首页 > 最新文献

Asia-Pacific Journal of Chemical Engineering最新文献

英文 中文
Analysis of HZSM-5 molecular sieve particles attrition behavior under fluidized conditions 流化条件下 HZSM-5 分子筛颗粒的损耗行为分析
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-06-18 DOI: 10.1002/apj.3111
Zhiwei Huang, Feng Gao, Yang Miao

The attrition behavior of HZSM-5 zeolite catalyst particles at room temperature was investigated in a laboratory-scale fluidized bed. The effects of three fluidization conditions on particle attrition were investigated, and a new attrition model was proposed. The results demonstrate that the attrition rate is inversely proportional to the initial particle size and proportional to the apparent gas velocity. After increasing to 80 μm and .3 m/s respectively, they are no longer the main factor affecting attrition. The effect of bed pressure on attrition rate is nonlinear, and the lowest attrition rate is obtained when the diameter-height ratio is 1:1. Unsteady attrition stage can be divided into initial stage and deceleration stage. Surface delamination dominates particle attrition throughout the whole process, and bulk fracture is the dominant mechanism only in the deceleration stage. Based on the Gwyn equation, a new attrition model in the form of cubic polynomial is established with the ratio of total attrition rate to unstable attrition rate P as a parameter. The model has high accuracy and repeatability and is suitable for various fluidization conditions. It can effectively describe the attrition process and change rule of particles and reasonably predict the fluidization attrition rate of particles.

在实验室规模的流化床中研究了室温下 HZSM-5 沸石催化剂颗粒的损耗行为。研究了三种流化条件对颗粒损耗的影响,并提出了一个新的损耗模型。结果表明,磨损率与初始粒度成反比,与表观气体速度成正比。分别增加到 80 μm 和 .3 m/s 后,它们不再是影响磨损的主要因素。床层压力对磨损率的影响是非线性的,当直径-高度比为 1:1 时,磨损率最低。非稳定磨损阶段可分为初始阶段和减速阶段。在整个过程中,表面分层是颗粒损耗的主要机制,只有在减速阶段,块体断裂才是主要机制。以 Gwyn 方程为基础,以总损耗率与不稳定损耗率之比 P 为参数,建立了立方多项式形式的新损耗模型。该模型具有较高的精度和可重复性,适用于各种流化条件。它能有效地描述颗粒的损耗过程和变化规律,合理地预测颗粒的流化损耗率。
{"title":"Analysis of HZSM-5 molecular sieve particles attrition behavior under fluidized conditions","authors":"Zhiwei Huang,&nbsp;Feng Gao,&nbsp;Yang Miao","doi":"10.1002/apj.3111","DOIUrl":"10.1002/apj.3111","url":null,"abstract":"<p>The attrition behavior of HZSM-5 zeolite catalyst particles at room temperature was investigated in a laboratory-scale fluidized bed. The effects of three fluidization conditions on particle attrition were investigated, and a new attrition model was proposed. The results demonstrate that the attrition rate is inversely proportional to the initial particle size and proportional to the apparent gas velocity. After increasing to 80 μm and .3 m/s respectively, they are no longer the main factor affecting attrition. The effect of bed pressure on attrition rate is nonlinear, and the lowest attrition rate is obtained when the diameter-height ratio is 1:1. Unsteady attrition stage can be divided into initial stage and deceleration stage. Surface delamination dominates particle attrition throughout the whole process, and bulk fracture is the dominant mechanism only in the deceleration stage. Based on the Gwyn equation, a new attrition model in the form of cubic polynomial is established with the ratio of total attrition rate to unstable attrition rate P as a parameter. The model has high accuracy and repeatability and is suitable for various fluidization conditions. It can effectively describe the attrition process and change rule of particles and reasonably predict the fluidization attrition rate of particles.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of palladium-based catalysts and use for depolymerization of larch bark tannins 钯基催化剂的制备及其在落叶松树皮单宁解聚中的应用
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-06-17 DOI: 10.1002/apj.3088
Nianci Liu, Te Li, Zhuorui Zhang, Ling Su, Guiquan Jiang

In this study, we synthesized eight palladium-based catalysts using two carriers, ZrO2 and MCM-41. These catalysts were used for the degradation of condensed tannins extracted from larch bark. The average polymerization degree and degradation rate of the products were used as indicators to evaluate the efficiency of degradation. The effects of different Pd:Cu loading ratios under the same carrier conditions and the effects of different carriers under the same Pd:Cu loading ratio were investigated. The results revealed that when the carrier was kept constant, the Pd:Cu ratio of 1:1 exhibited the highest efficiency in degrading condensed tannins. Moreover, when the Pd:Cu loading ratio was the same, the degradation efficiency was higher when ZrO2 was used as the carrier. Based on these findings, the catalyst (Pd1-Cu1)5/ZrO2 (where “1” are the molar ratios of Pd to Cu added during the preparation of the catalyst and where ‘5’ is the mass percentage of Pd/Cu metal to total catalyst, i.e., 5 wt%), with ZrO2 as the carrier and a Pd:Cu ratio of 1:1, demonstrated the highest degradation efficiency, with a degradation rate of 73.89%. This catalyst successfully reduced the average polymerization degree of condensed tannins from 9.5 to 2.48.

