimeric antigen receptor T-cell development.","authors":"Anran Dai, Xiangzhi Zhang, Xiaoyan Wang, Guodong Liu, Qiang Wang, Feng Yu","doi":"10.1007/s13577-024-01040-7","DOIUrl":"10.1007/s13577-024-01040-7","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy is a new and innovative approach to treating cancers that has shown promising results in the treatment of lymphoma. However, it has been found to be less effective in the treatment of solid tumors. To overcome the limitation, researchers have explored the use of combined CAR-T therapy with other complementary regimens that target specific genes or biomarkers, which would enhance the synergistic therapeutic effects. Transcription factors (TFs) have been identified as potential markers that can regulate gene expression in CAR-T cells to enhance their cytotoxicity and safety. TFs are known to bind DNA specifically and recruit cofactor proteins to regulate the expression of target genes. By targeting TFs, it is possible to improve the anti-tumor response of CAR-T cells by altering their phenotype and transcriptional map, thereby increasing their effector function, such as reducing the exhaustion, enhancing the survival, and cytotoxicity of CAR-T cells. This review summarizes the application of transcription factors in CART therapy to enhance the synergistic therapeutic effect of CAR-T cells in the treatment of solid tumors and improve their anti-tumor responses.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MYCN (master regulator of cell cycle entry and proliferative metabolism) gene amplification defines a molecular subgroup of spinal cord ependymomas that show high-grade morphology and aggressive behavior. Demonstration of MYCN amplification by DNA methylation or fluorescence-in situ hybridization (FISH) is required for diagnosis. We aimed to (i) assess prevalence and clinicopathological features of MYCN-amplified spinal ependymomas and (ii) evaluate utility of immunohistochemistry (IHC) for MYCN protein as a surrogate for molecular testing. A combined retrospective-prospective study spanning 8 years was designed during which all spinal cord ependymomas with adequate tissue were subjected to MYCN FISH and MYCN IHC. Among 77 spinal cord ependymomas included, MYCN amplification was identified in 4 samples from 3 patients (3/74, 4%) including two (1st and 2nd recurrences) from the same patient. All patients were adults (median age at diagnosis of 32 years) including two females and one male. The index tumors were located in thoracic (n = 2) and lumbar (n = 1) spinal cord. One of the female patients had neurofibromatosis type 2 (NF2). All four tumors showed anaplastic histology. Diffuse expression of MYCN protein was seen in all four MYCN-amplified samples but in none of the non-amplified cases, thus showing 100% concordance with FISH results. On follow-up, the NF2 patient developed widespread spinal dissemination while another developed recurrence proximal to the site of previous excision. To conclude, MYCN-amplified spinal ependymomas are rare tumors, accounting for ~ 4% of spinal cord ependymomas. Within the limitation of small sample size, MYCN IHC showed excellent concordance with MYCN gene amplification.
{"title":"MYCN immunohistochemistry as surrogate marker for MYCN-amplified spinal ependymomas.","authors":"Divya Mohan, Aruna Nambirajan, Rafat Malik, Agrima Sharma, Vaishali Suri, Kavneet Kaur, Ramesh Doddamani, Ajay Garg, Subhash Gupta, Supriya Mallick, Mehar Chand Sharma","doi":"10.1007/s13577-024-01037-2","DOIUrl":"10.1007/s13577-024-01037-2","url":null,"abstract":"<p><p>MYCN (master regulator of cell cycle entry and proliferative metabolism) gene amplification defines a molecular subgroup of spinal cord ependymomas that show high-grade morphology and aggressive behavior. Demonstration of MYCN amplification by DNA methylation or fluorescence-in situ hybridization (FISH) is required for diagnosis. We aimed to (i) assess prevalence and clinicopathological features of MYCN-amplified spinal ependymomas and (ii) evaluate utility of immunohistochemistry (IHC) for MYCN protein as a surrogate for molecular testing. A combined retrospective-prospective study spanning 8 years was designed during which all spinal cord ependymomas with adequate tissue were subjected to MYCN FISH and MYCN IHC. Among 77 spinal cord ependymomas included, MYCN amplification was identified in 4 samples from 3 patients (3/74, 4%) including two (1st and 2nd recurrences) from the same patient. All patients were adults (median age at diagnosis of 32 years) including two females and one male. The index tumors were located in thoracic (n = 2) and lumbar (n = 1) spinal cord. One of the female patients had neurofibromatosis type 2 (NF2). All four tumors showed anaplastic histology. Diffuse expression of MYCN protein was seen in all four MYCN-amplified samples but in none of the non-amplified cases, thus showing 100% concordance with FISH results. On follow-up, the NF2 patient developed widespread spinal dissemination while another developed recurrence proximal to the site of previous excision. To conclude, MYCN-amplified spinal ependymomas are rare tumors, accounting for ~ 4% of spinal cord ependymomas. Within the limitation of small sample size, MYCN IHC showed excellent concordance with MYCN gene amplification.