首页 > 最新文献

Extremes最新文献

英文 中文
Random networks with heterogeneous reciprocity 具有异构互易的随机网络
3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-09-25 DOI: 10.1007/s10687-023-00478-6
Tiandong Wang, Sidney Resnick
{"title":"Random networks with heterogeneous reciprocity","authors":"Tiandong Wang, Sidney Resnick","doi":"10.1007/s10687-023-00478-6","DOIUrl":"https://doi.org/10.1007/s10687-023-00478-6","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135817312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to extreme value index estimation 异方差时间序列序列尾经验过程的加权弱收敛性及其在极值指数估计中的应用
IF 1.3 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-08-24 DOI: 10.1007/s10687-023-00476-8
Tobias Jennessen, Axel Bücher
{"title":"Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to extreme value index estimation","authors":"Tobias Jennessen, Axel Bücher","doi":"10.1007/s10687-023-00476-8","DOIUrl":"https://doi.org/10.1007/s10687-023-00476-8","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43717133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remembering Ross Leadbetter: some personal recollections 怀念罗斯·利德贝特:一些个人回忆
IF 1.3 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-04-10 DOI: 10.1007/s10687-023-00464-y
T. Hsing, H. Rootzén
{"title":"Remembering Ross Leadbetter: some personal recollections","authors":"T. Hsing, H. Rootzén","doi":"10.1007/s10687-023-00464-y","DOIUrl":"https://doi.org/10.1007/s10687-023-00464-y","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"26 1","pages":"399 - 412"},"PeriodicalIF":1.3,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47386584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A weighted composite log-likelihood approach to parametric estimation of the extreme quantiles of a distribution 分布极值分位数参数估计的加权复合对数似然方法
IF 1.3 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-03-29 DOI: 10.1007/s10687-023-00466-w
M. Stein
{"title":"A weighted composite log-likelihood approach to parametric estimation of the extreme quantiles of a distribution","authors":"M. Stein","doi":"10.1007/s10687-023-00466-w","DOIUrl":"https://doi.org/10.1007/s10687-023-00466-w","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"26 1","pages":"469 - 507"},"PeriodicalIF":1.3,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45244869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editorial: EVA 2021 data challenge on spatiotemporal prediction of wildfire extremes in the USA 社论:EVA 2021美国野火极端时空预测数据挑战
IF 1.3 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-03-27 DOI: 10.1007/s10687-023-00465-x
T. Opitz
{"title":"Editorial: EVA 2021 data challenge on spatiotemporal prediction of wildfire extremes in the USA","authors":"T. Opitz","doi":"10.1007/s10687-023-00465-x","DOIUrl":"https://doi.org/10.1007/s10687-023-00465-x","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"26 1","pages":"241 - 250"},"PeriodicalIF":1.3,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49573895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of wildfires and their extremes via spatial quantile autoregressive model 利用空间分位数自回归模型分析野火及其极端情况
IF 1.3 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-02-13 DOI: 10.1007/s10687-023-00462-0
Jongmin Lee, Joonpyo Kim, Joonho Shin, Seongjin Cho, Seongmin Kim, Kyoungjae Lee
{"title":"Analysis of wildfires and their extremes via spatial quantile autoregressive model","authors":"Jongmin Lee, Joonpyo Kim, Joonho Shin, Seongjin Cho, Seongmin Kim, Kyoungjae Lee","doi":"10.1007/s10687-023-00462-0","DOIUrl":"https://doi.org/10.1007/s10687-023-00462-0","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"26 1","pages":"353-379"},"PeriodicalIF":1.3,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45465693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Gradient boosting with extreme-value theory for wildfire prediction. 梯度增强极值理论用于野火预测。
IF 1.3 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1007/s10687-022-00454-6
Jonathan Koh

This paper details the approach of the team Kohrrelation in the 2021 Extreme Value Analysis data challenge, dealing with the prediction of wildfire counts and sizes over the contiguous US. Our approach uses ideas from extreme-value theory in a machine learning context with theoretically justified loss functions for gradient boosting. We devise a spatial cross-validation scheme and show that in our setting it provides a better proxy for test set performance than naive cross-validation. The predictions are benchmarked against boosting approaches with different loss functions, and perform competitively in terms of the score criterion, finally placing second in the competition ranking.

