Pub Date : 2023-08-09DOI: 10.1186/s13008-023-00096-5
Hanshen Luo, Xingliang Wu, Bo Huo, Liyuan Liu, Ding-Sheng Jiang, Xin Yi
Background: Aberrant proliferation of vascular smooth muscle cells (VSMCs) is the cause of neointima formation followed by vascular injury. Autophagy is involved in this pathological process, but its function is controversial. Recently, we found that methyltransferase like 3 (METTL3) inhibited VSMC proliferation by activating autophagosome formation. Moreover, we also demonstrated that METTL3 reduced the levels of phosphorylated mammalian target of rapamycin (p-mTOR) and cyclin dependent kinase 1 (p-CDK1/CDC2), which were critical for autophagy and proliferation regulation. However, whether mTOR and CDK1 mediated the function of METTL3 on autophagy and proliferation in VSMCs remains unknown.
Results: We showed that the activator of mTOR, MHY1485 largely reversed the effects of METTL3 overexpression on VSMC autophagy and proliferation. Rapamycin, the inhibitor of mTOR, obviously nullified the pro-proliferation effects of METTL3 knockdown by activating autophagy in VSMCs. Unexpectedly, mTOR did not contribute to the impacts of METTL3 on migration and phenotypic switching of VSMCs. On the other hand, by knockdown of CDK1 in VSMC with METTL3 deficiency, we demonstrated that CDK1 was involved in METTL3-regulated proliferation of VSMCs, but this effect was not mediated by autophagy.
Conclusions: We concluded that mTOR but not CDK1 mediated the role of METTL3 on VSMC proliferation and autophagy.
{"title":"The roles of METTL3 on autophagy and proliferation of vascular smooth muscle cells are mediated by mTOR rather than by CDK1.","authors":"Hanshen Luo, Xingliang Wu, Bo Huo, Liyuan Liu, Ding-Sheng Jiang, Xin Yi","doi":"10.1186/s13008-023-00096-5","DOIUrl":"10.1186/s13008-023-00096-5","url":null,"abstract":"<p><strong>Background: </strong>Aberrant proliferation of vascular smooth muscle cells (VSMCs) is the cause of neointima formation followed by vascular injury. Autophagy is involved in this pathological process, but its function is controversial. Recently, we found that methyltransferase like 3 (METTL3) inhibited VSMC proliferation by activating autophagosome formation. Moreover, we also demonstrated that METTL3 reduced the levels of phosphorylated mammalian target of rapamycin (p-mTOR) and cyclin dependent kinase 1 (p-CDK1/CDC2), which were critical for autophagy and proliferation regulation. However, whether mTOR and CDK1 mediated the function of METTL3 on autophagy and proliferation in VSMCs remains unknown.</p><p><strong>Results: </strong>We showed that the activator of mTOR, MHY1485 largely reversed the effects of METTL3 overexpression on VSMC autophagy and proliferation. Rapamycin, the inhibitor of mTOR, obviously nullified the pro-proliferation effects of METTL3 knockdown by activating autophagy in VSMCs. Unexpectedly, mTOR did not contribute to the impacts of METTL3 on migration and phenotypic switching of VSMCs. On the other hand, by knockdown of CDK1 in VSMC with METTL3 deficiency, we demonstrated that CDK1 was involved in METTL3-regulated proliferation of VSMCs, but this effect was not mediated by autophagy.</p><p><strong>Conclusions: </strong>We concluded that mTOR but not CDK1 mediated the role of METTL3 on VSMC proliferation and autophagy.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"13"},"PeriodicalIF":2.3,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9972743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-07DOI: 10.1186/s13008-023-00094-7
Jakub Kulus, Wiesława Kranc, Magdalena Kulus, Piotr Dzięgiel, Dorota Bukowska, Paul Mozdziak, Bartosz Kempisty, Paweł Antosik
Background: Cell cycle regulation influences the proliferation of granulosa cells and affects many processes related to ovarian folliclular growth and ovulation. Abnormal regulation of the cell cycle can lead to many diseases within the ovary. The aim of this study was to describe the expression profile of genes within granulosa cells, which are related to the formation of the cytoskeleton, organization of cell organelles inside the cell, and regulation of cell division. Established in vitro primary cultures from porcine ovarian follicle granulosa cells were maintained for 48, 96, 144 h and evaluated via microarray expression analysis.
