首页 > 最新文献

Extremes最新文献

英文 中文
Joint modeling and prediction of massive spatio-temporal wildfire count and burnt area data with the INLA-SPDE approach 基于INLA-SPDE方法的大规模野火数量和燃烧面积的联合建模与预测
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2022-02-14 DOI: 10.1007/s10687-023-00463-z
Zhongwei Zhang, E. Krainski, P. Zhong, H. Rue, Raphael Huser
{"title":"Joint modeling and prediction of massive spatio-temporal wildfire count and burnt area data with the INLA-SPDE approach","authors":"Zhongwei Zhang, E. Krainski, P. Zhong, H. Rue, Raphael Huser","doi":"10.1007/s10687-023-00463-z","DOIUrl":"https://doi.org/10.1007/s10687-023-00463-z","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42513152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Reconstruction of incomplete wildfire data using deep generative models 使用深度生成模型重建不完整的野火数据
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2022-01-16 DOI: 10.1007/s10687-022-00459-1
T. Ivek, Domagoj Vlah
{"title":"Reconstruction of incomplete wildfire data using deep generative models","authors":"T. Ivek, Domagoj Vlah","doi":"10.1007/s10687-022-00459-1","DOIUrl":"https://doi.org/10.1007/s10687-022-00459-1","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49534225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Regression-type analysis for multivariate extreme values. 多元极值的回归型分析。
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2022-01-01 Epub Date: 2022-10-21 DOI: 10.1007/s10687-022-00446-6
Miguel de Carvalho, Alina Kumukova, Gonçalo Dos Reis

This paper devises a regression-type model for the situation where both the response and covariates are extreme. The proposed approach is designed for the setting where the response and covariates are modeled as multivariate extreme values, and thus contrarily to standard regression methods it takes into account the key fact that the limiting distribution of suitably standardized componentwise maxima is an extreme value copula. An important target in the proposed framework is the regression manifold, which consists of a family of regression lines obeying the latter asymptotic result. To learn about the proposed model from data, we employ a Bernstein polynomial prior on the space of angular densities which leads to an induced prior on the space of regression manifolds. Numerical studies suggest a good performance of the proposed methods, and a finance real-data illustration reveals interesting aspects on the conditional risk of extreme losses in two leading international stock markets.

Supplementary information: The online version contains supplementary material available at 10.1007/s10687-022-00446-6.

本文针对响应和协变量均为极值的情况,设计了一个回归型模型。所提出的方法是为响应和协变量作为多元极值建模的设置而设计的,因此与标准回归方法相反,它考虑了适当标准化的组件极大值的极限分布是极值联结的关键事实。该框架中的一个重要目标是回归流形,它由符合后一个渐近结果的一组回归线组成。为了从数据中了解所提出的模型,我们在角密度空间上使用Bernstein多项式先验,从而导致回归流形空间上的诱导先验。数值研究表明,所提出的方法具有良好的性能,金融实际数据插图揭示了两个主要国际股票市场极端损失的条件风险的有趣方面。补充信息:在线版本包含补充资料,提供地址为10.1007/s10687-022-00446-6。
{"title":"Regression-type analysis for multivariate extreme values.","authors":"Miguel de Carvalho,&nbsp;Alina Kumukova,&nbsp;Gonçalo Dos Reis","doi":"10.1007/s10687-022-00446-6","DOIUrl":"https://doi.org/10.1007/s10687-022-00446-6","url":null,"abstract":"<p><p>This paper devises a regression-type model for the situation where both the response and covariates are extreme. The proposed approach is designed for the setting where the response and covariates are modeled as multivariate extreme values, and thus contrarily to standard regression methods it takes into account the key fact that the limiting distribution of suitably standardized componentwise maxima is an extreme value copula. An important target in the proposed framework is the regression manifold, which consists of a family of regression lines obeying the latter asymptotic result. To learn about the proposed model from data, we employ a Bernstein polynomial prior on the space of angular densities which leads to an induced prior on the space of regression manifolds. Numerical studies suggest a good performance of the proposed methods, and a finance real-data illustration reveals interesting aspects on the conditional risk of extreme losses in two leading international stock markets.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10687-022-00446-6.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589765/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40458093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Heavy-tailed phase-type distributions: a unified approach. 重尾相型分布:统一的方法。
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2022-01-01 Epub Date: 2022-02-16 DOI: 10.1007/s10687-022-00436-8
Martin Bladt, Jorge Yslas

A phase-type distribution is the distribution of the time until absorption in a finite state-space time-homogeneous Markov jump process, with one absorbing state and the rest being transient. These distributions are mathematically tractable and conceptually attractive to model physical phenomena due to their interpretation in terms of a hidden Markov structure. Three recent extensions of regular phase-type distributions give rise to models which allow for heavy tails: discrete- or continuous-scaling; fractional-time semi-Markov extensions; and inhomogeneous time-change of the underlying Markov process. In this paper, we present a unifying theory for heavy-tailed phase-type distributions for which all three approaches are particular cases. Our main objective is to provide useful models for heavy-tailed phase-type distributions, but any other tail behavior is also captured by our specification. We provide relevant new examples and also show how existing approaches are naturally embedded. Subsequently, two multivariate extensions are presented, inspired by the univariate construction which can be considered as a matrix version of a frailty model. We provide fully explicit EM-algorithms for all models and illustrate them using synthetic and real-life data.