本文详细介绍了Kohrrelation团队在2021年极值分析数据挑战中的方法,该方法处理了美国连续野火数量和规模的预测。我们的方法在机器学习环境中使用了极值理论的思想,并在理论上证明了梯度增强的损失函数。我们设计了一个空间交叉验证方案,并表明在我们的设置中,它比单纯交叉验证提供了更好的测试集性能代理。预测与具有不同损失函数的增强方法进行基准测试,并在得分标准方面表现出竞争力,最终在竞争排名中排名第二。
{"title":"Gradient boosting with extreme-value theory for wildfire prediction.","authors":"Jonathan Koh","doi":"10.1007/s10687-022-00454-6","DOIUrl":"https://doi.org/10.1007/s10687-022-00454-6","url":null,"abstract":"<p><p>This paper details the approach of the team <i>Kohrrelation</i> in the 2021 Extreme Value Analysis data challenge, dealing with the prediction of wildfire counts and sizes over the contiguous US. Our approach uses ideas from extreme-value theory in a machine learning context with theoretically justified loss functions for gradient boosting. We devise a spatial cross-validation scheme and show that in our setting it provides a better proxy for test set performance than naive cross-validation. The predictions are benchmarked against boosting approaches with different loss functions, and perform competitively in terms of the score criterion, finally placing second in the competition ranking.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"26 2","pages":"273-299"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9757352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Causal modelling of heavy-tailed variables and confounders with application to river flow. 重尾变量和混杂因素的因果模型及其在河流流量中的应用。
IF 1.3 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 Epub Date: 2022-12-17 DOI: 10.1007/s10687-022-00456-4
Olivier C Pasche, Valérie Chavez-Demoulin, Anthony C Davison

Confounding variables are a recurrent challenge for causal discovery and inference. In many situations, complex causal mechanisms only manifest themselves in extreme events, or take simpler forms in the extremes. Stimulated by data on extreme river flows and precipitation, we introduce a new causal discovery methodology for heavy-tailed variables that allows the effect of a known potential confounder to be almost entirely removed when the variables have comparable tails, and also decreases it sufficiently to enable correct causal inference when the confounder has a heavier tail. We also introduce a new parametric estimator for the existing causal tail coefficient and a permutation test. Simulations show that the methods work well and the ideas are applied to the motivating dataset.

Supplementary information: The online version contains supplementary material available at 10.1007/s10687-022-00456-4.

混淆变量是因果发现和推理的一个经常性挑战。在许多情况下,复杂的因果机制只在极端事件中表现出来,或者在极端情况下采取更简单的形式。在极端河流流量和降水数据的刺激下,我们为重尾变量引入了一种新的因果发现方法,当变量具有可比较的尾部时,该方法可以几乎完全消除已知潜在混杂因素的影响,并在混杂因素具有较重尾部时,将其充分降低,以实现正确的因果推断。我们还为现有的因果尾系数引入了一个新的参数估计器和一个置换检验。仿真结果表明,该方法效果良好,并将其思想应用于激励数据集。补充信息:在线版本包含补充材料,请访问10.1007/s10687-022-00456-4。
{"title":"Causal modelling of heavy-tailed variables and confounders with application to river flow.","authors":"Olivier C Pasche,&nbsp;Valérie Chavez-Demoulin,&nbsp;Anthony C Davison","doi":"10.1007/s10687-022-00456-4","DOIUrl":"10.1007/s10687-022-00456-4","url":null,"abstract":"<p><p>Confounding variables are a recurrent challenge for causal discovery and inference. In many situations, complex causal mechanisms only manifest themselves in extreme events, or take simpler forms in the extremes. Stimulated by data on extreme river flows and precipitation, we introduce a new causal discovery methodology for heavy-tailed variables that allows the effect of a known potential confounder to be almost entirely removed when the variables have comparable tails, and also decreases it sufficiently to enable correct causal inference when the confounder has a heavier tail. We also introduce a new parametric estimator for the existing causal tail coefficient and a permutation test. Simulations show that the methods work well and the ideas are applied to the motivating dataset.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10687-022-00456-4.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"26 3","pages":"573-594"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10372901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Asymptotic behavior of an intrinsic rank-based estimator of the Pickands dependence function constructed from B-splines. 由b样条构造的Pickands依赖函数的内禀秩估计量的渐近性。
IF 1.3 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1007/s10687-022-00451-9
Axel Bücher, Christian Genest, Richard A Lockhart, Johanna G Nešlehová