Results: Analyzed genes were assigned to 12 gene ontology groups "actin cytoskeleton organization", "actin filament organization", "actin filament-based process", "cell-matrix adhesion", "cell-substrate adhesion", "chromosome segregation", "chromosome separation", "cytoskeleton organization", "DNA integrity checkpoint", "DNA replication initiation", "organelle fision", "organelle organization". Among the genes with significantly changed expression, those whose role in processes within the ovary are selected for consideration. Genes with increased expression include (ITGA11, CNN1, CCl2, TPM2, ACTN1, VCAM-1, COL3A1, GSN, FRMD6, PLK2). Genes with reduced expression inlcude (KIF14, TACC3, ESPL1, CDC45, TTK, CDC20, CDK1, FBXO5, NEK2-NIMA, CCNE2). For the results obtained by microarray expressions, quantitative validation by RT-qPCR was performed.
Conclusions: The results indicated expression profile of genes, which can be considered as new molecular markers of cellular processes involved in signaling, cell structure organization. The expression profile of selected genes brings new insight into regulation of physiological processes in porcine follicular granulosa cells during primary in vitro culture.
{"title":"Expression of genes regulating cell division in porcine follicular granulosa cells.","authors":"Jakub Kulus, Wiesława Kranc, Magdalena Kulus, Piotr Dzięgiel, Dorota Bukowska, Paul Mozdziak, Bartosz Kempisty, Paweł Antosik","doi":"10.1186/s13008-023-00094-7","DOIUrl":"10.1186/s13008-023-00094-7","url":null,"abstract":"<p><strong>Background: </strong>Cell cycle regulation influences the proliferation of granulosa cells and affects many processes related to ovarian folliclular growth and ovulation. Abnormal regulation of the cell cycle can lead to many diseases within the ovary. The aim of this study was to describe the expression profile of genes within granulosa cells, which are related to the formation of the cytoskeleton, organization of cell organelles inside the cell, and regulation of cell division. Established in vitro primary cultures from porcine ovarian follicle granulosa cells were maintained for 48, 96, 144 h and evaluated via microarray expression analysis.</p><p><strong>Results: </strong>Analyzed genes were assigned to 12 gene ontology groups \"actin cytoskeleton organization\", \"actin filament organization\", \"actin filament-based process\", \"cell-matrix adhesion\", \"cell-substrate adhesion\", \"chromosome segregation\", \"chromosome separation\", \"cytoskeleton organization\", \"DNA integrity checkpoint\", \"DNA replication initiation\", \"organelle fision\", \"organelle organization\". Among the genes with significantly changed expression, those whose role in processes within the ovary are selected for consideration. Genes with increased expression include (ITGA11, CNN1, CCl2, TPM2, ACTN1, VCAM-1, COL3A1, GSN, FRMD6, PLK2). Genes with reduced expression inlcude (KIF14, TACC3, ESPL1, CDC45, TTK, CDC20, CDK1, FBXO5, NEK2-NIMA, CCNE2). For the results obtained by microarray expressions, quantitative validation by RT-qPCR was performed.</p><p><strong>Conclusions: </strong>The results indicated expression profile of genes, which can be considered as new molecular markers of cellular processes involved in signaling, cell structure organization. The expression profile of selected genes brings new insight into regulation of physiological processes in porcine follicular granulosa cells during primary in vitro culture.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"12"},"PeriodicalIF":2.3,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9967665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21DOI: 10.1186/s13008-023-00093-8
Amirhosein Maharati, Meysam Moghbeli
Lung cancer as the leading cause of cancer related mortality is always one of the main global health challenges. Despite the recent progresses in therapeutic methods, the mortality rate is still significantly high among lung cancer patients. A wide range of therapeutic methods including chemotherapy, radiotherapy, and surgery are used to treat lung cancer. Doxorubicin (DOX) and Paclitaxel (TXL) are widely used as the first-line chemotherapeutic drugs in lung cancer. However, there is a significant high percentage of DOX/TXL resistance in lung cancer patients, which leads to tumor recurrence and metastasis. Considering, the side effects of these drugs in normal tissues, it is required to clarify the molecular mechanisms of DOX/TXL resistance to introduce the efficient prognostic and therapeutic markers in lung cancer. MicroRNAs (miRNAs) have key roles in regulation of different pathophysiological processes including cell division, apoptosis, migration, and drug resistance. MiRNA deregulations are widely associated with chemo resistance in various cancers. Therefore, considering the importance of miRNAs in chemotherapy response, in the present review, we discussed the role of miRNAs in regulation of DOX/TXL response in lung cancer patients. It has been reported that miRNAs mainly induced DOX/TXL sensitivity in lung tumor cells by the regulation of signaling pathways, autophagy, transcription factors, and apoptosis. This review can be an effective step in introducing miRNAs as the non-invasive prognostic markers to predict DOX/TXL response in lung cancer patients.