在这项研究中,我们使用 ZrO2 和 MCM-41 两种载体合成了八种钯基催化剂。这些催化剂用于降解从落叶松树皮中提取的缩合单宁。产物的平均聚合度和降解率被用作评估降解效率的指标。研究了相同载体条件下不同 Pd:Cu 负载比的影响,以及相同 Pd:Cu 负载比下不同载体的影响。结果表明,当载体保持不变时,Pd:Cu 的比例为 1:1 时,降解缩合单宁的效率最高。此外,当 Pd:Cu 负载比相同时,以 ZrO2 为载体的降解效率更高。基于这些发现,以 ZrO2 为载体、Pd:Cu 比为 1:1 的催化剂 (Pd1-Cu1)5/ZrO2 (其中 "1 "为制备催化剂时添加的 Pd 与 Cu 的摩尔比,"5 "为 Pd/Cu 金属占催化剂总量的质量百分比,即 5 wt%)的降解效率最高,降解率达 73.89%。该催化剂成功地将缩合单宁的平均聚合度从 9.5 降至 2.48。
{"title":"Preparation of palladium-based catalysts and use for depolymerization of larch bark tannins","authors":"Nianci Liu,&nbsp;Te Li,&nbsp;Zhuorui Zhang,&nbsp;Ling Su,&nbsp;Guiquan Jiang","doi":"10.1002/apj.3088","DOIUrl":"10.1002/apj.3088","url":null,"abstract":"<p>In this study, we synthesized eight palladium-based catalysts using two carriers, ZrO<sub>2</sub> and MCM-41. These catalysts were used for the degradation of condensed tannins extracted from larch bark. The average polymerization degree and degradation rate of the products were used as indicators to evaluate the efficiency of degradation. The effects of different Pd:Cu loading ratios under the same carrier conditions and the effects of different carriers under the same Pd:Cu loading ratio were investigated. The results revealed that when the carrier was kept constant, the Pd:Cu ratio of 1:1 exhibited the highest efficiency in degrading condensed tannins. Moreover, when the Pd:Cu loading ratio was the same, the degradation efficiency was higher when ZrO<sub>2</sub> was used as the carrier. Based on these findings, the catalyst (Pd<sub>1</sub>-Cu<sub>1</sub>)<sub>5</sub>/ZrO<sub>2</sub> (where “1” are the molar ratios of Pd to Cu added during the preparation of the catalyst and where ‘5’ is the mass percentage of Pd/Cu metal to total catalyst, i.e., 5 wt%), with ZrO<sub>2</sub> as the carrier and a Pd:Cu ratio of 1:1, demonstrated the highest degradation efficiency, with a degradation rate of 73.89%. This catalyst successfully reduced the average polymerization degree of condensed tannins from 9.5 to 2.48.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of thiophene compounds from model fuel with supported copper on active carbon, adsorption kinetics, and isotherms 用活性炭上的支撑铜去除模型燃料中的噻吩化合物、吸附动力学和等温线
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-06-11 DOI: 10.1002/apj.3110
Bahador Kazemi, Haleh Golipour, Morteza Mafi, Babak Mokhtarani

In this study, the adsorption of thiophene compounds (TCs), including thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT), from model fuels was investigated using modified activated carbon (AC). The model fuel, prepared as a single-solute model at a concentration of 2000 ppm based on a mixture concentration of 3000 ppm, served as the basis for the adsorption experiments. Additionally, an examination of thiophene adsorption from commercial fuels, specifically kerosene, was conducted. Experimental data were used to calculate correlated parameters of adsorption isotherms, kinetic models, and the Fisher factor. The pseudo-second-order model demonstrated the best fit to the experimental data. Notably, the adsorbent consisting of 10% Cu+ supported on acid-washed activated carbon (A1CN10) exhibited the highest adsorption capacity for TCs, achieving removal percentages of 78%, 96%, and 100% for T, BT, and DBT, respectively. Various methods were employed to investigate the physicochemical properties of the adsorbents, including N2 adsorption–desorption surface analysis (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). Furthermore, the regeneration of the adsorbent was studied using two techniques: agitation and ultrasound.

本研究使用改性活性炭(AC)研究了模型燃料中噻吩化合物(TC)的吸附情况,包括噻吩(T)、苯并噻吩(BT)和二苯并噻吩(DBT)。模型燃料的浓度为 2000 ppm(基于 3000 ppm 的混合物浓度),作为吸附实验的基础。此外,还对商用燃料(特别是煤油)中的噻吩吸附进行了研究。实验数据用于计算吸附等温线的相关参数、动力学模型和费雪因子。伪二阶模型与实验数据的拟合度最高。值得注意的是,酸洗活性炭(A1CN10)上吸附 10% Cu+ 的吸附剂对 TC 的吸附能力最强,对 T、BT 和 DBT 的去除率分别达到 78%、96% 和 100%。研究人员采用了多种方法研究吸附剂的理化性质,包括 N2 吸附-解吸表面分析(BET)、扫描电子显微镜(SEM)、X 射线衍射(XRD)和能量色散光谱(EDS)。此外,还利用搅拌和超声波两种技术研究了吸附剂的再生问题。
{"title":"Removal of thiophene compounds from model fuel with supported copper on active carbon, adsorption kinetics, and isotherms","authors":"Bahador Kazemi,&nbsp;Haleh Golipour,&nbsp;Morteza Mafi,&nbsp;Babak Mokhtarani","doi":"10.1002/apj.3110","DOIUrl":"10.1002/apj.3110","url":null,"abstract":"<p>In this study, the adsorption of thiophene compounds (TCs), including thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT), from model fuels was investigated using modified activated carbon (AC). The model fuel, prepared as a single-solute model at a concentration of 2000 ppm based on a mixture concentration of 3000 ppm, served as the basis for the adsorption experiments. Additionally, an examination of thiophene adsorption from commercial fuels, specifically kerosene, was conducted. Experimental data were used to calculate correlated parameters of adsorption isotherms, kinetic models, and the Fisher factor. The pseudo-second-order model demonstrated the best fit to the experimental data. Notably, the adsorbent consisting of 10% Cu<sup>+</sup> supported on acid-washed activated carbon (A1CN10) exhibited the highest adsorption capacity for TCs, achieving removal percentages of 78%, 96%, and 100% for T, BT, and DBT, respectively. Various methods were employed to investigate the physicochemical properties of the adsorbents, including N<sub>2</sub> adsorption–desorption surface analysis (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). Furthermore, the regeneration of the adsorbent was studied using two techniques: agitation and ultrasound.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141359889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and composition of mesophase pitch prepared from aromatic-rich fluid catalytic cracking slurry under different process conditions 不同工艺条件下富芳烃流体催化裂化浆料制备的介相沥青的结构和组成
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-06-07 DOI: 10.1002/apj.3108
Tao Yu, Yu Ma, Xiaoyan Yu, Muhammad Riwan, Mingzhi Wang, Xiaolong Zhou

