Pub Date : 2024-03-19DOI: 10.1016/j.epidem.2024.100763
Gerard E. Ryan , Freya M. Shearer , James M. McCaw , Jodie McVernon , Nick Golding
The availability of COVID-19 vaccines promised a reduction in the severity of disease and relief from the strict public health and social measures (PHSMs) imposed in many countries to limit spread and burden of COVID-19. We were asked to define vaccine coverage thresholds for Australia’s transition to easing restrictions and reopening international borders. Using evidence of vaccine effectiveness against the then-circulating Delta variant, we used a mathematical model to determine coverage targets. The absence of any COVID-19 infections in many sub-national jurisdictions in Australia posed particular methodological challenges. We used a novel metric called Transmission Potential (TP) as a proxy measure of the population-level effective reproduction number. We estimated TP of the Delta variant under a range of PHSMs, test-trace-isolate-quarantine (TTIQ) efficiencies, vaccination coverage thresholds, and age-based vaccine allocation strategies. We found that high coverage across all ages () combined with ongoing TTIQ and minimal PHSMs was sufficient to avoid lockdowns. At lesser coverage () rapid case escalation risked overwhelming of the health sector or the need to reimpose stricter restrictions. Maintaining low case numbers was most beneficial for health and the economy, and at higher coverage levels () further easing of restrictions was deemed possible. These results directly informed easing of COVID-19 restrictions in Australia.
{"title":"Estimating measures to reduce the transmission of SARS-CoV-2 in Australia to guide a ‘National Plan’ to reopening","authors":"Gerard E. Ryan , Freya M. Shearer , James M. McCaw , Jodie McVernon , Nick Golding","doi":"10.1016/j.epidem.2024.100763","DOIUrl":"https://doi.org/10.1016/j.epidem.2024.100763","url":null,"abstract":"<div><p>The availability of COVID-19 vaccines promised a reduction in the severity of disease and relief from the strict public health and social measures (PHSMs) imposed in many countries to limit spread and burden of COVID-19. We were asked to define vaccine coverage thresholds for Australia’s transition to easing restrictions and reopening international borders. Using evidence of vaccine effectiveness against the then-circulating Delta variant, we used a mathematical model to determine coverage targets. The absence of any COVID-19 infections in many sub-national jurisdictions in Australia posed particular methodological challenges. We used a novel metric called Transmission Potential (TP) as a proxy measure of the population-level effective reproduction number. We estimated TP of the Delta variant under a range of PHSMs, test-trace-isolate-quarantine (TTIQ) efficiencies, vaccination coverage thresholds, and age-based vaccine allocation strategies. We found that high coverage across all ages (<span><math><mrow><mo>≥</mo><mn>70</mn><mtext>%</mtext></mrow></math></span>) combined with ongoing TTIQ and minimal PHSMs was sufficient to avoid lockdowns. At lesser coverage (<span><math><mrow><mo>≤</mo><mn>60</mn><mtext>%</mtext></mrow></math></span>) rapid case escalation risked overwhelming of the health sector or the need to reimpose stricter restrictions. Maintaining low case numbers was most beneficial for health and the economy, and at higher coverage levels (<span><math><mrow><mo>≥</mo><mn>80</mn><mtext>%</mtext></mrow></math></span>) further easing of restrictions was deemed possible. These results directly informed easing of COVID-19 restrictions in Australia.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100763"},"PeriodicalIF":3.8,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000240/pdfft?md5=e9e2e1705a2a661f6fd1f189004e98c1&pid=1-s2.0-S1755436524000240-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140181338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1016/j.epidem.2024.100762
Remy Pasco , Spencer J. Fox , Michael Lachmann , Lauren Ancel Meyers
School reopenings in 2021 and 2022 coincided with the rapid emergence of new SARS-CoV-2 variants in the United States. In-school mitigation efforts varied, depending on local COVID-19 mandates and resources. Using a stochastic age-stratified agent-based model of SARS-CoV-2 transmission, we estimate the impacts of multiple in-school strategies on both infection rates and absenteeism, relative to a baseline scenario in which only symptomatic cases are tested and positive tests trigger a 10-day isolation of the case and 10-day quarantine of their household and classroom. We find that monthly asymptomatic screening coupled with the 10-day isolation and quarantine period is expected to avert 55.4% of infections while increasing absenteeism by 104.3%. Replacing quarantine with test-to-stay would reduce absenteeism by 66.3% (while hardly impacting infection rates), but would require roughly 10-fold more testing resources. Alternatively, vaccination or mask wearing by 50% of the student body is expected to avert 54.1% or 43.1% of infections while decreasing absenteeism by 34.1% or 27.4%, respectively. Separating students into classrooms based on mask usage is expected to reduce infection risks among those who wear masks (by 23.1%), exacerbate risks among those who do not (by 27.8%), but have little impact on overall risk. A combined strategy of monthly screening, household and classroom quarantine, a 50% vaccination rate, and a 50% masking rate (in mixed classrooms) is expected to avert 81.7% of infections while increasing absenteeism by 90.6%. During future public health emergencies, such analyses can inform the rapid design of resource-constrained strategies that mitigate both public health and educational risks.