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lethal graft-versus-host disease (GVHD) is the major complication of allogeneic hematopoietic stem-cell transplantation (Allo-HSCT). Pyruvate kinase M2 (PKM2) is essential for CD4+ T-cell differentiation. Using the well-characterized mouse models of Allo-HSCT, we explored the effects of TEPP-46-induced PKM2 tetramerization on GVHD and graft-versus-leukemia (GVL) activity. TEPP-46 administration significantly improved the survival rate of GVHD. The severity of GVHD and histopathological damage of GVHD-targeted organs were obviously alleviated by PKM2 tetramerization. Additionally, tetramerized PKM2 inhibited the activation of NF-κB pathway and decreased the inflammation level of GVHD mice. PKM2 tetramerization blocked Th1 and Th17 cell differentiation and secretion of pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-17). Meanwhile, differentiation of Treg cells and IL-10 secretion were promoted by tetramerized PKM2. These findings demonstrated that PKM2 enhanced the augment of Th1 and Th17 cells to accelerate the progression of GVHD, and allosteric activation of PKM2 targeted Th1 and Th17 cells attenuated GVHD. Furthermore, we also confirmed that TEPP-46 administration did not compromise GVL activity and resulted in slightly improvement of leukemia-free survive. Thus, targeting Th1 and Th17 cell response with PKM2 allosteric activator may be a promising therapeutic strategy for GVHD prevention while preserving the GVL activity in patients receiving Allo-HSCT.
{"title":"Tetramerization of pyruvate kinase M2 attenuates graft-versus-host disease by inhibition of Th1 and Th17 differentiation.","authors":"Meng Wang, Qiu-Jie Li, Hua-Yan Zhao, Jing-Lan Zhang","doi":"10.1007/s13577-024-01033-6","DOIUrl":"10.1007/s13577-024-01033-6","url":null,"abstract":"<p><p>Lethal graft-versus-host disease (GVHD) is the major complication of allogeneic hematopoietic stem-cell transplantation (Allo-HSCT). Pyruvate kinase M2 (PKM2) is essential for CD4+ T-cell differentiation. Using the well-characterized mouse models of Allo-HSCT, we explored the effects of TEPP-46-induced PKM2 tetramerization on GVHD and graft-versus-leukemia (GVL) activity. TEPP-46 administration significantly improved the survival rate of GVHD. The severity of GVHD and histopathological damage of GVHD-targeted organs were obviously alleviated by PKM2 tetramerization. Additionally, tetramerized PKM2 inhibited the activation of NF-κB pathway and decreased the inflammation level of GVHD mice. PKM2 tetramerization blocked Th1 and Th17 cell differentiation and secretion of pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-17). Meanwhile, differentiation of Treg cells and IL-10 secretion were promoted by tetramerized PKM2. These findings demonstrated that PKM2 enhanced the augment of Th1 and Th17 cells to accelerate the progression of GVHD, and allosteric activation of PKM2 targeted Th1 and Th17 cells attenuated GVHD. Furthermore, we also confirmed that TEPP-46 administration did not compromise GVL activity and resulted in slightly improvement of leukemia-free survive. Thus, targeting Th1 and Th17 cell response with PKM2 allosteric activator may be a promising therapeutic strategy for GVHD prevention while preserving the GVL activity in patients receiving Allo-HSCT.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-19DOI: 10.1007/s13577-024-01031-8
Die Chen, Jimei Su, Xueying Huang, Hongyu Chen, Tiejia Jiang, Chunchun Zhi, Zuolin Zhou, Bing Zhang, Lan Yu, Xiaoling Jiang
Pathogenic variants of the KCNH1 gene can cause dominant-inherited Temple-Baraitser/Zimmermann-Laband syndrome with severe mental retardation, seizure, gingival hyperplasia and nail hypoplasia. This study established an induced pluripotent stem cell (iPSC) line using urinary cells from a girl with KCNH1 recurrent/hotspot pathogenic variant c.1070G > A (p.R357Q). The cell identity, pluripotency, karyotypic integrity, absence of reprogramming virus and mycoplasma contamination, and differential potential to three germ layers of the iPSC line, named as ZJUCHi003, were characterized and confirmed. Furthermore, ZJUCHi003-derived neurons manifested slower action potential repolarization process and wider action potential half-width than the normal neurons. This cell line will be useful for investigating the pathogenic mechanisms of KCNH1 variants-associated symptoms, as well as for evaluating novel therapeutic approaches.