The high aromaticity of fluidized catalytic cracking (FCC) slurry makes it a superior raw material for the production of high-performance carbon materials. In this study, direct thermal polycondensation of aromatic-rich FCC slurries is conducted to synthesize mesophase pitches with a significant anisotropic content. The effects of stirring speed and the pressurized-atmospheric two-stage reaction on the structure and composition of the products are investigated. Thermal stability analysis using thermogravimetric (TG) test, observation of mesophase content and optical structure through polarized light microscopy, characterization of material composition and molecular structure via Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance hydrogen spectrum (1H NMR), as well as comparison of crystal structures using X-ray diffraction (XRD) are performed. The experimental results demonstrate that an increase in the stirring rate leads to a more homogeneous molecular distribution within the reaction system, thereby facilitating molecular contact polycondensation and promoting mesophase growth and development. Furthermore, the pressurized-atmospheric two-stage reaction process also contributes to mesophase development, resulting in products with more cycloalkane structure, improved thermal stability, and optimized optical structure transitioning from mosaic to flow or even domain.

流化催化裂化(FCC)浆料的高芳香度使其成为生产高性能碳材料的上佳原料。本研究对富含芳烃的催化裂化浆料进行了直接热缩聚,以合成具有显著各向异性的中间相沥青。研究了搅拌速度和加压-常压两阶段反应对产品结构和组成的影响。采用热重(TG)测试进行热稳定性分析,通过偏光显微镜观察介相含量和光学结构,通过傅立叶变换红外光谱(FT-IR)和核磁共振氢谱(1H NMR)表征材料成分和分子结构,以及利用 X 射线衍射(XRD)比较晶体结构。实验结果表明,搅拌速率的增加会使反应体系内的分子分布更加均匀,从而有利于分子接触缩聚,促进介相的生长和发展。此外,加压-常压两阶段反应过程也有助于介相的发展,使产品具有更多的环烷结构、更高的热稳定性以及从镶嵌过渡到流动甚至畴的优化光学结构。
{"title":"Structure and composition of mesophase pitch prepared from aromatic-rich fluid catalytic cracking slurry under different process conditions","authors":"Tao Yu,&nbsp;Yu Ma,&nbsp;Xiaoyan Yu,&nbsp;Muhammad Riwan,&nbsp;Mingzhi Wang,&nbsp;Xiaolong Zhou","doi":"10.1002/apj.3108","DOIUrl":"10.1002/apj.3108","url":null,"abstract":"<p>The high aromaticity of fluidized catalytic cracking (FCC) slurry makes it a superior raw material for the production of high-performance carbon materials. In this study, direct thermal polycondensation of aromatic-rich FCC slurries is conducted to synthesize mesophase pitches with a significant anisotropic content. The effects of stirring speed and the pressurized-atmospheric two-stage reaction on the structure and composition of the products are investigated. Thermal stability analysis using thermogravimetric (TG) test, observation of mesophase content and optical structure through polarized light microscopy, characterization of material composition and molecular structure via Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance hydrogen spectrum (<sup>1</sup>H NMR), as well as comparison of crystal structures using X-ray diffraction (XRD) are performed. The experimental results demonstrate that an increase in the stirring rate leads to a more homogeneous molecular distribution within the reaction system, thereby facilitating molecular contact polycondensation and promoting mesophase growth and development. Furthermore, the pressurized-atmospheric two-stage reaction process also contributes to mesophase development, resulting in products with more cycloalkane structure, improved thermal stability, and optimized optical structure transitioning from mosaic to flow or even domain.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141373853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of nitric oxide reduction via CeZrOx/Cu-SSZ-39 hybrid catalyst: Improving activity and hydrothermal stability 通过 CeZrOx/Cu-SSZ-39 混合催化剂增强一氧化氮还原:提高活性和水热稳定性
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-31 DOI: 10.1002/apj.3109
Yunhui Li, Kunting Li, Xingdong Zhu, Xinyan Zhang, Xin Zhang

This study aimed to improve the catalytic activity and hydrothermal stability of Cu-SSZ-39 zeolite by coupling it with cerium zirconium oxides (CeZrOx), which possesses excellent oxidizing ability, and a hybrid catalyst CeZrOx/Cu-SSZ-39 was prepared. It is found that it exhibited enhanced low-temperature activity, high-temperature activity, and a wider effective temperature range compared to Cu-SSZ-39. Characterization results showed that the CeZrOx/Cu-SSZ-39 catalyst had a higher concentration of active Cu2+ ion species and improved redox properties, which could potentially promote the NH3-SCR reaction. Additionally, the CeZrOx/Cu-SSZ-39 catalyst had increased chemisorbed oxygen species on its surface, facilitating the oxidation of NO to NO2 and enhancing the rate of the SCR reaction. Moreover, even after undergoing hydrothermal aging treatment, the CeZrOx/Cu-SSZ-39 catalyst exhibited superior catalytic activity and improved hydrothermal stability, surpassing the performance of Cu-SSZ-39. It is found the CeZrOx coupling allowed the hybrid catalyst to maintain a better specific surface area and pore structure during hydrothermal aging, resulting in reduced activity loss. Therefore, the addition of CeZrOx enhanced the NH3-SCR activity of Cu-SSZ-39 zeolite, leading to improved catalytic activity and hydrothermal stability. CeZrOx/Cu-SSZ-39 catalyst has shown promising aspect for reducing NOx emissions from diesel vehicle exhaust.