{"title":"Effectiveness of interventions to reduce COVID-19 transmission in schools","authors":"Remy Pasco , Spencer J. Fox , Michael Lachmann , Lauren Ancel Meyers","doi":"10.1016/j.epidem.2024.100762","DOIUrl":"https://doi.org/10.1016/j.epidem.2024.100762","url":null,"abstract":"<div><p>School reopenings in 2021 and 2022 coincided with the rapid emergence of new SARS-CoV-2 variants in the United States. In-school mitigation efforts varied, depending on local COVID-19 mandates and resources. Using a stochastic age-stratified agent-based model of SARS-CoV-2 transmission, we estimate the impacts of multiple in-school strategies on both infection rates and absenteeism, relative to a baseline scenario in which only symptomatic cases are tested and positive tests trigger a 10-day isolation of the case and 10-day quarantine of their household and classroom. We find that monthly asymptomatic screening coupled with the 10-day isolation and quarantine period is expected to avert 55.4% of infections while increasing absenteeism by 104.3%. Replacing quarantine with test-to-stay would reduce absenteeism by 66.3% (while hardly impacting infection rates), but would require roughly 10-fold more testing resources. Alternatively, vaccination or mask wearing by 50% of the student body is expected to avert 54.1% or 43.1% of infections while decreasing absenteeism by 34.1% or 27.4%, respectively. Separating students into classrooms based on mask usage is expected to reduce infection risks among those who wear masks (by 23.1%), exacerbate risks among those who do not (by 27.8%), but have little impact on overall risk. A combined strategy of monthly screening, household and classroom quarantine, a 50% vaccination rate, and a 50% masking rate (in mixed classrooms) is expected to avert 81.7% of infections while increasing absenteeism by 90.6%. During future public health emergencies, such analyses can inform the rapid design of resource-constrained strategies that mitigate both public health and educational risks.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100762"},"PeriodicalIF":3.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000239/pdfft?md5=b0937aa65f753c8e2fa877bb7cbb5376&pid=1-s2.0-S1755436524000239-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140122207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1016/j.epidem.2024.100758
James Turtle, Michal Ben-Nun, Pete Riley
In temperate regions, annual preparation by public health officials for seasonal influenza requires early-season long-term projections. These projections are different from short-term (e.g., 1–4 weeks ahead) forecasts that are typically updated weekly. Whereas short-term forecasts estimate what “will” likely happen in the near term, the goal of scenario projections is to guide long-term decision-making using “what if” scenarios. We developed a mechanistic metapopulation model and used it to provide long-term influenza projections to the Flu Scenario Modeling Hub. The scenarios differed in their assumptions about influenza vaccine effectiveness and prior immunity. The parameters of the model were inferred from early season hospitalization data and then simulated forward in time until June 3, 2023. We submitted two rounds of projections (mid-November and early December), with the second round being a repeat of the first with three more weeks of data (and consequently different model parameters). In this study, we describe the model, its calibration, and projections targets. The scenario projection outcomes for two rounds are compared with each other at state and national level reported daily hospitalizations. We show that although Rounds 2 and 3 were identical in definition, the addition of three weeks of data produced an improvement to model fits. These changes resulted in earlier projections for peak incidence, lower projections for peak magnitude and relatively small changes to cumulative projections. In both rounds, all four scenarios presented conceivable outcomes, with some scenarios agreeing well with observations. We discuss how to interpret this agreement, emphasizing that this does not imply that one scenario or another provides the ground truth. Our model's performance suggests that its underlying assumptions provided plausible bounds for what could happen during an influenza season following two seasons of low circulation. We suggest that such projections would provide actionable estimates for public health officials.