{"title":"Establishment and characterization of ZJUCHi003: an induced pluripotent stem cell line from a patient with Temple-Baraitser/Zimmermann-Laband syndrome carrying KCNH1 c.1070G > A (p.R357Q) variant.","authors":"Die Chen, Jimei Su, Xueying Huang, Hongyu Chen, Tiejia Jiang, Chunchun Zhi, Zuolin Zhou, Bing Zhang, Lan Yu, Xiaoling Jiang","doi":"10.1007/s13577-024-01031-8","DOIUrl":"10.1007/s13577-024-01031-8","url":null,"abstract":"<p><p>Pathogenic variants of the KCNH1 gene can cause dominant-inherited Temple-Baraitser/Zimmermann-Laband syndrome with severe mental retardation, seizure, gingival hyperplasia and nail hypoplasia. This study established an induced pluripotent stem cell (iPSC) line using urinary cells from a girl with KCNH1 recurrent/hotspot pathogenic variant c.1070G > A (p.R357Q). The cell identity, pluripotency, karyotypic integrity, absence of reprogramming virus and mycoplasma contamination, and differential potential to three germ layers of the iPSC line, named as ZJUCHi003, were characterized and confirmed. Furthermore, ZJUCHi003-derived neurons manifested slower action potential repolarization process and wider action potential half-width than the normal neurons. This cell line will be useful for investigating the pathogenic mechanisms of KCNH1 variants-associated symptoms, as well as for evaluating novel therapeutic approaches.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dermatofibrosarcoma protuberans (DFSP) is the most prevalent dermal sarcoma, characterized by the presence of the fusion of the collagen type I alpha 1 (COL1A1) gene with the platelet-derived growth factor beta chain (PDGFB) gene. Although PDGF receptor inhibitor imatinib mesylate was approved for the treating patients with unresectable or metastatic DFSP, disease progression was shown in 9.2% of the patients. Therefore, developing novel therapeutic strategies is crucial for improving the prognosis of DFSP. Patient-derived cell lines play a vital role in preclinical studies; however, only a limited number of DFSP cell lines are currently available in public cell banks. Here, we successfully established a novel DFSP cell line (NCC-DFSP5-C1) using surgically resected tumor tissue from a patient with DFSP. NCC-DFSP5-C1 cells were confirmed to carry the COL1A1-PDGFB translocation and maintain the same mutation as the original tumor tissue. They exhibited consistent growth, formed spheroids, and were invasive. By screening a drug library using NCC-DFSP5-C1 and four previously established DFSP cell lines, we identified anti-cancer drugs that inhibit DFSP cell proliferation. Our observations suggest that the NCC-DFSP5-C1 cell line holds promise as a valuable tool for conducting fundamental and preclinical studies for DFSP.
{"title":"Establishment and characterization of NCC-DFSP5-C1: a novel patient-derived dermatofibrosarcoma protuberans cell line.","authors":"Takuya Ono, Rei Noguchi, Julia Osaki, Taro Akiyama, Yuki Adachi, Naoki Kojima, Yu Toda, Suguru Fukushima, Yuki Yoshimatsu, Akihiko Yoshida, Akira Kawai, Tadashi Kondo","doi":"10.1007/s13577-024-01030-9","DOIUrl":"10.1007/s13577-024-01030-9","url":null,"abstract":"<p><p>Dermatofibrosarcoma protuberans (DFSP) is the most prevalent dermal sarcoma, characterized by the presence of the fusion of the collagen type I alpha 1 (COL1A1) gene with the platelet-derived growth factor beta chain (PDGFB) gene. Although PDGF receptor inhibitor imatinib mesylate was approved for the treating patients with unresectable or metastatic DFSP, disease progression was shown in 9.2% of the patients. Therefore, developing novel therapeutic strategies is crucial for improving the prognosis of DFSP. Patient-derived cell lines play a vital role in preclinical studies; however, only a limited number of DFSP cell lines are currently available in public cell banks. Here, we successfully established a novel DFSP cell line (NCC-DFSP5-C1) using surgically resected tumor tissue from a patient with DFSP. NCC-DFSP5-C1 cells were confirmed to carry the COL1A1-PDGFB translocation and maintain the same mutation as the original tumor tissue. They exhibited consistent growth, formed spheroids, and were invasive. By screening a drug library using NCC-DFSP5-C1 and four previously established DFSP cell lines, we identified anti-cancer drugs that inhibit DFSP cell proliferation. Our observations suggest that the NCC-DFSP5-C1 cell line holds promise as a valuable tool for conducting fundamental and preclinical studies for DFSP.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-28DOI: 10.1007/s13577-024-01032-7