{"title":"Role of microRNAs in regulation of doxorubicin and paclitaxel responses in lung tumor cells.","authors":"Amirhosein Maharati, Meysam Moghbeli","doi":"10.1186/s13008-023-00093-8","DOIUrl":"https://doi.org/10.1186/s13008-023-00093-8","url":null,"abstract":"<p><p>Lung cancer as the leading cause of cancer related mortality is always one of the main global health challenges. Despite the recent progresses in therapeutic methods, the mortality rate is still significantly high among lung cancer patients. A wide range of therapeutic methods including chemotherapy, radiotherapy, and surgery are used to treat lung cancer. Doxorubicin (DOX) and Paclitaxel (TXL) are widely used as the first-line chemotherapeutic drugs in lung cancer. However, there is a significant high percentage of DOX/TXL resistance in lung cancer patients, which leads to tumor recurrence and metastasis. Considering, the side effects of these drugs in normal tissues, it is required to clarify the molecular mechanisms of DOX/TXL resistance to introduce the efficient prognostic and therapeutic markers in lung cancer. MicroRNAs (miRNAs) have key roles in regulation of different pathophysiological processes including cell division, apoptosis, migration, and drug resistance. MiRNA deregulations are widely associated with chemo resistance in various cancers. Therefore, considering the importance of miRNAs in chemotherapy response, in the present review, we discussed the role of miRNAs in regulation of DOX/TXL response in lung cancer patients. It has been reported that miRNAs mainly induced DOX/TXL sensitivity in lung tumor cells by the regulation of signaling pathways, autophagy, transcription factors, and apoptosis. This review can be an effective step in introducing miRNAs as the non-invasive prognostic markers to predict DOX/TXL response in lung cancer patients.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"11"},"PeriodicalIF":2.3,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10234686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Mounting evidence suggests that there is a complex regulatory relationship between long non-coding RNAs (lncRNAs) and the glycolytic process during glioma development. This study aimed to investigate the prognostic role of glycolysis-related lncRNAs in glioma and their impact on the tumor microenvironment.
Methods: This study utilized glioma transcriptome data from public databases to construct, evaluate, and validate a prognostic signature based on differentially expressed (DE)-glycolysis-associated lncRNAs through consensus clustering, DE-lncRNA analysis, Cox regression analysis, and receiver operating characteristic (ROC) curves. The clusterProfiler package was applied to reveal the potential functions of the risk score-related differentially expressed genes (DEGs). ESTIMATE and Gene Set Enrichment Analysis (GSEA) were utilized to evaluate the relationship between prognostic signature and the immune landscape of gliomas. Furthermore, the sensitivity of patients to immune checkpoint inhibitor (ICI) treatment based on the prognostic feature was predicted with the assistance of the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Finally, qRT-PCR was used to verify the difference in the expression of the lncRNAs in glioma cells and normal cell.
Results: By consensus clustering based on glycolytic gene expression profiles, glioma patients were divided into two clusters with significantly different overall survival (OS), from which 2 DE-lncRNAs, AL390755.1 and FLJ16779, were obtained. Subsequently, Cox regression analysis demonstrated that all of these lncRNAs were associated with OS in glioma patients and constructed a prognostic signature with a robust prognostic predictive efficacy. Functional enrichment analysis revealed that DEGs associated with risk scores were involved in immune responses, neurons, neurotransmitters, synapses and other terms. Immune landscape analysis suggested an extreme enrichment of immune cells in the high-risk group. Moreover, patients in the low-risk group were likely to benefit more from ICI treatment. qRT-PCR results showed that the expression of AL390755.1 and FLJ16779 was significantly different in glioma and normal cells.
Conclusion: We constructed a novel prognostic signature for glioma patients based on glycolysis-related lncRNAs. Besides, this project had provided a theoretical basis for the exploration of new ICI therapeutic targets for glioma patients.