相型分布是有限状态-空间-时间齐次马尔可夫跳变过程中吸收前的时间分布,该过程只有一个吸收态,其余的都是暂态。这些分布在数学上易于处理,并且由于它们在隐马尔可夫结构方面的解释,在概念上对建模物理现象具有吸引力。最近对规则相型分布的三个扩展产生了允许重尾的模型:离散或连续缩放;分数时间半马尔可夫扩展;以及底层马尔可夫过程的非齐次时变。在本文中,我们提出了一个统一理论的重尾相型分布,所有三种方法都是特殊情况。我们的主要目标是为重尾相位型分布提供有用的模型,但是我们的规范也捕获了任何其他的尾行为。我们提供了相关的新示例,并展示了如何自然嵌入现有方法。随后,在单变量构造的启发下,提出了两个多变量扩展,这两个扩展可以看作是脆弱模型的矩阵版本。我们为所有模型提供了完全显式的em算法,并使用合成和现实数据来说明它们。
{"title":"Heavy-tailed phase-type distributions: a unified approach.","authors":"Martin Bladt,&nbsp;Jorge Yslas","doi":"10.1007/s10687-022-00436-8","DOIUrl":"https://doi.org/10.1007/s10687-022-00436-8","url":null,"abstract":"<p><p>A phase-type distribution is the distribution of the time until absorption in a finite state-space time-homogeneous Markov jump process, with one absorbing state and the rest being transient. These distributions are mathematically tractable and conceptually attractive to model physical phenomena due to their interpretation in terms of a hidden Markov structure. Three recent extensions of regular phase-type distributions give rise to models which allow for heavy tails: discrete- or continuous-scaling; fractional-time semi-Markov extensions; and inhomogeneous time-change of the underlying Markov process. In this paper, we present a unifying theory for heavy-tailed phase-type distributions for which all three approaches are particular cases. Our main objective is to provide useful models for heavy-tailed phase-type distributions, but any other tail behavior is also captured by our specification. We provide relevant new examples and also show how existing approaches are naturally embedded. Subsequently, two multivariate extensions are presented, inspired by the univariate construction which can be considered as a matrix version of a frailty model. We provide fully explicit EM-algorithms for all models and illustrate them using synthetic and real-life data.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40568768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tail processes and tail measures: An approach via Palm calculus 尾部过程和尾部度量:一种基于Palm演算的方法
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2021-12-31 DOI: 10.1007/s10687-023-00472-y
G. Last
{"title":"Tail processes and tail measures: An approach via Palm calculus","authors":"G. Last","doi":"10.1007/s10687-023-00472-y","DOIUrl":"https://doi.org/10.1007/s10687-023-00472-y","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44149630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A marginal modelling approach for predicting wildfire extremes across the contiguous United States 预测美国各地极端野火的边际建模方法
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2021-12-31 DOI: 10.1007/s10687-023-00469-7
E. D’Arcy, C. J. R. Murphy-Barltrop, R. Shooter, E. Simpson
{"title":"A marginal modelling approach for predicting wildfire extremes across the contiguous United States","authors":"E. D’Arcy, C. J. R. Murphy-Barltrop, R. Shooter, E. Simpson","doi":"10.1007/s10687-023-00469-7","DOIUrl":"https://doi.org/10.1007/s10687-023-00469-7","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44830084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A combined statistical and machine learning approach for spatial prediction of extreme wildfire frequencies and sizes 用于极端野火频率和规模空间预测的统计和机器学习相结合的方法
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2021-12-30 DOI: 10.1007/s10687-022-00460-8
Daniela Cisneros, Yan Gong, Rishikesh Yadav, A. Hazra, Raphael Huser
{"title":"A combined statistical and machine learning approach for spatial prediction of extreme wildfire frequencies and sizes","authors":"Daniela Cisneros, Yan Gong, Rishikesh Yadav, A. Hazra, Raphael Huser","doi":"10.1007/s10687-022-00460-8","DOIUrl":"https://doi.org/10.1007/s10687-022-00460-8","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48121423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Handling missing extremes in tail estimation 处理尾部估计中缺失的极值
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2021-12-23 DOI: 10.1007/s10687-021-00429-z
Hui Xu, R. Davis, G. Samorodnitsky
{"title":"Handling missing extremes in tail estimation","authors":"Hui Xu, R. Davis, G. Samorodnitsky","doi":"10.1007/s10687-021-00429-z","DOIUrl":"https://doi.org/10.1007/s10687-021-00429-z","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47877604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Adapting the Hill estimator to distributed inference: dealing with the bias 将Hill估计量应用于分布推断:偏差的处理
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2021-12-20 DOI: 10.1007/s10687-022-00440-y
Liuju Chen, Deyuan Li, Chen Zhou
{"title":"Adapting the Hill estimator to distributed inference: dealing with the bias","authors":"Liuju Chen, Deyuan Li, Chen Zhou","doi":"10.1007/s10687-022-00440-y","DOIUrl":"https://doi.org/10.1007/s10687-022-00440-y","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45083309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremes of Markov random fields on block graphs: Max-stable limits and structured Hüsler–Reiss distributions 块图上马尔可夫随机场的极值:最大稳定极限和结构化h<s:1> sler - reiss分布
IF 1.3 3区 数学 Q2 Economics, Econometrics and Finance Pub Date : 2021-12-09 DOI: 10.1007/s10687-023-00467-9
Stefka Asenova, J. Segers
{"title":"Extremes of Markov random fields on block graphs: Max-stable limits and structured Hüsler–Reiss distributions","authors":"Stefka Asenova, J. Segers","doi":"10.1007/s10687-023-00467-9","DOIUrl":"https://doi.org/10.1007/s10687-023-00467-9","url":null,"abstract":"","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42154564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Extremes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1