{"title":"Enhancing seasonal influenza projections: A mechanistic metapopulation model for long-term scenario planning","authors":"James Turtle, Michal Ben-Nun, Pete Riley","doi":"10.1016/j.epidem.2024.100758","DOIUrl":"10.1016/j.epidem.2024.100758","url":null,"abstract":"<div><p>In temperate regions, annual preparation by public health officials for seasonal influenza requires early-season long-term projections. These projections are different from short-term (e.g., 1–4 weeks ahead) forecasts that are typically updated weekly. Whereas short-term forecasts estimate what “will” likely happen in the near term, the goal of scenario projections is to guide long-term decision-making using “what if” scenarios. We developed a mechanistic metapopulation model and used it to provide long-term influenza projections to the Flu Scenario Modeling Hub. The scenarios differed in their assumptions about influenza vaccine effectiveness and prior immunity. The parameters of the model were inferred from early season hospitalization data and then simulated forward in time until June 3, 2023. We submitted two rounds of projections (mid-November and early December), with the second round being a repeat of the first with three more weeks of data (and consequently different model parameters). In this study, we describe the model, its calibration, and projections targets. The scenario projection outcomes for two rounds are compared with each other at state and national level reported daily hospitalizations. We show that although Rounds 2 and 3 were identical in definition, the addition of three weeks of data produced an improvement to model fits. These changes resulted in earlier projections for peak incidence, lower projections for peak magnitude and relatively small changes to cumulative projections. In both rounds, all four scenarios presented conceivable outcomes, with some scenarios agreeing well with observations. We discuss how to interpret this agreement, emphasizing that this does not imply that one scenario or another provides the ground truth. Our model's performance suggests that its underlying assumptions provided plausible bounds for what could happen during an influenza season following two seasons of low circulation. We suggest that such projections would provide actionable estimates for public health officials.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100758"},"PeriodicalIF":3.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000197/pdfft?md5=147c58edc14971ccab79e33e0e06c7b0&pid=1-s2.0-S1755436524000197-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140092181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1016/j.epidem.2024.100757
Matteo Chinazzi , Jessica T. Davis , Ana Pastore y Piontti , Kunpeng Mu , Nicolò Gozzi , Marco Ajelli , Nicola Perra , Alessandro Vespignani
The Scenario Modeling Hub (SMH) initiative provides projections of potential epidemic scenarios in the United States (US) by using a multi-model approach. Our contribution to the SMH is generated by a multiscale model that combines the global epidemic metapopulation modeling approach (GLEAM) with a local epidemic and mobility model of the US (LEAM-US), first introduced here. The LEAM-US model consists of 3142 subpopulations each representing a single county across the 50 US states and the District of Columbia, enabling us to project state and national trajectories of COVID-19 cases, hospitalizations, and deaths under different epidemic scenarios. The model is age-structured, and multi-strain. It integrates data on vaccine administration, human mobility, and non-pharmaceutical interventions. The model contributed to all 17 rounds of the SMH, and allows for the mechanistic characterization of the spatio-temporal heterogeneities observed during the COVID-19 pandemic. Here we describe the mathematical and computational structure of our model, and present the results concerning the emergence of the SARS-CoV-2 Alpha variant (lineage designation B.1.1.7) as a case study. Our findings show considerable spatial and temporal heterogeneity in the introduction and diffusion of the Alpha variant, both at the level of individual states and combined statistical areas, as it competes against the ancestral lineage. We discuss the key factors driving the time required for the Alpha variant to rise to dominance within a population, and quantify the impact that the emergence of the Alpha variant had on the effective reproduction number at the state level. Overall, we show that our multiscale modeling approach is able to capture the complexity and heterogeneity of the COVID-19 pandemic response in the US.