{"title":"Development and validation of a two glycolysis-related LncRNAs prognostic signature for glioma and in vitro analyses.","authors":"Xiaoping Xu, Shijun Zhou, Yuchuan Tao, Zhenglan Zhong, Yongxiang Shao, Yong Yi","doi":"10.1186/s13008-023-00092-9","DOIUrl":"https://doi.org/10.1186/s13008-023-00092-9","url":null,"abstract":"<p><strong>Background: </strong>Mounting evidence suggests that there is a complex regulatory relationship between long non-coding RNAs (lncRNAs) and the glycolytic process during glioma development. This study aimed to investigate the prognostic role of glycolysis-related lncRNAs in glioma and their impact on the tumor microenvironment.</p><p><strong>Methods: </strong>This study utilized glioma transcriptome data from public databases to construct, evaluate, and validate a prognostic signature based on differentially expressed (DE)-glycolysis-associated lncRNAs through consensus clustering, DE-lncRNA analysis, Cox regression analysis, and receiver operating characteristic (ROC) curves. The clusterProfiler package was applied to reveal the potential functions of the risk score-related differentially expressed genes (DEGs). ESTIMATE and Gene Set Enrichment Analysis (GSEA) were utilized to evaluate the relationship between prognostic signature and the immune landscape of gliomas. Furthermore, the sensitivity of patients to immune checkpoint inhibitor (ICI) treatment based on the prognostic feature was predicted with the assistance of the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Finally, qRT-PCR was used to verify the difference in the expression of the lncRNAs in glioma cells and normal cell.</p><p><strong>Results: </strong>By consensus clustering based on glycolytic gene expression profiles, glioma patients were divided into two clusters with significantly different overall survival (OS), from which 2 DE-lncRNAs, AL390755.1 and FLJ16779, were obtained. Subsequently, Cox regression analysis demonstrated that all of these lncRNAs were associated with OS in glioma patients and constructed a prognostic signature with a robust prognostic predictive efficacy. Functional enrichment analysis revealed that DEGs associated with risk scores were involved in immune responses, neurons, neurotransmitters, synapses and other terms. Immune landscape analysis suggested an extreme enrichment of immune cells in the high-risk group. Moreover, patients in the low-risk group were likely to benefit more from ICI treatment. qRT-PCR results showed that the expression of AL390755.1 and FLJ16779 was significantly different in glioma and normal cells.</p><p><strong>Conclusion: </strong>We constructed a novel prognostic signature for glioma patients based on glycolysis-related lncRNAs. Besides, this project had provided a theoretical basis for the exploration of new ICI therapeutic targets for glioma patients.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"10"},"PeriodicalIF":2.3,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290322/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9711426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Nucleosome-localized sirtuin 4 (SIRT4) was found to function as an oncogene and tumor suppressor gene in different tumors. However, the clinical significance of SIRT4 in bladder urothelial carcinoma (BLCA) has not been assessed, nor has the function of SIRT4 in BLCA been analyzed.
Methods: In this study, we assessed the levels of SIRT4 protein in BLCA tissues and its association with clinicopathological parameters and overall survival time of BLCA patients by immunohistochemical staining of tissue microarrays containing 59 BLCA patients. Then, we constructed BLCA cell lines (T24) with overexpression or interference of SIRT4 by lentiviral infection. The effects of SIRT4 on the proliferation, migration and invasive ability of T24 cells were investigated using cell counting kit-8 (CCK-8) assays, wound healing assays, and migration and invasion assays. Moreover, we also investigated the effect of SIRT4 on the cell cycle and apoptosis of T24 cells. Mechanistically, we explored the relationship between SIRT4 and autophagy and its role in the inhibition of BLCA.
Results: We found by immunohistochemistry that SIRT4 protein levels were reduced in BLCA and that lower SIRT4 levels were associated with larger tumor volumes, later T-staging and later AJCC staging in BLCA patients and were an independent prognostic factor in BLCA patients. Overexpression of SIRT4 significantly inhibited the proliferative viability, scratch healing capacity, migratory capacity, and invasive capacity of T24 cells, while interference with SIRT4 had the opposite effect. Moreover, overexpression of SIRT4 significantly inhibited the cell cycle and increased the apoptosis rate of T24 cells. Mechanistically, SIRT4 inhibits BLCA growth by suppressing autophagic flow.
Conclusions: Our study suggests that SIRT4 is an independent prognostic factor for BLCA and that SIRT4 plays a tumor suppressor role in BLCA. This suggests a potential target for SIRT4 in the diagnosis and treatment of BLCA.