本研究旨在通过将 Cu-SSZ-39 沸石与具有优异氧化能力的锆铈氧化物(CeZrOx)偶联,提高其催化活性和水热稳定性,并制备了 CeZrOx/Cu-SSZ-39 混合催化剂。研究发现,与 Cu-SSZ-39 相比,该催化剂的低温活性、高温活性和有效温度范围都有所提高。表征结果表明,CeZrOx/Cu-SSZ-39 催化剂具有更高浓度的活性 Cu2+ 离子物种和更好的氧化还原特性,这有可能促进 NH3-SCR 反应。此外,CeZrOx/Cu-SSZ-39 催化剂表面的化学吸附氧物种增加,促进了 NO 氧化为 NO2,提高了 SCR 反应的速率。此外,即使经过水热老化处理,CeZrOx/Cu-SSZ-39 催化剂仍表现出优异的催化活性和更高的水热稳定性,其性能超过了 Cu-SSZ-39。研究发现,CeZrOx 的偶联使混合催化剂在水热老化过程中保持了更好的比表面积和孔隙结构,从而减少了活性损失。因此,CeZrOx 的添加增强了 Cu-SSZ-39 沸石的 NH3-SCR 活性,从而提高了催化活性和水热稳定性。CeZrOx/Cu-SSZ-39 催化剂在减少柴油车尾气中的氮氧化物排放方面显示出良好的前景。
{"title":"Enhancement of nitric oxide reduction via CeZrOx/Cu-SSZ-39 hybrid catalyst: Improving activity and hydrothermal stability","authors":"Yunhui Li,&nbsp;Kunting Li,&nbsp;Xingdong Zhu,&nbsp;Xinyan Zhang,&nbsp;Xin Zhang","doi":"10.1002/apj.3109","DOIUrl":"10.1002/apj.3109","url":null,"abstract":"<p>This study aimed to improve the catalytic activity and hydrothermal stability of Cu-SSZ-39 zeolite by coupling it with cerium zirconium oxides (CeZrO<sub>x</sub>), which possesses excellent oxidizing ability, and a hybrid catalyst CeZrO<sub>x</sub>/Cu-SSZ-39 was prepared. It is found that it exhibited enhanced low-temperature activity, high-temperature activity, and a wider effective temperature range compared to Cu-SSZ-39. Characterization results showed that the CeZrO<sub>x</sub>/Cu-SSZ-39 catalyst had a higher concentration of active Cu<sup>2+</sup> ion species and improved redox properties, which could potentially promote the NH<sub>3</sub>-SCR reaction. Additionally, the CeZrO<sub>x</sub>/Cu-SSZ-39 catalyst had increased chemisorbed oxygen species on its surface, facilitating the oxidation of NO to NO<sub>2</sub> and enhancing the rate of the SCR reaction. Moreover, even after undergoing hydrothermal aging treatment, the CeZrO<sub>x</sub>/Cu-SSZ-39 catalyst exhibited superior catalytic activity and improved hydrothermal stability, surpassing the performance of Cu-SSZ-39. It is found the CeZrO<sub>x</sub> coupling allowed the hybrid catalyst to maintain a better specific surface area and pore structure during hydrothermal aging, resulting in reduced activity loss. Therefore, the addition of CeZrO<sub>x</sub> enhanced the NH<sub>3</sub>-SCR activity of Cu-SSZ-39 zeolite, leading to improved catalytic activity and hydrothermal stability. CeZrO<sub>x</sub>/Cu-SSZ-39 catalyst has shown promising aspect for reducing NOx emissions from diesel vehicle exhaust.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance characteristics and particle movement behavior of a petroleum coke particle packed bed in a vertical shaft calciner under different burden distribution methods 立轴煅烧炉中石油焦颗粒填料床在不同负荷分配方式下的阻力特性和颗粒运动行为
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-29 DOI: 10.1002/apj.3105
Jindi Huang, Hui Lu, Jing Li, Youming Yang

Because of the increasingly deteriorating quality of petroleum coke raw materials, abnormal furnace conditions, such as “firing and blasting”, frequently arise during the calcination of petroleum coke with a high powder/coke ratio in a vertical shaft calciner. This poses an urgent technical challenge that needs to be addressed. In iron and steel metallurgy, the burden distribution system is an important way to regulate blast furnace conditions and improve the permeability of a particle packed bed. In this work, advanced burden distribution concepts were introduced into the calcination process of petroleum coke in a vertical shaft calciner. Experimental devices were established to determine the resistance characteristics of a petroleum coke particle packed bed, along with a cold physical model of a 1/8 scale vertical shaft calciner. The influence of particle size and burden distribution methods on the resistance characteristics and particle motion behavior of the petroleum coke particle packed bed was systematically studied. The research findings indicate that both particle size and burden distribution methods significantly impact the resistance characteristics of petroleum coke particle packed beds. The smaller the particle size, the poorer the permeability of the bed. The layered burden distribution, symmetrical burden distribution, and dual-particle mixed conventional burden distribution all contribute to improving the permeability of the petroleum coke particle packed bed in the vertical shaft calciner. Furthermore, employing symmetrical burden distribution in Bed-3, which is packed with petroleum coke particles of diameters −3.2 + 2.5 mm and −1.0 + 0.8 mm, results in the smallest unit pressure drop, at only 1.7% of that of the conventional burden distribution of unscreened raw materials. This is the most effective means of improving the permeability of the bed. During the discharging process, particle size and symmetrical burden distribution have no significant impact on the motion characteristics of petroleum coke particles in the vertical shaft calciner. In general, in the calciner area, particles primarily move in a plug flow pattern and gradually transform into funnel flow in the cooling water jacket area. These research results provide the theoretical basis for addressing the technical challenges associated with powder coke calcination in vertical shaft calciners through reasonable burden distribution methods for fine and coarse particles.