{"title":"A multiscale modeling framework for Scenario Modeling: Characterizing the heterogeneity of the COVID-19 epidemic in the US","authors":"Matteo Chinazzi , Jessica T. Davis , Ana Pastore y Piontti , Kunpeng Mu , Nicolò Gozzi , Marco Ajelli , Nicola Perra , Alessandro Vespignani","doi":"10.1016/j.epidem.2024.100757","DOIUrl":"https://doi.org/10.1016/j.epidem.2024.100757","url":null,"abstract":"<div><p>The Scenario Modeling Hub (SMH) initiative provides projections of potential epidemic scenarios in the United States (US) by using a multi-model approach. Our contribution to the SMH is generated by a multiscale model that combines the global epidemic metapopulation modeling approach (GLEAM) with a local epidemic and mobility model of the US (LEAM-US), first introduced here. The LEAM-US model consists of 3142 subpopulations each representing a single county across the 50 US states and the District of Columbia, enabling us to project state and national trajectories of COVID-19 cases, hospitalizations, and deaths under different epidemic scenarios. The model is age-structured, and multi-strain. It integrates data on vaccine administration, human mobility, and non-pharmaceutical interventions. The model contributed to all 17 rounds of the SMH, and allows for the mechanistic characterization of the spatio-temporal heterogeneities observed during the COVID-19 pandemic. Here we describe the mathematical and computational structure of our model, and present the results concerning the emergence of the SARS-CoV-2 Alpha variant (lineage designation B.1.1.7) as a case study. Our findings show considerable spatial and temporal heterogeneity in the introduction and diffusion of the Alpha variant, both at the level of individual states and combined statistical areas, as it competes against the ancestral lineage. We discuss the key factors driving the time required for the Alpha variant to rise to dominance within a population, and quantify the impact that the emergence of the Alpha variant had on the effective reproduction number at the state level. Overall, we show that our multiscale modeling approach is able to capture the complexity and heterogeneity of the COVID-19 pandemic response in the US.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100757"},"PeriodicalIF":3.8,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000185/pdfft?md5=c05aa067f3a8d0bb22048836b65b5c4e&pid=1-s2.0-S1755436524000185-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-02DOI: 10.1016/j.epidem.2024.100755
Kelly Charniga , Zachary J. Madewell , Nina B. Masters , Jason Asher , Yoshinori Nakazawa , Ian H. Spicknall
In June of 2022, the U.S. Centers for Disease Control and Prevention (CDC) Mpox Response wanted timely answers to important epidemiological questions which can now be answered more effectively through infectious disease modeling. Infectious disease models have shown to be valuable tools for decision making during outbreaks; however, model complexity often makes communicating the results and limitations of models to decision makers difficult. We performed nowcasting and forecasting for the 2022 mpox outbreak in the United States using the R package EpiNow2. We generated nowcasts/forecasts at the national level, by Census region, and for jurisdictions reporting the greatest number of mpox cases. Modeling results were shared for situational awareness within the CDC Mpox Response and publicly on the CDC website. We retrospectively evaluated forecast predictions at four key phases (early, exponential growth, peak, and decline) during the outbreak using three metrics, the weighted interval score, mean absolute error, and prediction interval coverage. We compared the performance of EpiNow2 with a naïve Bayesian generalized linear model (GLM). The EpiNow2 model had less probabilistic error than the GLM during every outbreak phase except for the early phase. We share our experiences with an existing tool for nowcasting/forecasting and highlight areas of improvement for the development of future tools. We also reflect on lessons learned regarding data quality issues and adapting modeling results for different audiences.
{"title":"Nowcasting and forecasting the 2022 U.S. mpox outbreak: Support for public health decision making and lessons learned","authors":"Kelly Charniga , Zachary J. Madewell , Nina B. Masters , Jason Asher , Yoshinori Nakazawa , Ian H. Spicknall","doi":"10.1016/j.epidem.2024.100755","DOIUrl":"https://doi.org/10.1016/j.epidem.2024.100755","url":null,"abstract":"<div><p>In June of 2022, the U.S. Centers for Disease Control and Prevention (CDC) Mpox Response wanted timely answers to important epidemiological questions which can now be answered more effectively through infectious disease modeling. Infectious disease models have shown to be valuable tools for decision making during outbreaks; however, model complexity often makes communicating the results and limitations of models to decision makers difficult. We performed nowcasting and forecasting for the 2022 mpox outbreak in the United States using the R package EpiNow2. We generated nowcasts/forecasts at the national level, by Census region, and for jurisdictions reporting the greatest number of mpox cases. Modeling results were shared for situational awareness within the CDC Mpox Response and publicly on the CDC website. We retrospectively evaluated forecast predictions at four key phases (early, exponential growth, peak, and decline) during the outbreak using three metrics, the weighted interval score, mean absolute error, and prediction interval coverage. We compared the performance of EpiNow2 with a naïve Bayesian generalized linear model (GLM). The EpiNow2 model had less probabilistic error than the GLM during every outbreak phase except for the early phase. We share our experiences with an existing tool for nowcasting/forecasting and highlight areas of improvement for the development of future tools. We also reflect on lessons learned regarding data quality issues and adapting modeling results for different audiences.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100755"},"PeriodicalIF":3.8,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000161/pdfft?md5=abd65d67dc31cd4cde493adf01b7d575&pid=1-s2.0-S1755436524000161-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-02DOI: 10.1016/j.epidem.2024.100753