{"title":"SIRT4 is an independent prognostic factor in bladder cancer and inhibits bladder cancer growth by suppressing autophagy.","authors":"Jie Yin, Guohao Cai, Huaiwen Wang, Weijia Chen, Shan Liu, Guoyu Huang","doi":"10.1186/s13008-023-00091-w","DOIUrl":"https://doi.org/10.1186/s13008-023-00091-w","url":null,"abstract":"<p><strong>Background: </strong>Nucleosome-localized sirtuin 4 (SIRT4) was found to function as an oncogene and tumor suppressor gene in different tumors. However, the clinical significance of SIRT4 in bladder urothelial carcinoma (BLCA) has not been assessed, nor has the function of SIRT4 in BLCA been analyzed.</p><p><strong>Methods: </strong>In this study, we assessed the levels of SIRT4 protein in BLCA tissues and its association with clinicopathological parameters and overall survival time of BLCA patients by immunohistochemical staining of tissue microarrays containing 59 BLCA patients. Then, we constructed BLCA cell lines (T24) with overexpression or interference of SIRT4 by lentiviral infection. The effects of SIRT4 on the proliferation, migration and invasive ability of T24 cells were investigated using cell counting kit-8 (CCK-8) assays, wound healing assays, and migration and invasion assays. Moreover, we also investigated the effect of SIRT4 on the cell cycle and apoptosis of T24 cells. Mechanistically, we explored the relationship between SIRT4 and autophagy and its role in the inhibition of BLCA.</p><p><strong>Results: </strong>We found by immunohistochemistry that SIRT4 protein levels were reduced in BLCA and that lower SIRT4 levels were associated with larger tumor volumes, later T-staging and later AJCC staging in BLCA patients and were an independent prognostic factor in BLCA patients. Overexpression of SIRT4 significantly inhibited the proliferative viability, scratch healing capacity, migratory capacity, and invasive capacity of T24 cells, while interference with SIRT4 had the opposite effect. Moreover, overexpression of SIRT4 significantly inhibited the cell cycle and increased the apoptosis rate of T24 cells. Mechanistically, SIRT4 inhibits BLCA growth by suppressing autophagic flow.</p><p><strong>Conclusions: </strong>Our study suggests that SIRT4 is an independent prognostic factor for BLCA and that SIRT4 plays a tumor suppressor role in BLCA. This suggests a potential target for SIRT4 in the diagnosis and treatment of BLCA.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"9"},"PeriodicalIF":2.3,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9673073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mammalian sterile 20-like (Ste20-like) protein kinase 3 (MST3) or serine/threonine-protein kinase 24 (STK24) is a serine/threonine protein kinase that belongs to the mammalian STE20-like protein kinase family. MST3 is a pleiotropic protein that plays a critical role in regulating a variety of events, including apoptosis, immune response, metabolism, hypertension, tumor progression, and development of the central nervous system. The MST3-mediated regulation is intricately related to protein activity, post-translational modification, and subcellular location. Here, we review the recent progress on the regulatory mechanisms against MST3 and its-mediated control of disease progression.
{"title":"Molecular mechanisms involved in regulating protein activity and biological function of MST3.","authors":"Jing Qiu, Junzhi Xiong, Lu Jiang, Xinmin Wang, Kebin Zhang, Hua Yu","doi":"10.1186/s13008-023-00090-x","DOIUrl":"https://doi.org/10.1186/s13008-023-00090-x","url":null,"abstract":"<p><p>Mammalian sterile 20-like (Ste20-like) protein kinase 3 (MST3) or serine/threonine-protein kinase 24 (STK24) is a serine/threonine protein kinase that belongs to the mammalian STE20-like protein kinase family. MST3 is a pleiotropic protein that plays a critical role in regulating a variety of events, including apoptosis, immune response, metabolism, hypertension, tumor progression, and development of the central nervous system. The MST3-mediated regulation is intricately related to protein activity, post-translational modification, and subcellular location. Here, we review the recent progress on the regulatory mechanisms against MST3 and its-mediated control of disease progression.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"8"},"PeriodicalIF":2.3,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9495952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-16DOI: 10.1186/s13008-023-00089-4
Jiaqi Liu, Linna Kong, Wenqing Bian, Xiaona Lin, Feifei Wei, Jun Chu
Background: circular RNAs (circRNAs) have been considered novel biomarker candidates for human cancers, such as triple-negative breast cancer (TNBC). circ_0001006 was identified as a differentially expressed circRNA in metastatic breast cancer, but its significance and function in TNBC were unclear. The significance of circ_0001006 in TNBC was assessed and exploring its potential molecular mechanism to provide a therapeutic target for TNBC.