A bivariate extreme-value copula is characterized by its Pickands dependence function, i.e., a convex function defined on the unit interval satisfying boundary conditions. This paper investigates the large-sample behavior of a nonparametric estimator of this function due to Cormier et al. (Extremes 17:633-659, 2014). These authors showed how to construct this estimator through constrained quadratic median B-spline smoothing of pairs of pseudo-observations derived from a random sample. Their estimator is shown here to exist whatever the order m 3 of the B-spline basis, and its consistency is established under minimal conditions. The large-sample distribution of this estimator is also determined under the additional assumption that the underlying Pickands dependence function is a B-spline of given order with a known set of knots.

二元极值联结用其Pickands依赖函数,即定义在满足边界条件的单位区间上的凸函数来表征。由于Cormier等人(Extremes 17:633-659, 2014),本文研究了该函数的非参数估计量的大样本行为。这些作者展示了如何通过对来自随机样本的伪观测值对的约束二次中值b样条平滑来构造这个估计量。证明了它们的估计量在b样条基的m≥3阶时存在,并在最小条件下证明了其相合性。该估计量的大样本分布也在另一个假设下确定,即潜在的Pickands依赖函数是具有已知节集的给定阶数的b样条。
{"title":"Asymptotic behavior of an intrinsic rank-based estimator of the Pickands dependence function constructed from B-splines.","authors":"Axel Bücher,&nbsp;Christian Genest,&nbsp;Richard A Lockhart,&nbsp;Johanna G Nešlehová","doi":"10.1007/s10687-022-00451-9","DOIUrl":"https://doi.org/10.1007/s10687-022-00451-9","url":null,"abstract":"<p><p>A bivariate extreme-value copula is characterized by its Pickands dependence function, i.e., a convex function defined on the unit interval satisfying boundary conditions. This paper investigates the large-sample behavior of a nonparametric estimator of this function due to Cormier et al. (Extremes 17:633-659, 2014). These authors showed how to construct this estimator through constrained quadratic median B-spline smoothing of pairs of pseudo-observations derived from a random sample. Their estimator is shown here to exist whatever the order <math><mrow><mi>m</mi> <mo>≥</mo> <mn>3</mn></mrow> </math> of the B-spline basis, and its consistency is established under minimal conditions. The large-sample distribution of this estimator is also determined under the additional assumption that the underlying Pickands dependence function is a B-spline of given order with a known set of knots.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"26 1","pages":"101-138"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10669374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Simple random forest classification algorithms for predicting occurrences and sizes of wildfires 用于预测野火发生和规模的简单随机森林分类算法
IF 1.3 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2022-12-27 DOI: 10.1007/s10687-022-00458-2
D. Makowski
{"title":"Simple random forest classification algorithms for predicting occurrences and sizes of wildfires","authors":"D. Makowski","doi":"10.1007/s10687-022-00458-2","DOIUrl":"https://doi.org/10.1007/s10687-022-00458-2","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"26 1","pages":"331-338"},"PeriodicalIF":1.3,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48861596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Extremes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1