Joseph C. Lemaitre , Sara L. Loo , Joshua Kaminsky , Elizabeth C. Lee , Clifton McKee , Claire Smith , Sung-mok Jung , Koji Sato , Erica Carcelen , Alison Hill , Justin Lessler , Shaun Truelove
The COVID-19 pandemic led to an unprecedented demand for projections of disease burden and healthcare utilization under scenarios ranging from unmitigated spread to strict social distancing policies. In response, members of the Johns Hopkins Infectious Disease Dynamics Group developed flepiMoP (formerly called the COVID Scenario Modeling Pipeline), a comprehensive open-source software pipeline designed for creating and simulating compartmental models of infectious disease transmission and inferring parameters through these models. The framework has been used extensively to produce short-term forecasts and longer-term scenario projections of COVID-19 at the state and county level in the US, for COVID-19 in other countries at various geographic scales, and more recently for seasonal influenza. In this paper, we highlight how the flepiMoP has evolved throughout the COVID-19 pandemic to address changing epidemiological dynamics, new interventions, and shifts in policy-relevant model outputs. As the framework has reached a mature state, we provide a detailed overview of flepiMoP’s key features and remaining limitations, thereby distributing flepiMoP and its documentation as a flexible and powerful tool for researchers and public health professionals to rapidly build and deploy large-scale complex infectious disease models for any pathogen and demographic setup.
{"title":"flepiMoP: The evolution of a flexible infectious disease modeling pipeline during the COVID-19 pandemic","authors":"Joseph C. Lemaitre , Sara L. Loo , Joshua Kaminsky , Elizabeth C. Lee , Clifton McKee , Claire Smith , Sung-mok Jung , Koji Sato , Erica Carcelen , Alison Hill , Justin Lessler , Shaun Truelove","doi":"10.1016/j.epidem.2024.100753","DOIUrl":"10.1016/j.epidem.2024.100753","url":null,"abstract":"<div><p>The COVID-19 pandemic led to an unprecedented demand for projections of disease burden and healthcare utilization under scenarios ranging from unmitigated spread to strict social distancing policies. In response, members of the Johns Hopkins Infectious Disease Dynamics Group developed <em>flepiMoP</em> (formerly called the <em>COVID Scenario Modeling Pipeline</em>), a comprehensive open-source software pipeline designed for creating and simulating compartmental models of infectious disease transmission and inferring parameters through these models. The framework has been used extensively to produce short-term forecasts and longer-term scenario projections of COVID-19 at the state and county level in the US, for COVID-19 in other countries at various geographic scales, and more recently for seasonal influenza. In this paper, we highlight how the <em>flepiMoP</em> has evolved throughout the COVID-19 pandemic to address changing epidemiological dynamics, new interventions, and shifts in policy-relevant model outputs. As the framework has reached a mature state, we provide a detailed overview of <em>flepiMoP</em>’s key features and remaining limitations, thereby distributing <em>flepiMoP</em> and its documentation as a flexible and powerful tool for researchers and public health professionals to rapidly build and deploy large-scale complex infectious disease models for any pathogen and demographic setup.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100753"},"PeriodicalIF":3.8,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000148/pdfft?md5=9b58b4f46da0c615358dffb3a8c30622&pid=1-s2.0-S1755436524000148-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-02DOI: 10.1016/j.epidem.2024.100759
Sean Moore, Sean Cavany, T. Alex Perkins, Guido Felipe Camargo España
Over the past several years, the emergence of novel SARS-CoV-2 variants has led to multiple waves of increased COVID-19 incidence. When the Omicron variant emerged, there was considerable concern about its potential impact in the winter of 2021–2022 due to its increased fitness. However, there was also considerable uncertainty regarding its likely impact due to questions about its relative transmissibility, severity, and degree of immune escape. We sought to evaluate the ability of an agent-based model to forecast incidence in the context of this emerging pathogen variant. To project COVID-19 cases and deaths in Indiana, we calibrated our model to COVID-19 hospitalizations, deaths, and test-positivity rates through November 2021, and then projected COVID-19 incidence through April 2022 under four different scenarios that covered the plausible ranges of Omicron’s severity, transmissibility, and degree of immune escape. Our initial projections from December 2021 through March 2022 indicated that under a pessimistic scenario with high disease severity, the peak in weekly COVID-19 deaths in Indiana would be larger than the previous peak in December 2020. However, retrospective analyses indicate that Omicron’s severity was closer to the optimistic scenario, and even though cases and hospitalizations reached a new peak, fewer deaths occurred than during the previous peak. According to our results, Omicron’s rapid spread was consistent with a combination of higher transmissibility and immune escape relative to earlier variants. Our updated projections starting in January 2022 accurately predicted that cases would peak in mid-January and decline rapidly over the next several months. The performance of our projections shows that following the emergence of a new pathogen variant, models can help quantify the potential range of outbreak magnitudes and trajectories. Agent-based models are particularly useful in these scenarios because they can efficiently track individual vaccination and infection histories with multiple variants with varying degrees of cross-protection.