由于石油焦原料的质量日益下降,在立轴煅烧炉中煅烧高粉焦比的石油焦时,经常会出现 "烧焦和爆破 "等异常炉况。这是一个亟待解决的技术难题。在钢铁冶金中,炉料分配系统是调节高炉炉况和改善颗粒填料床透气性的重要途径。在这项工作中,先进的炉料分布概念被引入到竖炉煅烧石油焦的煅烧过程中。为确定石油焦颗粒填料床的阻力特性,建立了实验装置和 1/8 比例竖炉煅烧炉的冷物理模型。系统研究了粒度和负荷分布方法对石油焦颗粒填料床阻力特性和颗粒运动行为的影响。研究结果表明,粒度和载荷分布方法对石油焦颗粒填料床的阻力特性有显著影响。粒度越小,床的渗透性越差。分层负荷分布、对称负荷分布和双颗粒混合常规负荷分布都有助于改善竖炉煅烧炉中石油焦颗粒填料床的透气性。此外,在装有直径为-3.2 + 2.5 毫米和-1.0 + 0.8 毫米的石油焦颗粒的床层-3 中采用对称负荷分布,单位压降最小,仅为未筛分原料常规负荷分布的 1.7%。这是提高床层透气性的最有效方法。在卸料过程中,粒度和对称负荷分布对石油焦颗粒在竖井煅烧炉中的运动特性没有明显影响。一般来说,在煅烧炉区域,颗粒主要以塞流模式运动,在冷却水夹套区域逐渐转变为漏斗流。这些研究成果为通过合理的细颗粒和粗颗粒负荷分配方法解决粉末焦炭在竖井煅烧炉中煅烧的相关技术难题提供了理论依据。
{"title":"Resistance characteristics and particle movement behavior of a petroleum coke particle packed bed in a vertical shaft calciner under different burden distribution methods","authors":"Jindi Huang,&nbsp;Hui Lu,&nbsp;Jing Li,&nbsp;Youming Yang","doi":"10.1002/apj.3105","DOIUrl":"10.1002/apj.3105","url":null,"abstract":"<p>Because of the increasingly deteriorating quality of petroleum coke raw materials, abnormal furnace conditions, such as “firing and blasting”, frequently arise during the calcination of petroleum coke with a high powder/coke ratio in a vertical shaft calciner. This poses an urgent technical challenge that needs to be addressed. In iron and steel metallurgy, the burden distribution system is an important way to regulate blast furnace conditions and improve the permeability of a particle packed bed. In this work, advanced burden distribution concepts were introduced into the calcination process of petroleum coke in a vertical shaft calciner. Experimental devices were established to determine the resistance characteristics of a petroleum coke particle packed bed, along with a cold physical model of a 1/8 scale vertical shaft calciner. The influence of particle size and burden distribution methods on the resistance characteristics and particle motion behavior of the petroleum coke particle packed bed was systematically studied. The research findings indicate that both particle size and burden distribution methods significantly impact the resistance characteristics of petroleum coke particle packed beds. The smaller the particle size, the poorer the permeability of the bed. The layered burden distribution, symmetrical burden distribution, and dual-particle mixed conventional burden distribution all contribute to improving the permeability of the petroleum coke particle packed bed in the vertical shaft calciner. Furthermore, employing symmetrical burden distribution in Bed-3, which is packed with petroleum coke particles of diameters −3.2 + 2.5 mm and −1.0 + 0.8 mm, results in the smallest unit pressure drop, at only 1.7% of that of the conventional burden distribution of unscreened raw materials. This is the most effective means of improving the permeability of the bed. During the discharging process, particle size and symmetrical burden distribution have no significant impact on the motion characteristics of petroleum coke particles in the vertical shaft calciner. In general, in the calciner area, particles primarily move in a plug flow pattern and gradually transform into funnel flow in the cooling water jacket area. These research results provide the theoretical basis for addressing the technical challenges associated with powder coke calcination in vertical shaft calciners through reasonable burden distribution methods for fine and coarse particles.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption behavior of NH4+ and Mg2+ at kaolinite surfaces: Effect of the ion concentration, NH4+/Mg2+ mixing ratio, and layer charge NH4+ 和 Mg2+ 在高岭石表面的吸附行为:离子浓度、NH4+/Mg2+ 混合比和层电荷的影响
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-28 DOI: 10.1002/apj.3106
Xiangsen Shao, Chenliang Peng, Guanshi Wang, Lei Qin, Ping Long

The adsorption behavior of NH4+ and Mg2+ at kaolinite surfaces was investigated by using molecular dynamics (MD) simulations, considering the factors such as ion concentration, NH4+/Mg2+ mixing ratio, and layer charge of kaolinite. The results showed that the increase in ion concentration did not affect the adsorption modes of NH4+ and Mg2+ ions but promote the increase in the adsorption capacity. The total adsorption capacities of Mg2+ and NH4+ were 3.25 × 10−6 and 2.85 × 10−6 μmol·mm−2 at the ion concentration of 1.5 mol·L−1, respectively. When NH4+ and Mg2+ were co-adsorbed, they could inhibit the adsorption of each other at the surface of kaolinite, except that the inner-sphere (IS) adsorption of NH4+ at aluminum hydroxyl (Al–OH) surface could be enhanced by the presence of Mg2+. Both NH4+ and Mg2+ tended to adsorb at the siloxane (Si–O) surface of kaolinite rather than Al–OH surface. When layer charge occurred in kaolinite, a small number of Mg2+ began to adsorb in the IS complexes at 1.7 and 2.3 Å above the Al and O atoms of the lattice-substituted tetrahedra of the Si–O surface, and at 1.7 Å above the hexahedra of the Al–OH surface. However, most of NH4+ were adsorbed in IS complexes at 1.7 Å above the center of the oxygen six-membered ring of the Si–O surface and above the hexahedron of the Al–OH surface. The adsorption capacity of Mg2+ changed little with the increase of layer charge density, while the IS and total adsorption capacity of NH4+ increased significantly.