Results: circ_0001006 showed significant upregulation in TNBC and close association with patients' histological grade, Ki67 level, and TNM stage. Upregulated circ_0001006 could predict a worse prognosis and high risk of TNBC patients. In TNBC cells, silencing circ_0001006 suppressed cell proliferation, migration, and invasion. In mechanism, circ_0001006 could negatively regulate miR-424-5p, which mediated the inhibition of cellular processes by circ_0001006 knockdown.
Conclusions: Upregulated circ_0001006 in TNBC served as a poor prognosis predictor and tumor promoter via negatively regulating miR-424-5p.
{"title":"circRNA_0001006 predicts prognosis and regulates cellular processes of triple-negative breast cancer via miR-424-5p.","authors":"Jiaqi Liu, Linna Kong, Wenqing Bian, Xiaona Lin, Feifei Wei, Jun Chu","doi":"10.1186/s13008-023-00089-4","DOIUrl":"https://doi.org/10.1186/s13008-023-00089-4","url":null,"abstract":"<p><strong>Background: </strong>circular RNAs (circRNAs) have been considered novel biomarker candidates for human cancers, such as triple-negative breast cancer (TNBC). circ_0001006 was identified as a differentially expressed circRNA in metastatic breast cancer, but its significance and function in TNBC were unclear. The significance of circ_0001006 in TNBC was assessed and exploring its potential molecular mechanism to provide a therapeutic target for TNBC.</p><p><strong>Results: </strong>circ_0001006 showed significant upregulation in TNBC and close association with patients' histological grade, Ki67 level, and TNM stage. Upregulated circ_0001006 could predict a worse prognosis and high risk of TNBC patients. In TNBC cells, silencing circ_0001006 suppressed cell proliferation, migration, and invasion. In mechanism, circ_0001006 could negatively regulate miR-424-5p, which mediated the inhibition of cellular processes by circ_0001006 knockdown.</p><p><strong>Conclusions: </strong>Upregulated circ_0001006 in TNBC served as a poor prognosis predictor and tumor promoter via negatively regulating miR-424-5p.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"7"},"PeriodicalIF":2.3,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9491242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-30DOI: 10.1186/s13008-023-00088-5
Shirley Jusino, Yainyrette Rivera-Rivera, Camille Chardón-Colón, Patricia C Rodríguez-Rodríguez, Janeishly Román-González, Valeria S Juliá-Hernández, Angel Isidro, Qianxing Mo, Harold I Saavedra
Background: Triple-negative breast cancer (TBNC) is an aggressive breast cancer subtype with a poor prognosis. Shugoshin-1 (SGO1) protects chromatids from early separation. Previous studies from our group have demonstrated that transient SGO1 downregulation suppresses early stages of metastasis (the epithelial-to-mesenchymal transition, or EMT, cell invasion, and cell migration) in TNBC cells. Thus, the inhibition of SGO1 activity may represent a potential therapeutic intervention against cancers that progress to metastasis. Therefore, we aimed to investigate the effects of sustained shRNA-mediated SGO1 downregulation on tumor growth and metastasis in TBNC. To that end, female NOD-SCID Gamma (NSG) mice were injected with 2.5 × 106 shRNA Control (n = 10) or shRNA SGO1 (n = 10) MDA-MB-231 cells. After eight weeks, the number of mice with metastasis to the lymph nodes was calculated. Primary and metastatic tumors, as well as lung and liver tissue, were harvested, measured, sectioned, and stained with hematoxylin and eosin (H&E) stain.
Results: Tumor growth and metastasis to the lymph nodes and lungs were significantly reduced in the shRNA SGO1-treated mice group, while metastasis to the liver tends to be lower in cells with downregulated SGO1, but it did not reach statistical significance. Furthermore, sustained SGO1 downregulation significantly reduced cell proliferation, cell migration, and invasion which correlated with lower levels of Snail, Slug, MMP2, MMP3, and MMP9.
Conclusion: The supression of SGO1 activity in TNBC harboring dysregulated expression of SGO1 may be a potential target for preventing breast cancer growth and metastasis.