{"title":"Projecting the future impact of emerging SARS-CoV-2 variants under uncertainty: Modeling the initial Omicron outbreak","authors":"Sean Moore, Sean Cavany, T. Alex Perkins, Guido Felipe Camargo España","doi":"10.1016/j.epidem.2024.100759","DOIUrl":"https://doi.org/10.1016/j.epidem.2024.100759","url":null,"abstract":"<div><p>Over the past several years, the emergence of novel SARS-CoV-2 variants has led to multiple waves of increased COVID-19 incidence. When the Omicron variant emerged, there was considerable concern about its potential impact in the winter of 2021–2022 due to its increased fitness. However, there was also considerable uncertainty regarding its likely impact due to questions about its relative transmissibility, severity, and degree of immune escape. We sought to evaluate the ability of an agent-based model to forecast incidence in the context of this emerging pathogen variant. To project COVID-19 cases and deaths in Indiana, we calibrated our model to COVID-19 hospitalizations, deaths, and test-positivity rates through November 2021, and then projected COVID-19 incidence through April 2022 under four different scenarios that covered the plausible ranges of Omicron’s severity, transmissibility, and degree of immune escape. Our initial projections from December 2021 through March 2022 indicated that under a pessimistic scenario with high disease severity, the peak in weekly COVID-19 deaths in Indiana would be larger than the previous peak in December 2020. However, retrospective analyses indicate that Omicron’s severity was closer to the optimistic scenario, and even though cases and hospitalizations reached a new peak, fewer deaths occurred than during the previous peak. According to our results, Omicron’s rapid spread was consistent with a combination of higher transmissibility and immune escape relative to earlier variants. Our updated projections starting in January 2022 accurately predicted that cases would peak in mid-January and decline rapidly over the next several months. The performance of our projections shows that following the emergence of a new pathogen variant, models can help quantify the potential range of outbreak magnitudes and trajectories. Agent-based models are particularly useful in these scenarios because they can efficiently track individual vaccination and infection histories with multiple variants with varying degrees of cross-protection.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100759"},"PeriodicalIF":3.8,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000203/pdfft?md5=bac51b4ea1de71c020e9eb665ad3ffab&pid=1-s2.0-S1755436524000203-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.epidem.2024.100754
Yining Chen , Lam Anh Nguyet , Le Nguyen Thanh Nhan , Phan Tu Qui , Le Nguyen Truc Nhu , Nguyen Thi Thu Hong , Nguyen Thi Han Ny , Nguyen To Anh , Le Kim Thanh , Huynh Thi Phuong , Nguyen Ha Thao Vy , Nguyen Thi Le Thanh , Truong Huu Khanh , Nguyen Thanh Hung , Do Chau Viet , Nguyen Tran Nam , Nguyen Van Vinh Chau , H. Rogier van Doorn , Le Van Tan , Hannah Clapham
Hand, foot and mouth disease (HFMD) is highly prevalent in the Asia Pacific region, particularly in Vietnam. To develop effective interventions and efficient vaccination programs, we inferred the age-time-specific transmission patterns of HFMD serotypes enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), coxsackievirus A10 (CV-A10), coxsackievirus A16 (CV-A16) in Ho Chi Minh City, Vietnam from a case data collected during 2013–2018 and a serological survey data collected in 2015 and 2017. We proposed a catalytic model framework with good adaptability to incorporate maternal immunity using various mathematical functions. Our results indicate the high-level transmission of CV-A6 and CV-A10 which is not obvious in the case data, due to the variation of disease severity across serotypes. Our results provide statistical evidence supporting the strong association between severe illness and CV-A6 and EV-A71 infections. The HFMD dynamic pattern presents a cyclical pattern with large outbreaks followed by a decline in subsequent years. Additionally, we identify the age group with highest risk of infection as 1-2 years and emphasise the risk of future outbreaks as over 50% of children aged 6-7 years were estimated to be susceptible to CV-A16 and EV-A71. Our study highlights the importance of multivalent vaccines and active surveillance for different serotypes, supports early vaccination prior to 1 year old, and points out the potential utility for vaccinating children older than 5 years old in Vietnam.