利用分子动力学(MD)模拟研究了NH4+和Mg2+在高岭石表面的吸附行为,考虑了离子浓度、NH4+/Mg2+混合比和高岭石层电荷等因素。结果表明,离子浓度的增加并不影响 NH4+ 和 Mg2+ 离子的吸附模式,但会促进吸附容量的增加。在离子浓度为 1.5 mol-L-1 时,Mg2+ 和 NH4+ 的总吸附容量分别为 3.25 × 10-6 和 2.85 × 10-6 μmol-m-2。当 NH4+ 和 Mg2+ 共吸附时,它们在高岭石表面的吸附相互抑制,但 Mg2+ 的存在可增强 NH4+ 在羟基铝(Al-OH)表面的内球吸附。NH4+ 和 Mg2+ 都倾向于吸附在高岭石的硅氧烷(Si-O)表面,而不是 Al-OH 表面。当高岭石中出现层电荷时,IS 复合物中的少量 Mg2+ 开始吸附在 Si-O 表面晶格取代四面体的 Al 原子和 O 原子上方 1.7 Å 和 2.3 Å 处,以及 Al-OH 表面六面体上方 1.7 Å 处。然而,大部分 NH4+ 被吸附在 Si-O 表面氧六元环中心上方 1.7 Å 和 Al-OH 表面六面体上方的 IS 复合物中。随着层电荷密度的增加,Mg2+ 的吸附容量变化不大,而 NH4+ 的 IS 和总吸附容量则显著增加。
{"title":"Adsorption behavior of NH4+ and Mg2+ at kaolinite surfaces: Effect of the ion concentration, NH4+/Mg2+ mixing ratio, and layer charge","authors":"Xiangsen Shao,&nbsp;Chenliang Peng,&nbsp;Guanshi Wang,&nbsp;Lei Qin,&nbsp;Ping Long","doi":"10.1002/apj.3106","DOIUrl":"10.1002/apj.3106","url":null,"abstract":"<p>The adsorption behavior of NH<sub>4</sub><sup>+</sup> and Mg<sup>2+</sup> at kaolinite surfaces was investigated by using molecular dynamics (MD) simulations, considering the factors such as ion concentration, NH<sub>4</sub><sup>+</sup>/Mg<sup>2+</sup> mixing ratio, and layer charge of kaolinite. The results showed that the increase in ion concentration did not affect the adsorption modes of NH<sub>4</sub><sup>+</sup> and Mg<sup>2+</sup> ions but promote the increase in the adsorption capacity. The total adsorption capacities of Mg<sup>2+</sup> and NH<sub>4</sub><sup>+</sup> were 3.25 × 10<sup>−6</sup> and 2.85 × 10<sup>−6</sup> μmol·mm<sup>−2</sup> at the ion concentration of 1.5 mol·L<sup>−1</sup>, respectively. When NH<sub>4</sub><sup>+</sup> and Mg<sup>2+</sup> were co-adsorbed, they could inhibit the adsorption of each other at the surface of kaolinite, except that the inner-sphere (IS) adsorption of NH<sub>4</sub><sup>+</sup> at aluminum hydroxyl (Al–OH) surface could be enhanced by the presence of Mg<sup>2+</sup>. Both NH<sub>4</sub><sup>+</sup> and Mg<sup>2+</sup> tended to adsorb at the siloxane (Si–O) surface of kaolinite rather than Al–OH surface. When layer charge occurred in kaolinite, a small number of Mg<sup>2+</sup> began to adsorb in the IS complexes at 1.7 and 2.3 Å above the Al and O atoms of the lattice-substituted tetrahedra of the Si–O surface, and at 1.7 Å above the hexahedra of the Al–OH surface. However, most of NH<sub>4</sub><sup>+</sup> were adsorbed in IS complexes at 1.7 Å above the center of the oxygen six-membered ring of the Si–O surface and above the hexahedron of the Al–OH surface. The adsorption capacity of Mg<sup>2+</sup> changed little with the increase of layer charge density, while the IS and total adsorption capacity of NH<sub>4</sub><sup>+</sup> increased significantly.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat integration analysis based on recycle split vapor ethane recovery process 基于循环分离蒸气乙烷回收工艺的热集成分析
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-28 DOI: 10.1002/apj.3107
Hong Jiang, Qingsong Liu, Ling Zhou, Penggang Zhang, Peng Gao, Chen Xiao, Donglei Yang

Recovering ethane from natural gas involves significant energy consumption. Globally, the recycle split vapor process (RSV) is widely adopted as an efficient method for ethane recovery. Nonetheless, one major challenge faced by the RSV process is the lack of adequate heat integration, despite its overall effectiveness. In this article, we investigate the heat integration of the RSV process and propose two novel ethane recovery processes: the recycle split vapor process with direct heat integration of the feed gas (RSV-DTI) and the recycle split vapor process with split heat integration of the feed gas (RSV-SHI). A comparative analysis is conducted among these three processes, focusing on integrated energy consumption, exergy efficiency, and economic investment. The study's findings reveal the following: (1) The RSV-DTI process distinguishes itself with its reduced energy consumption, enhanced stability, and minimized refrigerant usage. In comparison to the RSV process, the RSV-DTI process achieves a reduction of over 15% in total compression duty and a remarkable decrease of 68% in propane usage. (2) Electricity emerges as the predominant energy consumed in the ethane recovery process, and the RSV-DTI process significantly improves upon this aspect. Notably, the RSV-DTI process incurs the lowest investment cost, yielding a swift payback period of approximately 1 year for the plant. The characteristics of the RSV-DTI process are investigated, and the effect of changes in feed gas conditions on the heat integration of the RSV-DTI process is analyzed. The characteristics of the RSV-DTI process show the following: (1) Different pressures of feed gas existing in the main cold box have different minimum heat integration temperatures (MHIT). When the feed gas temperature is lower than the MHIT, heat integration becomes difficult, and the heat energy can be supplied by hot liquid propane at 48°C. When the feed gas temperature is higher than the MHIT, changes in feed gas temperature have little effect on the process, only affecting the external gas temperature. (2) The heat transfer duty of the demethanizer sideline outlet stream is affected by the feed gas pressure. To enhance heat integration, it is recommended to set the heat transfer duty of the low-temperature sideline outlet stream (DLTSS) between 40% and 90% of the reboiler duty and the heat transfer duty of the high-temperature sideline outlet stream (DHTSS) between 40% and 75% of the reboiler duty.