{"title":"Sustained Shugoshin 1 downregulation reduces tumor growth and metastasis in a mouse xenograft tumor model of triple-negative breast cancer.","authors":"Shirley Jusino, Yainyrette Rivera-Rivera, Camille Chardón-Colón, Patricia C Rodríguez-Rodríguez, Janeishly Román-González, Valeria S Juliá-Hernández, Angel Isidro, Qianxing Mo, Harold I Saavedra","doi":"10.1186/s13008-023-00088-5","DOIUrl":"https://doi.org/10.1186/s13008-023-00088-5","url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TBNC) is an aggressive breast cancer subtype with a poor prognosis. Shugoshin-1 (SGO1) protects chromatids from early separation. Previous studies from our group have demonstrated that transient SGO1 downregulation suppresses early stages of metastasis (the epithelial-to-mesenchymal transition, or EMT, cell invasion, and cell migration) in TNBC cells. Thus, the inhibition of SGO1 activity may represent a potential therapeutic intervention against cancers that progress to metastasis. Therefore, we aimed to investigate the effects of sustained shRNA-mediated SGO1 downregulation on tumor growth and metastasis in TBNC. To that end, female NOD-SCID Gamma (NSG) mice were injected with 2.5 × 10<sup>6</sup> shRNA Control (n = 10) or shRNA SGO1 (n = 10) MDA-MB-231 cells. After eight weeks, the number of mice with metastasis to the lymph nodes was calculated. Primary and metastatic tumors, as well as lung and liver tissue, were harvested, measured, sectioned, and stained with hematoxylin and eosin (H&E) stain.</p><p><strong>Results: </strong>Tumor growth and metastasis to the lymph nodes and lungs were significantly reduced in the shRNA SGO1-treated mice group, while metastasis to the liver tends to be lower in cells with downregulated SGO1, but it did not reach statistical significance. Furthermore, sustained SGO1 downregulation significantly reduced cell proliferation, cell migration, and invasion which correlated with lower levels of Snail, Slug, MMP2, MMP3, and MMP9.</p><p><strong>Conclusion: </strong>The supression of SGO1 activity in TNBC harboring dysregulated expression of SGO1 may be a potential target for preventing breast cancer growth and metastasis.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"6"},"PeriodicalIF":2.3,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9752970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-09DOI: 10.1186/s13008-023-00087-6
Chandra Agung Purnama, Anna Meiliana, Melisa Intan Barliana, Keri Lestari
Cell death is a basic physiological process that occurs in all living organisms. A few key players in these mechanisms, as well as various forms of cell death programming, have been identified. Apoptotic cell phagocytosis, also known as apoptotic cell clearance, is a well-established process regulated by a number of molecular components, including 'find-me', 'eat-me' and engulfment signals. Efferocytosis, or the rapid phagocytic clearance of cell death, is a critical mechanism for tissue homeostasis. Despite having similar mechanism to phagocytic clearance of infections, efferocytosis differs from phagocytosis in that it induces a tissue-healing response and is immunologically inert. However, as field of cell death has rapid expanded, much attention has recently been drawn to the efferocytosis of additional necrotic-like cell types, such as necroptosis and pyroptosis. Unlike apoptosis, this method of cell suicide allows the release of immunogenic cellular material and causes inflammation. Regardless of the cause of cell death, the clearance of dead cells is a necessary function to avoid uncontrolled synthesis of pro-inflammatory molecules and inflammatory disorder. We compare and contrast apoptosis, necroptosis and pyroptosis, as well as the various molecular mechanisms of efferocytosis in each type of cell death, and investigate how these may have functional effects on different intracellular organelles and signalling networks. Understanding how efferocytic cells react to necroptotic and pyroptotic cell uptake can help us understand how to modulate these cell death processes for therapeutic purposes.
{"title":"Update of cellular responses to the efferocytosis of necroptosis and pyroptosis.","authors":"Chandra Agung Purnama, Anna Meiliana, Melisa Intan Barliana, Keri Lestari","doi":"10.1186/s13008-023-00087-6","DOIUrl":"https://doi.org/10.1186/s13008-023-00087-6","url":null,"abstract":"<p><p>Cell death is a basic physiological process that occurs in all living organisms. A few key players in these mechanisms, as well as various forms of cell death programming, have been identified. Apoptotic cell phagocytosis, also known as apoptotic cell clearance, is a well-established process regulated by a number of molecular components, including 'find-me', 'eat-me' and engulfment signals. Efferocytosis, or the rapid phagocytic clearance of cell death, is a critical mechanism for tissue homeostasis. Despite having similar mechanism to phagocytic clearance of infections, efferocytosis differs from phagocytosis in that it induces a tissue-healing response and is immunologically inert. However, as field of cell death has rapid expanded, much attention has recently been drawn to the efferocytosis of additional necrotic-like cell types, such as necroptosis and pyroptosis. Unlike apoptosis, this method of cell suicide allows the release of immunogenic cellular material and causes inflammation. Regardless of the cause of cell death, the clearance of dead cells is a necessary function to avoid uncontrolled synthesis of pro-inflammatory molecules and inflammatory disorder. We compare and contrast apoptosis, necroptosis and pyroptosis, as well as the various molecular mechanisms of efferocytosis in each type of cell death, and investigate how these may have functional effects on different intracellular organelles and signalling networks. Understanding how efferocytic cells react to necroptotic and pyroptotic cell uptake can help us understand how to modulate these cell death processes for therapeutic purposes.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"5"},"PeriodicalIF":2.3,"publicationDate":"2023-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9282352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.1186/s13008-023-00083-w
Mengxi Tang, Tao Xiong
Objective: The primary purpose was to unveil how the miR-146b-5p/SEMA3G axis works in clear cell renal cell carcinoma (ccRCC).