{"title":"Age-time-specific transmission of hand-foot-and-mouth disease enterovirus serotypes in Vietnam: A catalytic model with maternal immunity","authors":"Yining Chen , Lam Anh Nguyet , Le Nguyen Thanh Nhan , Phan Tu Qui , Le Nguyen Truc Nhu , Nguyen Thi Thu Hong , Nguyen Thi Han Ny , Nguyen To Anh , Le Kim Thanh , Huynh Thi Phuong , Nguyen Ha Thao Vy , Nguyen Thi Le Thanh , Truong Huu Khanh , Nguyen Thanh Hung , Do Chau Viet , Nguyen Tran Nam , Nguyen Van Vinh Chau , H. Rogier van Doorn , Le Van Tan , Hannah Clapham","doi":"10.1016/j.epidem.2024.100754","DOIUrl":"https://doi.org/10.1016/j.epidem.2024.100754","url":null,"abstract":"<div><p>Hand, foot and mouth disease (HFMD) is highly prevalent in the Asia Pacific region, particularly in Vietnam. To develop effective interventions and efficient vaccination programs, we inferred the age-time-specific transmission patterns of HFMD serotypes enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), coxsackievirus A10 (CV-A10), coxsackievirus A16 (CV-A16) in Ho Chi Minh City, Vietnam from a case data collected during 2013–2018 and a serological survey data collected in 2015 and 2017. We proposed a catalytic model framework with good adaptability to incorporate maternal immunity using various mathematical functions. Our results indicate the high-level transmission of CV-A6 and CV-A10 which is not obvious in the case data, due to the variation of disease severity across serotypes. Our results provide statistical evidence supporting the strong association between severe illness and CV-A6 and EV-A71 infections. The HFMD dynamic pattern presents a cyclical pattern with large outbreaks followed by a decline in subsequent years. Additionally, we identify the age group with highest risk of infection as 1-2 years and emphasise the risk of future outbreaks as over 50% of children aged 6-7 years were estimated to be susceptible to CV-A16 and EV-A71. Our study highlights the importance of multivalent vaccines and active surveillance for different serotypes, supports early vaccination prior to 1 year old, and points out the potential utility for vaccinating children older than 5 years old in Vietnam.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"46 ","pages":"Article 100754"},"PeriodicalIF":3.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S175543652400015X/pdfft?md5=260cd6192c02fdf92d2daa0a455e5513&pid=1-s2.0-S175543652400015X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.epidem.2024.100751
Michiel van Boven , Jantien A. Backer , Irene Veldhuijzen , Justin Gomme , Rob van Binnendijk , Patricia Kaaijk
Mumps virus is a highly transmissible pathogen that is effectively controlled in countries with high vaccination coverage. Nevertheless, outbreaks have occurred worldwide over the past decades in vaccinated populations. Here we analyse an outbreak of mumps virus genotype G among college students in the Netherlands over the period 2009–2012 using paired serological data. To identify infections in the presence of preexisting antibodies we compared mumps specific serum IgG concentrations in two consecutive samples (), whereby the first sample was taken when students started their study prior to the outbreaks, and the second sample was taken 2–5 years later. We fit a binary mixture model to the data. The two mixing distributions represent uninfected and infected classes. Throughout we assume that the infection probability increases with the ratio of antibody concentrations of the second to first sample. The estimated infection attack rate in this study is higher than reported earlier (0.095 versus 0.042). The analyses yield probabilistic classifications of participants, which are mostly quite precise owing to the high intraclass correlation of samples in uninfected participants (0.85, 95%CrI: ). The estimated probability of infection increases with decreasing antibody concentration in the pre-outbreak sample, such that the probability of infection is 0.12 (95%CrI: ) for the lowest quartile of the pre-outbreak samples and 0.056 (95%CrI: ) for the highest quartile. We discuss the implications of these insights for the design of booster vaccination strategies.