从天然气中回收乙烷需要消耗大量能源。在全球范围内,循环分离蒸汽工艺(RSV)作为一种高效的乙烷回收方法被广泛采用。然而,RSV 工艺面临的一个主要挑战是,尽管其总体效果显著,但缺乏足够的热集成。在本文中,我们对 RSV 工艺的热集成进行了研究,并提出了两种新型乙烷回收工艺:原料气直接热集成的循环分离蒸汽工艺(RSV-DTI)和原料气分离热集成的循环分离蒸汽工艺(RSV-SHI)。对这三种工艺进行了比较分析,重点是综合能耗、放能效率和经济投资。研究结果如下(1) RSV-DTI 工艺在降低能耗、提高稳定性和减少制冷剂用量方面表现突出。与 RSV 工艺相比,RSV-DTI 工艺的总压缩工作量减少了 15%以上,丙烷用量显著减少了 68%。(2) 电力是乙烷回收过程中消耗的主要能源,RSV-DTI 工艺在这方面有显著改善。值得注意的是,RSV-DTI 工艺的投资成本最低,投资回收期约为 1 年。研究了 RSV-DTI 工艺的特点,并分析了原料气条件变化对 RSV-DTI 工艺热集成的影响。RSV-DTI 工艺的特点如下:(1) 主冷箱中不同压力的原料气具有不同的最低热集成温度(MHIT)。当原料气温度低于 MHIT 时,热集成变得困难,热能可由 48°C 的热液态丙烷提供。当原料气温度高于 MHIT 时,原料气温度的变化对工艺影响不大,只影响外部气体温度。(2) 脱甲烷器侧线出口流的换热负荷受原料气压力的影响。为提高热集成度,建议将低温侧出气流(DLTSS)的换热负荷设定在再沸器负荷的 40% 至 90% 之间,将高温侧出气流(DHTSS)的换热负荷设定在再沸器负荷的 40% 至 75% 之间。
{"title":"Heat integration analysis based on recycle split vapor ethane recovery process","authors":"Hong Jiang,&nbsp;Qingsong Liu,&nbsp;Ling Zhou,&nbsp;Penggang Zhang,&nbsp;Peng Gao,&nbsp;Chen Xiao,&nbsp;Donglei Yang","doi":"10.1002/apj.3107","DOIUrl":"10.1002/apj.3107","url":null,"abstract":"<p>Recovering ethane from natural gas involves significant energy consumption. Globally, the recycle split vapor process (RSV) is widely adopted as an efficient method for ethane recovery. Nonetheless, one major challenge faced by the RSV process is the lack of adequate heat integration, despite its overall effectiveness. In this article, we investigate the heat integration of the RSV process and propose two novel ethane recovery processes: the recycle split vapor process with direct heat integration of the feed gas (RSV-DTI) and the recycle split vapor process with split heat integration of the feed gas (RSV-SHI). A comparative analysis is conducted among these three processes, focusing on integrated energy consumption, exergy efficiency, and economic investment. The study's findings reveal the following: (1) The RSV-DTI process distinguishes itself with its reduced energy consumption, enhanced stability, and minimized refrigerant usage. In comparison to the RSV process, the RSV-DTI process achieves a reduction of over 15% in total compression duty and a remarkable decrease of 68% in propane usage. (2) Electricity emerges as the predominant energy consumed in the ethane recovery process, and the RSV-DTI process significantly improves upon this aspect. Notably, the RSV-DTI process incurs the lowest investment cost, yielding a swift payback period of approximately 1 year for the plant. The characteristics of the RSV-DTI process are investigated, and the effect of changes in feed gas conditions on the heat integration of the RSV-DTI process is analyzed. The characteristics of the RSV-DTI process show the following: (1) Different pressures of feed gas existing in the main cold box have different minimum heat integration temperatures (MHIT). When the feed gas temperature is lower than the MHIT, heat integration becomes difficult, and the heat energy can be supplied by hot liquid propane at 48°C. When the feed gas temperature is higher than the MHIT, changes in feed gas temperature have little effect on the process, only affecting the external gas temperature. (2) The heat transfer duty of the demethanizer sideline outlet stream is affected by the feed gas pressure. To enhance heat integration, it is recommended to set the heat transfer duty of the low-temperature sideline outlet stream (DLTSS) between 40% and 90% of the reboiler duty and the heat transfer duty of the high-temperature sideline outlet stream (DHTSS) between 40% and 75% of the reboiler duty.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of mixed matrix membranes with graphene oxide-impregnated zeolitic imidazolate framework-8 for enhanced CO2/CH4 separation 氧化石墨烯浸渍沸石咪唑酸盐框架-8 混合基质膜的合成与表征,用于增强 CO2/CH4 分离效果
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-22 DOI: 10.1002/apj.3094
Ajay V. Gawali, Surendra Sasikumar Jampa, Manish Kumar Sinha

For the in situ growth method, the reaction time is important because increasing the reaction time may make it possible for the crystallized ZIF-8 to fully cover the GO sheets; the excess of ZIF-8 particles reduces the aspect ratio of the GO sheet. The reaction time will significantly change the morphology, affecting the composite's ability to absorb selective gas and, in turn, affect the gas selectivity. The present work identifies the reaction time for in situ growth of ZIF-8 nanoparticles on GO sheets. The composite was synthesized at different reaction times of 2, 4, 6, and 8 h and incorporated into the PSF matrix. The fabricated membranes were characterized by FTIR, TGA, SEM, and XRD. The novel synthesized reaction time (6 h) was identified for better enhancement of CO2/CH4 separation. For pure gas studies, the results investigated that the CO2 permeability and CO2/CH4 selectivity were increased by 223% and 98%, respectively, compared with plain PSF membrane. In mixed gas (CO2/CH4) studies, the CO2 permeability and CO2CH4 selectivity were increased by 349% and 854%, respectively, compared with plain PSF membrane. Hence, the in situ growth method helps synthesize MOF@GO composites in the application of gas separation.