Methods: ccRCC dataset was acquired from TCGA database, and target miRNA to be studied was further analyzed using survival analysis. We performed miRNA target gene prediction through the database, and those predicted miRNAs were intersected with differential mRNAs. After calculating the correlation between miRNAs and mRNAs, we completed the GSEA pathway enrichment analysis on mRNAs. MiRNA and mRNA expression was examined by qRT-PCR. Western blot was introduced to detect SEMA3G, MMP2, MMP9 expression, epithelial-mesenchymal transition (EMT) marker proteins, and Notch/TGF-β signaling pathway-related proteins. Targeted relationship between miRNA and mRNA was validated using a dual-luciferase test. Transwell assay was employed to assess cell migration and invasion. Wound healing assay was adopted for evaluation of migration ability. The effect of different treatments on cell morphology was observed by a microscope.
Results: In ccRCC cells, miR-146b-5p was remarkably overexpressed, yet SEMA3G was markedly less expressed. MiR-146b-5p was capable of stimulating ccRCC cell invasion, migration and EMT, and promoting the transformation of ccRCC cell morphology to mesenchymal state. SEMA3G was targeted and inhibited via miR-146b-5p. MiR-146b-5p facilitated ccRCC cell migration, invasion, morphology transforming to mesenchymal state and EMT process by targeting SEMA3G and regulating Notch and TGF-β signaling pathways.
Conclusion: MiR-146b-5p regulated Notch and TGF-β signaling pathway by suppressing SEMA3G expression, thus promoting the growth of ccRCC cells, which provides a possible target for ccRCC therapy and prognosis prediction.
{"title":"MiR-146b-5p/SEMA3G regulates epithelial-mesenchymal transition in clear cell renal cell carcinoma.","authors":"Mengxi Tang, Tao Xiong","doi":"10.1186/s13008-023-00083-w","DOIUrl":"https://doi.org/10.1186/s13008-023-00083-w","url":null,"abstract":"<p><strong>Objective: </strong>The primary purpose was to unveil how the miR-146b-5p/SEMA3G axis works in clear cell renal cell carcinoma (ccRCC).</p><p><strong>Methods: </strong>ccRCC dataset was acquired from TCGA database, and target miRNA to be studied was further analyzed using survival analysis. We performed miRNA target gene prediction through the database, and those predicted miRNAs were intersected with differential mRNAs. After calculating the correlation between miRNAs and mRNAs, we completed the GSEA pathway enrichment analysis on mRNAs. MiRNA and mRNA expression was examined by qRT-PCR. Western blot was introduced to detect SEMA3G, MMP2, MMP9 expression, epithelial-mesenchymal transition (EMT) marker proteins, and Notch/TGF-β signaling pathway-related proteins. Targeted relationship between miRNA and mRNA was validated using a dual-luciferase test. Transwell assay was employed to assess cell migration and invasion. Wound healing assay was adopted for evaluation of migration ability. The effect of different treatments on cell morphology was observed by a microscope.</p><p><strong>Results: </strong>In ccRCC cells, miR-146b-5p was remarkably overexpressed, yet SEMA3G was markedly less expressed. MiR-146b-5p was capable of stimulating ccRCC cell invasion, migration and EMT, and promoting the transformation of ccRCC cell morphology to mesenchymal state. SEMA3G was targeted and inhibited via miR-146b-5p. MiR-146b-5p facilitated ccRCC cell migration, invasion, morphology transforming to mesenchymal state and EMT process by targeting SEMA3G and regulating Notch and TGF-β signaling pathways.</p><p><strong>Conclusion: </strong>MiR-146b-5p regulated Notch and TGF-β signaling pathway by suppressing SEMA3G expression, thus promoting the growth of ccRCC cells, which provides a possible target for ccRCC therapy and prognosis prediction.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"4"},"PeriodicalIF":2.3,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9136733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}