{"title":"Estimation of the infection attack rate of mumps in an outbreak among college students using paired serology","authors":"Michiel van Boven , Jantien A. Backer , Irene Veldhuijzen , Justin Gomme , Rob van Binnendijk , Patricia Kaaijk","doi":"10.1016/j.epidem.2024.100751","DOIUrl":"https://doi.org/10.1016/j.epidem.2024.100751","url":null,"abstract":"<div><p>Mumps virus is a highly transmissible pathogen that is effectively controlled in countries with high vaccination coverage. Nevertheless, outbreaks have occurred worldwide over the past decades in vaccinated populations. Here we analyse an outbreak of mumps virus genotype G among college students in the Netherlands over the period 2009–2012 using paired serological data. To identify infections in the presence of preexisting antibodies we compared mumps specific serum IgG concentrations in two consecutive samples (<span><math><mrow><mi>n</mi><mo>=</mo><mn>746</mn></mrow></math></span>), whereby the first sample was taken when students started their study prior to the outbreaks, and the second sample was taken 2–5 years later. We fit a binary mixture model to the data. The two mixing distributions represent uninfected and infected classes. Throughout we assume that the infection probability increases with the ratio of antibody concentrations of the second to first sample. The estimated infection attack rate in this study is higher than reported earlier (0.095 versus 0.042). The analyses yield probabilistic classifications of participants, which are mostly quite precise owing to the high intraclass correlation of samples in uninfected participants (0.85, 95%CrI: <span><math><mrow><mn>0</mn><mo>.</mo><mn>82</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>87</mn></mrow></math></span>). The estimated probability of infection increases with decreasing antibody concentration in the pre-outbreak sample, such that the probability of infection is 0.12 (95%CrI: <span><math><mrow><mn>0</mn><mo>.</mo><mn>10</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>13</mn></mrow></math></span>) for the lowest quartile of the pre-outbreak samples and 0.056 (95%CrI: <span><math><mrow><mn>0</mn><mo>.</mo><mn>044</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>068</mn></mrow></math></span>) for the highest quartile. We discuss the implications of these insights for the design of booster vaccination strategies.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"46 ","pages":"Article 100751"},"PeriodicalIF":3.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000124/pdfft?md5=9e9fa7f4d61dcd3a812b558f6563d1b8&pid=1-s2.0-S1755436524000124-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140030729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1016/j.epidem.2024.100756
Thomas McAndrew , Graham C. Gibson , David Braun , Abhishek Srivastava , Kate Brown
Forecasts of infectious agents provide public health officials advanced warning about the intensity and timing of the spread of disease. Past work has found that accuracy and calibration of forecasts is weakest when attempting to predict an epidemic peak. Forecasts from a mechanistic model would be improved if there existed accurate information about the timing and intensity of an epidemic. We presented 3000 humans with simulated surveillance data about the number of incident hospitalizations from a current and two past seasons, and asked that they predict the peak time and intensity of the underlying epidemic. We found that in comparison to two control models, a model including human judgment produced more accurate forecasts of peak time and intensity of hospitalizations during an epidemic. Chimeric models have the potential to improve our ability to predict targets of public health interest which may in turn reduce infectious disease burden.
{"title":"Chimeric Forecasting: An experiment to leverage human judgment to improve forecasts of infectious disease using simulated surveillance data","authors":"Thomas McAndrew , Graham C. Gibson , David Braun , Abhishek Srivastava , Kate Brown","doi":"10.1016/j.epidem.2024.100756","DOIUrl":"https://doi.org/10.1016/j.epidem.2024.100756","url":null,"abstract":"<div><p>Forecasts of infectious agents provide public health officials advanced warning about the intensity and timing of the spread of disease. Past work has found that accuracy and calibration of forecasts is weakest when attempting to predict an epidemic peak. Forecasts from a mechanistic model would be improved if there existed accurate information about the timing and intensity of an epidemic. We presented 3000 humans with simulated surveillance data about the number of incident hospitalizations from a current and two past seasons, and asked that they predict the peak time and intensity of the underlying epidemic. We found that in comparison to two control models, a model including human judgment produced more accurate forecasts of peak time and intensity of hospitalizations during an epidemic. Chimeric models have the potential to improve our ability to predict targets of public health interest which may in turn reduce infectious disease burden.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100756"},"PeriodicalIF":3.8,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000173/pdfft?md5=398548cb8f5fa1400b832d7e3238f8f8&pid=1-s2.0-S1755436524000173-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}