对于原位生长法来说,反应时间非常重要,因为增加反应时间可以使结晶的 ZIF-8 完全覆盖 GO 片;而过量的 ZIF-8 颗粒会降低 GO 片的长宽比。反应时间会明显改变形态,影响复合材料吸收选择性气体的能力,进而影响气体选择性。本研究确定了 ZIF-8 纳米粒子在 GO 片上原位生长的反应时间。在 2、4、6 和 8 小时的不同反应时间下合成了复合材料,并将其加入 PSF 基质中。傅立叶变换红外光谱(FTIR)、热重分析(TGA)、扫描电镜(SEM)和 X 射线衍射(XRD)对制备的膜进行了表征。新合成的反应时间(6 小时)能更好地提高 CO2/CH4 分离效果。在纯气体研究中,结果表明与普通 PSF 膜相比,CO2 渗透率和 CO2/CH4 选择性分别提高了 223% 和 98%。在混合气体(CO2/CH4)研究中,与普通 PSF 膜相比,CO2 渗透率和 CO2CH4 选择性分别提高了 349% 和 854%。因此,原位生长法有助于合成 MOF@GO 复合材料在气体分离中的应用。
{"title":"Synthesis and characterization of mixed matrix membranes with graphene oxide-impregnated zeolitic imidazolate framework-8 for enhanced CO2/CH4 separation","authors":"Ajay V. Gawali,&nbsp;Surendra Sasikumar Jampa,&nbsp;Manish Kumar Sinha","doi":"10.1002/apj.3094","DOIUrl":"10.1002/apj.3094","url":null,"abstract":"<p>For the in situ growth method, the reaction time is important because increasing the reaction time may make it possible for the crystallized ZIF-8 to fully cover the GO sheets; the excess of ZIF-8 particles reduces the aspect ratio of the GO sheet. The reaction time will significantly change the morphology, affecting the composite's ability to absorb selective gas and, in turn, affect the gas selectivity. The present work identifies the reaction time for in situ growth of ZIF-8 nanoparticles on GO sheets. The composite was synthesized at different reaction times of 2, 4, 6, and 8 h and incorporated into the PSF matrix. The fabricated membranes were characterized by FTIR, TGA, SEM, and XRD. The novel synthesized reaction time (6 h) was identified for better enhancement of CO<sub>2</sub>/CH<sub>4</sub> separation. For pure gas studies, the results investigated that the CO<sub>2</sub> permeability and CO<sub>2</sub>/CH<sub>4</sub> selectivity were increased by 223% and 98%, respectively, compared with plain PSF membrane. In mixed gas (CO<sub>2</sub>/CH<sub>4</sub>) studies, the CO<sub>2</sub> permeability and CO<sub>2</sub>CH<sub>4</sub> selectivity were increased by 349% and 854%, respectively, compared with plain PSF membrane. Hence, the in situ growth method helps synthesize MOF@GO composites in the application of gas separation.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141109959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective adsorption and separation of salicylic acid and 4-hydroxyisophthalic acid from industry-grade 4-hydroxybenzoic acid on UiO-66 在 UiO-66 上选择性吸附和分离工业级对羟基苯甲酸中的水杨酸和对羟基间苯二甲酸
IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-05-22 DOI: 10.1002/apj.3103
Kai Yuan, Ye Sun, Yangfeng Peng, Yongming Wei, Yanyang Wu, Quan He

In this study, UiO-66 was employed for the first time as an adsorbent to separate phenolic acid analogues, specifically 4-hydroxyisophthalic acid and salicylic acid, from impurities. Synthesized in-house, UiO-66 was shown to exhibit high selectivity towards 4-HIPA/4-HBA and SA/4-HBA when a molar equivalent of acetic acid modulator to terephthalic acid was set at 44. The adsorption capacities for 4-HBA, 4-HIPA, and SA were determined to be 56.34, 55.02, and 60.34 mg/g, respectively. Furthermore, it was observed that after six regeneration cycles, the adsorption capacity for 4-HBA remained nearly unchanged, whereas those for 4-HIPA and SA decreased by 5.6% and 2.6%, respectively. FTIR and XPS analyses revealed that all three compounds were adsorbed at the same dominant Zr cluster site on UiO-66, primarily through hydrogen bonding and electrostatic interaction. Dynamic adsorption experiments revealed that 4-HBA was the first to elute, maintaining the residual contents of 4-HIPA and SA below 0.1 wt%. Compared to traditional separation techniques, this paper provided a simple and effective method to purify industrial grade 4-hydroxybenzoic acid.

本研究首次将 UiO-66 用作吸附剂,用于从杂质中分离酚酸类似物,特别是 4- 羟基间苯二甲酸和水杨酸。UiO-66 由内部合成,当醋酸调节剂与对苯二甲酸的摩尔当量设定为 44 时,UiO-66 对 4-HIPA/4-HBA 和 SA/4-HBA 具有高选择性。对 4-HBA、4-HIPA 和 SA 的吸附容量分别为 56.34、55.02 和 60.34 mg/g。此外,经过六个再生周期后,4-HBA 的吸附容量几乎保持不变,而 4-HIPA 和 SA 的吸附容量则分别下降了 5.6% 和 2.6%。傅立叶变换红外光谱(FTIR)和 XPS 分析表明,这三种化合物主要通过氢键和静电作用吸附在 UiO-66 上相同的主要 Zr 团簇位点上。动态吸附实验表明,4-HBA 最先洗脱,从而使 4-HIPA 和 SA 的残余含量保持在 0.1 wt% 以下。与传统分离技术相比,本文提供了一种简单有效的方法来提纯工业级对羟基苯甲酸。
{"title":"Selective adsorption and separation of salicylic acid and 4-hydroxyisophthalic acid from industry-grade 4-hydroxybenzoic acid on UiO-66","authors":"Kai Yuan,&nbsp;Ye Sun,&nbsp;Yangfeng Peng,&nbsp;Yongming Wei,&nbsp;Yanyang Wu,&nbsp;Quan He","doi":"10.1002/apj.3103","DOIUrl":"10.1002/apj.3103","url":null,"abstract":"<p>In this study, UiO-66 was employed for the first time as an adsorbent to separate phenolic acid analogues, specifically 4-hydroxyisophthalic acid and salicylic acid, from impurities. Synthesized in-house, UiO-66 was shown to exhibit high selectivity towards 4-HIPA/4-HBA and SA/4-HBA when a molar equivalent of acetic acid modulator to terephthalic acid was set at 44. The adsorption capacities for 4-HBA, 4-HIPA, and SA were determined to be 56.34, 55.02, and 60.34 mg/g, respectively. Furthermore, it was observed that after six regeneration cycles, the adsorption capacity for 4-HBA remained nearly unchanged, whereas those for 4-HIPA and SA decreased by 5.6% and 2.6%, respectively. FTIR and XPS analyses revealed that all three compounds were adsorbed at the same dominant Zr cluster site on UiO-66, primarily through hydrogen bonding and electrostatic interaction. Dynamic adsorption experiments revealed that 4-HBA was the first to elute, maintaining the residual contents of 4-HIPA and SA below 0.1 wt%. Compared to traditional separation techniques, this paper provided a simple and effective method to purify industrial grade 4-hydroxybenzoic acid.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Asia-Pacific Journal of Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1