Chao Zhang, Chengkun Qin
This study aimed to investigate the expression of protein regulator of cytokinesis 1 (PRC1) in cholangiocarcinoma (CHOL) and elucidate its potential impact as well as the underlying mechanisms governing the progression of CHOL. In this study, we used CHOL cells (HUCCT1, RBE, and CCLP1) and conducted a series of experiments, including qRT-PCR, cell counting kit-8 assays, EdU assays, flow cytometry, wound healing assays, Transwell assays, western blotting, double luciferase assays, and ELISA. Subsequently, a mouse model was established using cancer cell injections. Haematoxylin-eosin staining, along with Ki67 and TUNEL assays, were employed to assess tissue histopathology, cell proliferation, and apoptosis. Our findings revealed significantly elevated PRC1 expression in CHOL. According to bioinformatics analysis, it was found that the increased PRC1 level is correlated with the high tumour grades, metastases, and unfavourable prognoses. Notably, PRC1 knockdown inhibited cell viability, proliferation, migration, and invasion while promoting apoptosis in CHOL cells. Analysing TCGA-CHOL data and utilising transcription factor prediction tools (hTFtarget and HumanTFDB), we identified that genes positively correlated with PRC1 in TCGA-CHOL intersect with predicted transcription factors, revealing the activation of PRC1 by forkhead box protein M1 (FOXM1). Moreover, PRC1 was found to exert regulatory control over glycolysis and the mammalian target of rapamycin complex 1 (mTORC1) pathway in the context of CHOL based on KEGG and GSEA analysis. Collectively, these results underscore the pivotal role of PRC1 in CHOL progression, wherein it modulates glycolysis and the mTORC1 pathway under the regulatory influence of FOXM1.
{"title":"Protein regulator of cytokinesis 1 accentuates cholangiocarcinoma progression via mTORC1-mediated glycolysis.","authors":"Chao Zhang, Chengkun Qin","doi":"10.1007/s13577-024-01032-7","DOIUrl":"10.1007/s13577-024-01032-7","url":null,"abstract":"<p><p>This study aimed to investigate the expression of protein regulator of cytokinesis 1 (PRC1) in cholangiocarcinoma (CHOL) and elucidate its potential impact as well as the underlying mechanisms governing the progression of CHOL. In this study, we used CHOL cells (HUCCT1, RBE, and CCLP1) and conducted a series of experiments, including qRT-PCR, cell counting kit-8 assays, EdU assays, flow cytometry, wound healing assays, Transwell assays, western blotting, double luciferase assays, and ELISA. Subsequently, a mouse model was established using cancer cell injections. Haematoxylin-eosin staining, along with Ki67 and TUNEL assays, were employed to assess tissue histopathology, cell proliferation, and apoptosis. Our findings revealed significantly elevated PRC1 expression in CHOL. According to bioinformatics analysis, it was found that the increased PRC1 level is correlated with the high tumour grades, metastases, and unfavourable prognoses. Notably, PRC1 knockdown inhibited cell viability, proliferation, migration, and invasion while promoting apoptosis in CHOL cells. Analysing TCGA-CHOL data and utilising transcription factor prediction tools (hTFtarget and HumanTFDB), we identified that genes positively correlated with PRC1 in TCGA-CHOL intersect with predicted transcription factors, revealing the activation of PRC1 by forkhead box protein M1 (FOXM1). Moreover, PRC1 was found to exert regulatory control over glycolysis and the mammalian target of rapamycin complex 1 (mTORC1) pathway in the context of CHOL based on KEGG and GSEA analysis. Collectively, these results underscore the pivotal role of PRC1 in CHOL progression, wherein it modulates glycolysis and the mTORC1 pathway under the regulatory influence of FOXM1.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-27DOI: 10.1007/s13577-024-01049-y
Yun-Jing Hou, Xin-Xin Yang, Lin He, Hong-Xue Meng
Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.
{"title":"Pathological mechanisms of cold and mechanical stress in modulating cancer progression.","authors":"Yun-Jing Hou, Xin-Xin Yang, Lin He, Hong-Xue Meng","doi":"10.1007/s13577-024-01049-y","DOIUrl":"10.1007/s13577-024-01049-y","url":null,"abstract":"<p><p>Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140307557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-15DOI: 10.1007/s13577-024-01024-7
Xiaoke Zhu, Yu Heng, Duo Zhang, Di Tang, Jian Zhou, Hanqing Lin, Jingyu Ma, Xuping Ding, Lei Tao, Liming Lu
Tumor-infiltrating neutrophils play a crucial role in the progression of head and neck squamous cell carcinoma (HNSCC). Here, we aimed to statistically quantify the plasticity of HNSCC-infiltrating N2/N1 neutrophils and examine its impacts on survival and immune infiltration landscape. A retrospective study of 80 patients who underwent curative surgical resection for HNSCC between 2014 and 2017 was conducted in this study. HNSCC-infiltrating neutrophil phenotypes were classified using immunofluorescence staining, and the N2/N1 neutrophil plasticity was evaluated via the ratio of N2/N1 neutrophils. We then assessed the correlations between N2/N1 neutrophil plasticity, clinicopathological characteristics, and immune infiltration landscape using rigorous statistical methods. Infiltration variations of N1 and N2 neutrophils were observed between the tumor nest (TN) and tumor stroma (TS), with TN exhibiting higher N2 neutrophil infiltration and lower N1 neutrophil infiltration. High ratios of N2/N1 neutrophils were correlated with advanced TNM stage, large tumor size and invasion of adjacent tissue. High infiltration of N2 neutrophils was associated with decreased overall and relapse-free survival, which were opposite for N1 neutrophils. The independent prognostic role of N2/N1 neutrophil plasticity, particularly within the TN region, was confirmed by multivariate analyses. Moreover, the ratio of N2/N1 neutrophils within the TN region showed correlations with high CD8+ T cells infiltration and low FOXP3+ Tregs infiltration. We identify HNSCC-infiltrating N2/N1 neutrophil plasticity as a crucial prognostic indictor which potentially reflects the tumor microenvironment (TME) and immune escape landscape within HNSCC tissues. Further investigations and validations may provide novel therapeutic strategies for personalized immunomodulation in HNSCC patients.
{"title":"Prognostic significance and immune escape implication of tumor-infiltrating neutrophil plasticity in human head and neck squamous cell carcinoma.","authors":"Xiaoke Zhu, Yu Heng, Duo Zhang, Di Tang, Jian Zhou, Hanqing Lin, Jingyu Ma, Xuping Ding, Lei Tao, Liming Lu","doi":"10.1007/s13577-024-01024-7","DOIUrl":"10.1007/s13577-024-01024-7","url":null,"abstract":"<p><p>Tumor-infiltrating neutrophils play a crucial role in the progression of head and neck squamous cell carcinoma (HNSCC). Here, we aimed to statistically quantify the plasticity of HNSCC-infiltrating N2/N1 neutrophils and examine its impacts on survival and immune infiltration landscape. A retrospective study of 80 patients who underwent curative surgical resection for HNSCC between 2014 and 2017 was conducted in this study. HNSCC-infiltrating neutrophil phenotypes were classified using immunofluorescence staining, and the N2/N1 neutrophil plasticity was evaluated via the ratio of N2/N1 neutrophils. We then assessed the correlations between N2/N1 neutrophil plasticity, clinicopathological characteristics, and immune infiltration landscape using rigorous statistical methods. Infiltration variations of N1 and N2 neutrophils were observed between the tumor nest (TN) and tumor stroma (TS), with TN exhibiting higher N2 neutrophil infiltration and lower N1 neutrophil infiltration. High ratios of N2/N1 neutrophils were correlated with advanced TNM stage, large tumor size and invasion of adjacent tissue. High infiltration of N2 neutrophils was associated with decreased overall and relapse-free survival, which were opposite for N1 neutrophils. The independent prognostic role of N2/N1 neutrophil plasticity, particularly within the TN region, was confirmed by multivariate analyses. Moreover, the ratio of N2/N1 neutrophils within the TN region showed correlations with high CD8<sup>+</sup> T cells infiltration and low FOXP3<sup>+</sup> Tregs infiltration. We identify HNSCC-infiltrating N2/N1 neutrophil plasticity as a crucial prognostic indictor which potentially reflects the tumor microenvironment (TME) and immune escape landscape within HNSCC tissues. Further investigations and validations may provide novel therapeutic strategies for personalized immunomodulation in HNSCC patients.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}